Category: Seminars

Civil Engineering Graduate Seminar: Characteristics of Railway Operation and System Design

Civil Engineering Graduate Seminar; 4 – 5 PM, Feb 13, 2014 in Dow 642;
Mr. Ulrich Leister of SMA Partner AG, Zurich, Switzerland, presents: Characteristics of Railway Operation and System Design

Ulrich Leister obtained a Master of Science in transportation engineering from the Institute of Technology Berlin. In 2010, he wrote his master thesis on the integration of the high-speed system in California at SMA. Today he is Manager Business Development for the US market and has been project manager for our American projects since 2012.

The presentation will describe the characteristics of railroads, and explain the complexity resulting from the strong interdependencies between transportation, infrastructure and equipment that are unique to railroads. Planning approaches to design and operate rail systems, both on the freight and passenger side, are presented before ideas from our recent work in the United States to improve integration of both service types are discussed.

Sponsored by Michigan Tech Rail Transportation Program

SMA Partner AG

Rail Talks: High Speed Rail Track Design and Passenger Rail Outlook

Michigan Tech Rail Transportation Program Talks:
Feb 11, 2014: Mr Phil Pasterak, PE, Parsons Brinckerhoff, presents:
1:00 PM HSR Track Design – Dillman 301J
4:00 PM Passenger Rail Outlook in the US – Dow 875

Phil Pasterak has 30 years of professional experience and currently serves as PB’s Central Regional Manager for Rail and Transit. He has extensive experience in the management, planning, and technical design of rail, transit, and other transportation facilities and infrastructure. Mr. Pasterak is recognized for his expertise in developing high speed/intercity/commuter rail corridors, including his work on the Chicago-St. Louis high speed corridor, for which he currently serves as PB’s project manager. He also served as task
manager for planning through construction of the Utah Transit Authority’s first commuter rail service, and for planning of numerous passenger rail corridors in Illinois, Ohio, New York, and Virginia

Environmental Engineering Seminar: Lake Superior Topics

Environmental Engineering Seminar Series
GLRC 202 3:00pm

Rasika Gawde, PhD student, Environmental Engineering

“Hydrodynamics and Thermal Structure in Lake Superior Impacts of an Episodic Climate Anomaly”

In recent years, 3D hydrodynamic models have been widely applied in a predictive capacity to all the Great Lakes to study ecosystem response to long-term climate change. But, an alternative aspect of climate change, observed as intermittent climatic anomalies, has not received equal interest. An isolated, positive anomaly observed in local air temperature measurements in March 2012 presents a unique opportunity to study the latter in Lake Superior’s ecosystem. Here, a 3D hydrodynamic model, Environmental Fluids Dynamics Code (EFDC), is applied for two consecutive summers, one preceded by the spring anomaly (2012) and the second preceded by average spring air temperatures (2011), to analyze the impact of this climatic anomaly on the thermal regime of the lake. This modeling effort is supported by a rich, comprehensive dataset of surface water temperatures and vertical temperature profiles measured during the April to September period of 2011 and 2012. Impacts of the temperature anomaly were observed along temporal and spatial scales; e.g. the 6°C increase in lake-wide surface water temperatures at the start of summer 2012 as compared to 2011 as well as on the physical processes; e.g. an early onset of thermal stratification (4 weeks in advance) in 2012. These shifts in thermal regimes will in turn affect ecological processes.

Marcel Dijkstra, PhD student, Environmental Engineering

“Ecosystem function in Lake Superior: Impacts of an episodic climate anomaly”

Climate change may become manifest over differing time scales: one characterized by long term, incremental changes as recorded in historical averages and the other by short term variability, e.g. the magnitude, timing, frequency and duration of episodic, extreme events. The ecological impact of extreme weather events may be particularly severe, simply because they are extreme, but also because ecosystems have rarely been exposed to such events. Due to the inherent unpredictability of extreme events, few studies have reported on the attendant ecosystem response. Here, the effects of an episodic air-temperature anomaly that occurred in Spring 2012 are reported and compared to those of 2011, a year with essentially average temperature conditions. Impact of this extreme weather event on the lake’s thermal regime and ecological forcing conditions (e.g. light, temperature and nutrients) cascaded through the system. This resulted in elevated annual primary production with a distinctive temporal distribution characterized by high productivity in early summer followed by a collapse in September (brought on by nutrient depletion resulting from extended thermal stratification). The benefits of increased annual primary production to the higher food web may be offset by cataclysmic drops in production.

