Category: Adult Education

MTU’s GI Science Program Promotes Data-Driven, Yet Inclusive Solutions

Through his workshop on drones, Parth Bhatt helped bring GI Science to Suriname.

Bringing GI Science to Suriname

Dr. Parth Bhatt, Assistant Teaching Professor/Researcher from the College of Forest Resources and Environmental Sciences (CFRES) breathes and lives Geographic Information Science. In fact, Bhatt, a team of researchers, and other MTU representatives recently returned from Suriname, South America. There, they led an immersive, 3-day workshop in Forest Field Research Methods at Anton de Kom Agricultural University’s Centre for Agricultural Research (CELOS). 

Suriname, endowed with vast tropical rainforests and rich biodiversity, faces several pressing technological, environmental, and socio-political challenges. And the country’s geographical features also make it vulnerable to the effects of climate change, such as those of severe flooding and storms.

There are also the more obvious human-made damages to Suriname’s delicate ecosystem. Between 2019 and 2022, in fact, artisanal and small-scale gold mining (ASGM) increased by 47%. This growth led to significant deforestation and environmental degradation. As a result, the region lost approximately 25 square kilometers of rainforest. Suriname’s remoteness further complicates regular data collection, hindering effective policy development and environmental protection efforts.

Exacerbating these issues is a serious skills gap. That is, Bhatt acknowledges that “a major challenge [Suriname] faces is a shortage of highly trained professionals to help manage and preserve these resources effectively. Strengthening educational and research collaborations can help bridge this gap by providing expertise in conservation, remote sensing, and sustainable resource management.”

In Suriname, Parth Bhatt and the rest of the team tried to bridge this gap. For instance, while he was there, Bhatt led workshops on the use of drones for collecting geospatial data in the country’s rainforests. This hands-on experience with UAVs (Unmanned Aerial Vehicles) exemplifies the benefits of applying emerging technologies in natural resource management.

Ongoing Challenges in Geographical Information Science

Most obviously, these workshops demonstrated how Geographic Information Science provides approaches for managing natural resources. To Bhatt, though, “remote sensing are more than just tools—they’re gateways to understanding our world in ways that truly matter.”

Bhatt’s online certificates, through CFRES, certainly help with this understanding. In fact, their coursework addresses the complexities of applying GI Science to natural resource management in the US, Suriname, and beyond.

As an example, let’s take Dr. Bhatt’s inaugural online certificate from Michigan Tech Global Campus: Foundations in Geographic Information Science for Natural Resources.

GI Science Challenge #1: Working with Variable Data Sets

Data sets often vary in resolution, format, projection, and accuracy. This point is especially true when researchers combine historical data with newer sources (e.g., satellite vs. drone). Because of variations in data, it is often difficult to model ecosystems reliably. Or to make consistent decisions across jurisdictions or even time spans.

Furthermore, when it comes to geospatial information, there are additional difficulties with handling the volume, variety, and velocity of data. GI Scientists must contend with a stream of heterogenous data from sensors, satellites, smartphones, and social media. And they must collect and streamline this data while also creating real-time data analytics and visualizations.

GI Science Challenge #2: Contending with Uneven Data Quality and Uncertainty

To complicate things further, geographic data often come from multiple sources. Researchers must juggle information from satellites, GPS, surveys, user-generated content (e.g., OpenStreetMap), and government records. And each source may differ in accuracy, resolution, update frequency, and metadata standards, leading to uneven quality and results. For instance, combining high-resolution satellite imagery with outdated census data might produce misleading results in land-use change analysis.

There is also the problem of uncertainty and inconsistency in spatial data. This problem is especially tricky when boundaries or attributes are interpreted subjectively (e.g., informal settlement boundaries). And inconsistency in quality can result from human error, different measurement techniques, and varying classification systems.

Classification, for instance, is variable. Organizations, datasets, and researchers might categorize geographic features differently, even when referring to the same types of objects or areas. For instance, one land-cover dataset might classify land according to “forest,” “urban,” “agriculture,” and water. Another might use these categories: “deciduous forest,” “coniferous forest,” “low-density urban,” “high-density urban,” and “irrigated cropland.”

FW5550 (Geographic Information Science and Spatial Analysis)

Some of the course’s key topics address these challenges.

  • Metadata Standards and Quality Assessment. FW5550 emphasizes understanding metadata, particularly their provenance, processing, and reliability.
  • Spatial Data Models and Structures: Students learn how different types of spatial data (raster vs. vector, continuous vs. discrete) are structured, so that they can recognize the limitations and strengths of each. This skill is crucial when merging data from multiple sources that have inconsistent formats or resolutions.
  • Data Integration and Overlay Analysis: Combining datasets from multiple origins is stressed. The course addresses inconsistencies in classification systems, temporal mismatches, and spatial resolution. It also covers practical techniques of reclassification, resampling, and transformation.

GI Science Challenge #3: Collecting Data in the Field

Gathering data in the real world is definitely messy. Thus, another challenge is ensuring the collection of accurate, up-to-date, and context-sensitive data collection while in varied environments. Researchers must contend with several obstacles, such as poor signal in forests, variable terrain, or multipath interference.

Multipath interference is a common and important source of error in Geographic Information Science, particularly in GPS/GNSS data collection. This problem occurs when a GPS signal bounces off surfaces (buildings, water, terrain, dense forest canopies) before reaching the GPS receiver. This interference then causes delays and inaccuracies in position calculation. (If you’ve ever run in a dense forest with a Garmin watch that beeps out an impossibly fast 6-minute mile followed by an annoying slow, 13-minute one, you’ve experienced this phenomenon.)

In other words, collecting data in the real world means recognizing environmental context, positional accuracy, and uncertainty. Therefore, researchers must understand how to quantify and mitigate locational error in spatial datasets. This need is especially true of data in high-precision applications, such as autonomous navigation. Drones used in forest-fire management, for instance, must quickly get to where they need to be. Furthermore, field-collected data must also be integrated with other geospatial datasets: aerial/satellite imagery, census records, or remote sensing products

How FW5554 (GPS Field Techniques) Helps Students Address the Complexities of Data Collection

This hands-on course, which focuses on GPS technology and its applications, emphasizes data collection, processing, and management. Students gain practical experience with various GPS units, learning to ensure data accuracy and quality. They also get experience integrating GPS data with GIS systems–vital for working with UAVs and IoT devices.

Some of the course’s key features include the following:

  • Data Collection in the Real World: Students work with state-of-the-art handheld Trimble GPS unit and industry-standard mobile applications, such as FieldMaps, Survey123 and QuickCapture which are crucial for their portfolios (as part of the Modern GeoApps). Thus, they gain hands-on experience using GPS devices and collecting precise spatial data in challenging, obstacle-filled settings.
  • Positional Accuracy and Uncertainty: The course covers differential correction techniques and the use of real-time kinematic (RTK) positioning, which are both essential for high-accuracy mapping.
  • Integration of Field Data with Other Geospatial Data: Students learn how to format, import, and manage GPS data in GIS platforms, such as ArcGIS. The course also prepares students to handle data transformation, projection alignment, and temporal matching, which are increasingly important for multi-source data fusion in GI Science. The emphasis on using GPS and mobile mapping technologies gives learners a strong base for adapting to newer geospatial tools (drones, IoT, GIS apps).

The pictures below, taken from Dr. Bhatt’s trip to Suriname, represent the challenges of collecting data in the field while respecting the input of local knowledge.


GIS Challenge #4: Ensuring Human-Centered and Participatory GI Science

Data of any kind is not neutral. It is not without bias. Therefore, one ongoing challenge to GI Science is ensuring that data collection is more inclusive, especially to underrepresented communities. For inclusive GI Science to happen, though, GIS interfaces and tools must be user-friendly. If they are, participatory mapping, community engagement, and indigenous mapping can deepen both the collection and analysis of spatial data.

HOW FW 4545 (Map Design with GIS) Helps Make GI Science More Inclusive

This course teaches the principles of effective map-making. It also focuses on clear communication for decision-making and inclusive natural resource management. That is, students learn advanced visualization techniques to create accessible, informative maps for diverse audiences, supporting participatory approaches.

Ethical issues in GI Science, such as geoprivacy, data anonymization, equity, and bias in spatial algorithms, are another important topic. On the responsible use of spatial data, the course highlights opportunities to empower local and Indigenous communities by integrating traditional knowledge.

GI Science Challenge #5: Addressing the Effects of Climate Change

Overall, the curriculum of Dr. Bhatt’s first online certificate–Foundations in GI Science for Natural Resources–emphasizes applying GI Science to monitor and analyze changing natural systems. By engaging with real-world datasets and case studies, students develop the skills to update and interpret GIS models. They become adept at analyzing environmental conditions, ongoing trends, and the impacts of climate change.