Civil Engineering Graduate Seminar: Skagit River Bridge Emergency Repair & Replacement

Civil Engineering Graduate Seminar; Thursday, Nov. 21, 4:00-5:00 pm
Dow 641. Mr. Thomas Pinder, BS Metallurgical Engineering, MTU
Acrow Bridge Company

Title: Skagit River Bridge Emergency Repair & Replacement

During the summer of 2013 the Skagit River Bridge on I-5 in the State of Washington was destroyed when it was hit by a truck hauling an oversize load. This presentation describes the damage and the emergency repairs made by constructing a temporary bridge. This temporary bridge allowed the four lanes of traffic to be restored within a few weeks while the permanent bridge section replacement was being fabricated and eventually put into place.

Civil Engineering Graduate Seminar: Great Lakes Water Level Regulation and Diversions

Civil Engineering Graduate Seminar; Thursday, November 14; 4:00 pm to 5:00 pm; Room 641 Dow

View seminar on Civil & Environmental Engineering Channel on Vimeo

Title: Great Lakes Water Level Regulation and Diversions
Cynthia Jarema, P.E., U.S. Army Corps of Engineers, Detroit District

The Great Lakes are a hydraulically regulated system. The Boundary Waters Treaty of 1909, established a commission between the U.S. and Great Britain (Canada), so that joint decisions could be made regarding issues and projects such as hydropower and diversions in the Great Lakes. Individual Boards of Control acknowledge and focus on the needs of various interest groups in their respective area. The International Lake Superior Board of Control operates a technical regulation plan to determine the Lake Superior outflow rate that would bring the levels of Lake Superior and Lakes Michigan and Huron to the same relative position within their respective historical ranges, before diversion or control structures were in place. The ability to regulate Lake Superior’s outflow however, does not mean that full control of lake levels is possible. Meteorological occurrences (precipitation, evaporation, and runoff) cannot be controlled or accurately predicted, and has a much greater impact to water levels than any man-made control.

Cynthia Jarema, P.E. is a hydraulic engineer with the U.S. Army Corps of Engineers, Detroit District. She holds a B.S. in Environmental Engineering from Michigan Tech; a 2006 graduate. After several years of working on riverine modeling and design projects, she became involved in Great Lakes data collection and analysis. Cynthia currently holds the position as lead engineer support for the U.S. membership of the International Lake Superior Board of Control under the direction of the International Joint Commission.

Civil Engineering Graduate Seminar: Railroad Ballast Stone in Michigan

Civil Engineering Graduate Seminar
Thursday, November 7, 4 – 5 pm, Room 641 Dow

Title: “A Search for a Source of Railroad Ballast Stone in Michigan”
Kurt Breitenbucher

Through NURail Funding and the Michigan Department of Transportation, improvements will be made to the existing Wolverine Line between Chicago and Detroit. The purpose of this study is to investigate the current MDOT railroad ballast specifications and compare them to both the national standards as well as international ones. In the case where the current MDOT or AREMA standards are not acceptable, identify a proper testing methodology and suggest a new standard to be used for high-speed rail ballast both sourced and used in Michigan. Much of Michigan lies in a sedimentary basin; this material generally makes poor rail ballast due to polishing and weathering. The Upper Peninsula contains more igneous rocks due to the rifting that occurred in the area. There are also a number of mines that generate poor rock that will be investigated as a ballast material. This project will also propose methods of transport for ballast material sourced in Michigan. Once the material sources are identified, their qualities will be assessed with various index tests and a study will be done to assess their rate sensitivity (dynamic strength testing.)