They also learn to integrate ecological and climatic data. In doing so, they develop comprehensive analyses and predictive models so that they can make informed decisions in natural resource management.

Integrating remote sensing techniques with GIS is also stressed. This skill is pivotal to monitoring deforestation, tracking wildlife movements, and assessing fire risks. ​Also, through the program’s emphasis on the societal applications of GI Science, students learn how to engage with communities, incorporate local knowledge, and support collaborative natural resource management.

GI Science at MTU: Looking Forward.

All in all, Michigan Technological University’s Online Graduate Certificate in Foundations in Geographic Information Science for Natural Resources is structured to build foundational GIS skills while addressing common technical barriers.

This certificate is just the first of the stackable three that will constitute Michigan Tech’s forthcoming Online Master of Geographic Information Science (MGIS) program. The subsequent certificates will delve deeper into advanced GI Science and remote sensing topics. Their content will further equip students to navigate and utilize modern GIS tools and technologies as they apply natural resource management.

Currently, Dr. Bhatt is running these courses from the first certificate in the Summer: FW5550 (Geographic Information Science) and FW5554 (GPS Field Techniques). And in Fall 2025, these three courses will be available: FW5550, FW5554, as well as FW5553 (Python Programming for GIS). This last course is from the second very-soon-to-be-released certificate: Advanced Geographic Information Science for Natural Resources.

And he’s proud of these courses, too, and their graduates. He enjoys giving his students “hands-on experience with spatial technologies while exploring their real-world applications, from environmental monitoring in the forests and wetlands to solving local and global resource challenges.”

Through Michigan Tech’s global learning opportunities and hands-on programs, I’ve been able to offer a valuable education to students, which helps them not only transform curiosity into capability, but also data into meaningful change. 

Dr. Parth Bhatt

Learn More About Michigan Tech’s Online GI Science Program.

If you’re interested in diving deeper into this online program and discovering how it can align with your specific career goals or research interests, please attend our virtual (Zoom) information session.

This session, which represents the third installment of our Third Thursday Series, will discuss admissions requirements, program details, and career trajectories. Even better: you’ll also get to meet (and introduce yourself to) the program’s main instructor and director: the dynamic Parth Bhatt.

DETAILS:

Date: Thursday, May 15, 2025

Time: 11:30 AM – 12:15 PM (ET)

Location: Zoom

Michigan Tech Global Campus Launches Third Thursday Interest Session Series

Discover Michigan Tech’s Online Programs

Curious about whether an advanced degree is the right fit for you? Want to learn more about Michigan Technological University’s online graduate programs? What sets MTU’s programs apart from the rest? Then, attend one of the 45-minute Third Thursday virtual information sessions from Michigan Tech Global Campus.

These online information sessions, held on the third Thursday of most months, will feature some of Michigan Tech’s most popular online graduate certificates and master’s programs, such as the Tech MBAⓇ. They’ll also highlight new(er) online ones, such as foundational certificates in GIS and Cybersecurity and the manufacturing engineering degrees.

In these sessions, attendees will learn about

  • key reasons for earning this certificate and/or degree from Michigan Tech
  • the online program’s content, structure, and course delivery
  • exciting trends in the discipline and/or field
  • important deadlines and program start dates

Advisors will also be on hand to answer questions about admissions requirements and the application process.

Although the sessions are 45-minutes long, the hosts will stay for the full hour to address all your concerns and questions.

First on Deck for Third Thursday: The Online Tech MBAⓇ and MEM Programs.

Join the Global Campus Team on Thursday, March 20, at 11:30 AM (ET). This session will spotlight the online Tech MBA and the Master of Engineering Management (MEM) programs. The Tech MBA (online and in-person), in fact, is one of the Graduate School’s fastest growing and most respected programs.

The Tech MBA® and MEM have been here awhile. For several years, MTU has offered respected in-person versions of these programs. For instance, the Tech MBA® in its current form (30 credits) began in 2017. Next came the in-person and online versions of the MEM (2020, 2022).

What makes these programs stand out is their accreditation by the Association to Advance Collegiate Schools of Business International (AACSB), an honor bestowed on only 5% of the nation’s business schools. And like their in-person equivalents, the online MBA and MEM programs meet a strict set of standards, ensuring quality in curriculum, rigor, and research.

At this Third Thursday session, Dr. Mari Buche will discuss program details, such as degree plans and flexible course delivery options. You’ll discover which degree equips you with foundational business skills and which interdisciplinary degree best bridges business and engineering.

Next Up for April: The Online MS in Civil Engineering.

Alternatively, drop by on Thursday, April 17, 2025, at 11:30 AM (ET) to dive into the MTU’s popular, respected online master’s degree in Civil Engineering.

What sets this degree apart is its instructional team: professional engineers with decades of practical experience. Also, along with offering two in-demand focus areas–structural engineering and water resources engineering–the program also contains unique, sought-after certificates in both bridge design and timber building design.

At this information session, program experts will unpack how you can stack structural engineering certificates to customize a civil master’s that both builds on your undergraduate degree and strengthens your project management and leadership skills.

You’ll also learn about how you can integrate an asset management certification into your program. Asset management, the science and coordinated activity for the long-term care and maintenance of infrastructure systems, facilities, and other civil assets, is an in-demand skillset.

Visit the Third Thursday Page.

You can also read more about Third Thursdays, register for the online Civil MS event as well as additional upcoming sessions, and join the Global Campus mailing list on the event webpage.

Bridging Business and STEM

The online Tech MBA program helps people bridge business and STEM.
Engineering and tech companies seek graduates with STEM and business administration expertise.

Discover the Online Tech MBA® and MEM Programs.

The College of Business and Michigan Tech Global Campus are teaming up to hold another virtual interest session on two of MTU’s most popular online programs: The Tech MBA® and the Master of Engineering Management (MEM).

They will be holding another 45-minute virtual interest session on Wednesday, July 17, at 11:30 AM (ET).

Mari Buche, associate Dean of the College of Business and program director; and David Lawrence, vice president for Global Campus and continuing education will lead the presentation. They will highlight and compare these programs, explaining which one is best for you. The team will also provide examples of curriculum pathways and discuss career opportunities.

The Michigan Tech’s Global Campus small but mighty team of admissions representatives (Amanda Irwin and Jacque Smith) will also be present to discuss the application process and accelerated options.

Get an Accredited, Respected Degree.

The Tech MBA® and MEM are not new, though. For several years, the in-person versions of these programs have long been respected at MTU. The Tech MBA in its current form (30 credits) began in 2017 whereas the online format was rolled out in 2022. Next came the in-person and online versions of the MEM (2020, 2023).

Both programs are also accredited by the Association to Advance Collegiate Schools of Business International (AACSB), an honor bestowed on only 5% of the nations’s business schools.

And like their in-person equivalents, the online MBA and MEM programs meet a strict set of standards, ensuring quality in curriculum, rigor, and research.

The Online Tech MBA® is a highly structured program consisting of eight required courses and two electives. In contrast, the MEM degree is more flexible. Students get to build their own programs, combining 4-6 business courses with 4-6 engineering courses.

Both programs provide learning experiences that fuse technological expertise and business administration. Students get to leverage their previous engineering experience, regardless of their field, and/or their former engineering management expertise. They also gain the cross-disciplinary advantage of studying at a school known for not only for its technology and business programs, but also for its Faculty who have leadership and industry experience in tech-centric fields.

Graduates of both programs will leave equipped with critical thinking, communication, problem-solving, project management, and leadership skills. As a result, they are more than prepared to tackle marketing, management, technical sales, leadership, strategy, and entrepreneurship positions. 

Prepare Yourself for Career Opportunities.

Incomes differ, but an investopedia article notes that MBA graduates who specialize in consulting, finances, and technology management earn the most. And according to one Fortune article, the median salaries for those with MBA degrees are substantially higher than those without them. One report ascribes 1.2 million dollars in extra income over a 20-year period.

Also, many organizations seek out and respect MBA holders. In fact, the Graduate Management Admissions Council (GMAC) found that 89% of employers planned to hire MBA graduates in 2021.

And MBA holders apply their skills and expertise in several fields. For instance, in Finance and Accounting, they might work as accounting managers, finance managers, financial analysts, budget analysts, and investment bankers. Whereas in heathcare, they might take on the roles of healthcare administrators and medical health service managers. Still others move to manufacturing where they act as managers for operations, supply chain, quality control, and more.

Typically, MBA programs are one of the most expensive master’s programs, with an average tuition cost of about 56k. This number does not include fees, books, and so on. Michigan Tech’s accredited program, which costs less, is definitely a value.

Learn More!