Kurt Breitenbucher is currently a Masters Candidate at Michigan Technological University, expecting to graduate in December 2013, with an emphasis in Geotechnical Engineering. He received his Bachelors of Science in Civil Engineering from Michigan Technological University in August 2012.

Civil Engineering Graduate Seminar:

Civil Engineering Graduate Seminar
Thursday, October 31, 4:00 pm, 641 Dow

Speaker: Xiao Sun

Title: Effects of Internal Curing on Permeability of Interface Transition Zone in Cement Mortar

Due to its high porosity, prewetted lightweight aggregate (LWA) is widely used as the internal curing medium to supply water for hydration or to mitigate moisture lost induced by self-desiccation or evaporation, thereby enhancing the sustainability of infrastructure. This research focuses on the pore structure and transport physical properties of the interface transition zone (ITZ) in cement mortar with internal curing. Mortar samples with and without LWA were made with the same water-cement ratio, which was 0.35. After curing for 28 days, the samples were polished, vacuum impregnated with fluorescent dye and cut into thin sections. The microstructures were characterized through scanning electron microscopy (SEM) imaging technique to exam the real differences of ITZ pore structure between two types of mortar. From those images, the two-dimensional digital samples contain pores, cement particles and fine aggregates were generated in micron scale. Based on the same porosities, the three-dimensional digital microstructures were generated using 3D image reconstruction technique. The permeability analysis was conducted on the 3D reconstructed pore microstructure. The permeasolver code developed by Dale Bentz and Nicos Martys at NIST was applied. The finite-difference method was conducted based on image pixels with artificial compressibility relaxation algorithm to solve the Stoker equation. Once the solution of the average velocity at four different depths converges to a fixed value, the permeability can be obtained from Darcy equation based on that velocity. A comparison of permeability between samples with and without internal curing was made. This study will demonstrate the effect of internal curing on the pore microstructure and transport properties at ITZ.

Xiao Sun is a second year PhD student of Michigan Tech. He works as a Research Assistant for Dr. Dai. His previous research topic is the microstructure and transport properties of concrete material. He received his undergraduate and graduate studies of fluid mechanics and hydraulic concrete structure from the universities in China.

Civil Engineering Graduate Seminar: A Study of Vibrations and a Method to Suppress Them

Civil Engineering Graduate Seminar:
Thursday, October 24, Room 641 Dow Building, 4:00-5:00 pm

Title: A Study of Vibrations and a Method to Suppress Them

Presenter: Benjamin Winter

Vibrations developed during drilling present challenges in an array of industries including mechanical, medical, structural, and oil extraction. Velocity weakening, intracranial vibrations, large amplitude standing pressure waves in material cavities, and failure of drill strings are prominent issues among these fields. Stick-slip (torsional) and bit-bounce (axial) vibrations have been found to be particularly problematic in precision drilling jobs such as machining to tight tolerances, dismantling vibration-sensitive devices, and surgical work. Current technologies to detect and suppress systematic vibrations have several shortcomings including malfunctioning, complete failure, complexity, and high power consumption. This paper proposes a method to suppress vibrations of drilling material surfaces using adaptive positive position feedback (APPF) control for efficient tunable damping. An experiment-based parametric study has been conducted to determine the relationship of force, rotational velocity, and acceleration on both drill vibrations and drilling material surface vibrations. Results of a parametric study and Rational Polynomial Fraction method are used to estimate fundamental behaviors of the drilling system to create a refined numerical model for simulating the drilling process. An APPF controller together with the model provided a method to evaluate new actuator designs for vibration suppression and has shown a 69.8% reduction of displacement vibrations.


Benjamin Winter is starting his second year of his PhD program in Civil Engineering at Michigan Tech. He is a student member of ASCE and AISC. During the school year, he works as a Research Assistant for his advisor Dr. R Andrew Swartz. During the school year he also mentors undergraduate students beginning research in structural control and system identification while preparing for K’nex bridge competitions. This fall he is continuing his interest in mentoring and teaching students as a Teaching Assistant for the undergraduate Structural Steel Design course and as a tutor for students for statics MEEM 2110.