Prefer to do your own research? We’ve compiled other reasons for earning an advanced degree and pursuing an MBA.

Want to dive deeper? Ask more questions? Please join us at our virtual interest session on the Tech MBA®and MEM programs on Wednesday, July 15, 11:30 AM at ET. Bring your curiosity and your questions.

MAHLE and MTU: Moving Forward Together

Leaders from MAHLE and Michigan Tech gather at the signing ceremony.
Leaders from MAHLE and Michigan Technological University gather at the signing ceremony.

MAHLE is excited to partner with Michigan Tech on the Corporate Education Fellowship. This partnership not only allows employees to steer their professional development and open new pathways for internal career mobility, but also allows MAHLE to proactively support the development of our employees to meet the evolving demand for new skills and competencies.

This fellowship, when coupled with MAHLE’s Educational Reimbursement, provides employees with the ability to access affordable education through Michigan Tech’s online programs, offering flexibility to learn at their own pace, while balancing their personal life and work. We look forward to a successful partnership that will help to further prepare MAHLE and our employees as our industry transforms toward a decarbonized future.

President of MAHLE Peter Lynch

On Tuesday, Oct. 24, 2023, Michigan Technological University signed a Corporate Education Partnership Agreement with MAHLE Industries Inc. MAHLE is a leading international development partner and supplier to the automotive industry.

The partnership agreement was signed at MAHLE’s North American headquarters in Farmington Hills, Michigan. President Richard Koubek and David Lawrence (vice president for Global Campus and continuing education) were present for Michigan Tech. Peter Lynch (president of MAHLE) and Tiffiney Woznak, (director of Talent Management, MAHLE North America) represented MAHLE. Other leaders from both organizations also attended.

Richard Koubek and Peter Lynch sign the fellowship agreement.
President Koubek and MAHLE President Peter Lynch sign the fellowship agreement.
Jacque Smith, director of Graduate Enrollment Services; and Peter Lynch  chat.
Jacque Smith, director of Graduate Enrollment Services, and Peter Lynch, president of MAHLE chat.

Growing With Their Organizations

The Corporate Education Fellowship supports MAHLE employees in their pursuit of graduate education through Michigan Tech’s Global Campus. Eligible employees will receive fellowships to enroll in one of Michigan Tech’s online graduate certificates or master’s degree programs.

A hard copy of the MAHLE Corporate Education Fellowship Agreement that people sign.
The signing documents for the corporate fellowship agreement.

With this fellowship, employees can acquire industry-needed skills, follow areas of professional interest, and meet the diverse challenges of the ever-evolving automotive industry.

And they can achieve these benefits while studying online through Global Campus. As many of us understand, earning a credential while staying on the job is very convenient for working professionals.

These fellowships are available for up to four years. Recipients must meet the eligibility requirements of both the fellowship program and the scholastic standards of Michigan Tech’s Graduate School.

This program is part of the connected missions of Global Campus: building relationships between academia and industry, making quality online education more accessible to a diverse population of adult learners, and helping professionals advance and grow with their workplaces.

So far, several MAHLE associates have expressed a deep interest in this program.

Tiffiney Woznak stands in front of a picture of American NASCAR legend Richard Petty and the car Petty’s Garage helped design for MAHLE. Using MAHLE components, Petty’s Garage builds supercharged high-horsepower engines for one-of-a-kind-vehicles.

Tiffiney Woznak shows President Koubek the MAHLE car that Petty helped design.
Tiffiney Woznak (head of Talent Management for MAHLE North America) talks to President Koubek.

Partnering With MAHLE

If you haven’t heard of MAHLE, it is a global powerhouse. It has approximately 72,000 employees working in more than 30 countries. The company also boasts 152 production locations and 12 major research and development centers. As a global leader in technology, MAHLE has been proudly shaping the future of mobility and transforming the automotive industry for more than 100 years. It is known for being a leading international development partner and supplier to the automotive industry with customers in both passenger car and commercial vehicle sectors.

And you’ve probably been in the presence of a MAHLE part or two, as well. That is, this company’s components reside in about 50% of all the passenger and commercial vehicles on the road.

MAHLE’s portfolio is also wide. The company is also involved with industrial applications, as well as both small and large engine components. One of the company’s newest technological ventures is investing in e-bikes and smart bike accessories. E-bikes tend to be remarkably heavy, but MAHLE is changing the game with its ultra-light drive systems.

Collaborating With Companies Making a Difference

MAHLE has a rich past, but like Michigan Tech, it also has ambitious future-changing initiatives.

That is, one of the company’s main and ambitious goals is working towards climate-neutral mobility. To that end, it is focusing “on the strategic areas of electrification and thermal management as well as further technology fields to reduce CO2 emissions, such as fuel cells or highly efficient combustion engines that also run on hydrogen or synthetic fuels” (MAHLE). The company is also striving to improve “the triad of sustainable drives”: the electric motor, the fuel cell, and the non-fossil-fuel-powered intelligent internal combustion engine.

In other words, MAHLE, is both a presence in the vehicular industries and a crucial driver in the global move towards electrification and environmental sustainability. Its leadership in both of these areas make it a natural fit for Michigan Tech.

That is, MTU has a long history of working with the automotive industry and collaborating with other future-forward companies. For instance, in Nov. 2022, MTU signed a fellowship agreement with Nexteer Automotive. Nexteer is respected for delivering high-quality, next-level electric power and steer-by-wire systems, steering columns, driveline systems, and driver-assistance systems. And in August, ITC, a company committed to solving next-generation electricity infrastructure challenges, also partnered with MTU.

Pursuing Advanced Education: An Ongoing Journey

President Koubek confirmed the need for employees to earn advanced degres. From his experience, he knows well that all employees and leaders must continuously improve their skills to not only help their organizations succeed, but also meet upcoming technological challenges. He stressed that education, rather than an endpoint, is an ongoing process.

“I think we’re at a point in time where change is happening so fast . . . . It’s almost an expectation in the world now, especially in the technological fields, that you’re continuing your advanced education, that you’re never really done, and that there is always room to grow.”

Richard Koubek

Michigan Tech looks forward to working with MAHLE and to helping grow its success.

Five Advantages That Adult Learners Have

The letters "learn" on a scrabble board, which represent that education has no limits and that adult learners can still grow,

D—, that was the name of one of my most memorable non-traditional students when I taught writing courses in Edmonton, Alberta, Canada.

Straight out of high school, he was recruited by the Western Hockey League (WHL). (MTU’s own Brian Hannon even remembers playing against him a few times.)

After spending 15 years playing professional hockey, D— had returned to university. At 33 (or maybe 34), he was older than I, his teacher, was. When he walked into the classroom, looking damaged and world-weary from years of playing enforcer, I was, admittedly, a bit scared. Would this guy, who looked like he had his nose broken at least a few times, be a good student? Or would he be a total pain?

He struggled a bit, at first, feeling a bit awkward sharing his voice, getting his footing. His writing was initially rusty, but always truthful. But throughout the semester, he became one of the most enthusiastic classroom participants. The deepest readings of the texts were his. And he could spot bad arguments from a mile away. Recalling his time on the ice, he wrote a brilliant essay sympathizing with Frankenstein’s creation, who, too, experienced the pain and scorn of being made to be ugly.

By the end of the semester, his writing and critical thinking skills had improved more than those of anyone in the class. Sadly, that was the last I heard of him until recently, when I found out he became a lawyer.

There were so many others, too. An older student who barely passed the course, but who joined Doctors Without Borders. And G—–, who took my class at the age of 57. After dedicating her life to being a foster parent for troubled kids, she was pursuing a BS and then an MS in Social Work.

Defining Adult Learners

The previous stories exemplify what many of us have known for a long time: that adult learners, rather than having disadvantages, bring many benefits to the undergraduate and graduate classrooms.

Adult learners bring skills and experience to the classroom.

Put simply, adult learners are those who take on the responsibility of education later in life than do traditional students. These learners, like those students mentioned above, may have been working all their lives. They may have no previous post-secondary education. Alternatively, they may have completed some university education and are now moving on to advanced degrees.

Adult learners are often referred to as non-traditional students. According to the National Center for Education Statistics, there are several characteristics of adult learners. That is, beyond being older, they may be single parents, have dependents, be working adults, and be financially secure. Or they might combine several of these traits.

Adult Learners Improve the Classroom

Admittedly, there is a plethora of articles on tips for succeeding as a non-traditional student. But there are few on the substantial skills and wisdom that adult learners bring to the classroom.

#1 Increased Experience

Adult learners bring diverse skills to the classroom.
Adult learners bring skills and experience to the classroom.

It goes without saying that adult students have the benefit of that extra knowledge that comes with age. They may have decades of on-the-job, real-life, management, leadership, communication, and team-work experiences. They may have acquired unique abilities from their previous roles.

These experiences not only help them succeed in their courses, but also enrich and diversify the classroom for everyone.

For instance, a 57-year-old student who remembers the emergence of the Blackberry will have a much more informed perspective on our current (and some would say, troubling, if not addicting) relationship to digital technology.

Adult learners can draw on their rich histories to understand and apply complex ideas; and assume teamwork and leadership roles in the classroom. Those years or even decades of understanding may help them more deeply interpret and apply course materials. For instance, I fondly recall G—– interrupting and offering her foster-parent perspective when a younger student stereotyped a story character as “just another bad, lazy kid who didn’t deserve to be helped.”

Also, some programs, such as Michigan Tech’s Online MBA , the MS in Health Informatics, and our various MS in Engineering programs (Civil, Electrical, and Mechanical) are very well suited to professionals who have been in the workforce for awhile.

#2 Superior Problem-Solving Skills

This breadth of experience, no doubt, comes with encountering more obstacles. That is, adult learners, simply from being on the planet and in the workforce for longer, have most likely encountered several tricky personal and professional problems. Therefore, they may be better at analyzing and troubleshooting issues, as well as generating practical solutions. Or to put it another way, they have made more mistakes, so they know what works and what doesn’t.

For instance, our Vice President of Global Campus and Continuing Education, David Lawrence, has over a decade of collaborating with industry. He is applying his substantial practical knowledge in his dissertation, which is on the challenges and affordances of industry/higher ed partnerships.

#3 Advanced Focus

Adult learners are often more mature and better able to handle the responsibilities of higher education, whether as undergraduates or graduates.

Why? In their various roles, they have most likely developed time management and organizational skills. These skills enable them to focus and to better juggle their academic and personal responsibilities. This focus, when combined with maturity, often makes adult learners better at handling the challenges of college life.

And if they have ever felt exhausted on the job, they may also recognize when they can no longer concentrate and work effectively. That is, they know when to stop studying and to take a break, resulting in a deeper appreciation of the importance of work-life balance.

#4 Crystallized Knowledge

And even if adult learners may sometimes not seem as quick as their younger counterparts, they are just as smart. In fact, a 2017 study in Gerontology discovered that fluid problem-solving ability increases from early adulthood to about the age of 50. But it’s not game over (as this author can attest) at 51. After age 50, adults rely more on crystallized intelligence, which comes from one’s experiences and stored information. CI, which grows throughout life, includes procedural (practical), declarative (factual), general, and specialized knowledge.

Or to put it another way, older adults maintain performance on many cognitive tasks by relying on crystallized knowledge and experience to compensate for declines in fluid abilities and processing speed.

Here’s an example. In one experiment involving a verbal memory task, young and middle-aged adults relied more on fluid abilities whereas older adults relied more on vocabulary (an index of crystallized ability) for optimal performance. It may take adult learners longer to get the answer, but when get it, they will probably be correct.

#5 The Gift of Perseverance

Last but certainly not least, whether you’re an adult thinking about going back to school, don’t worry. Whether 31 or 51, you will bring the gift of perseverance to the classroom.

Yes, pursuing an education when you have other responsibilities is tough. Juggling a career, a family, and coursework is certainly not easy. But adult students often have most of these challenges figured out. They’ve developed strategies for handling stress and for managing time. They’re often laser-focused when pursuing their goals. Lastly, in their education, they have the perseverance, or as we say in the UP, SISU, to succeed.

Adult Learners and Online Programs

When it comes to advanced education, adult learners often gravitate to online courses and programs because of their accessibility and flexibility. Online education, such as that offered by the Michigan Tech Global Campus, enables adult learners to set their own learning goals, identify their needs, and customize their degrees.

In 2020, approximately 33.5 million people in the United States took at least one online course. This number represented a huge increase since 2018. In that same year, online courses accounted for 32.4% of all postsecondary enrollments in the United States. The most popular online programs are business (22%), health (17%), computer science (14%), and engineering (11%). Of those taking online courses, 31% are between 25-44. The average age of online learners is 33 and that number is slowly moving upward.

And why enroll in these programs? Over half of all online students (51%) reported that they had taken online courses to gain new skills, upgrade their careers, and increase their incomes. Furthermore, returning to school, along with giving adult learners a sense of accomplishment and pride, also provides networking opportunities. Adult learners, that is, get the opportunity to connect with peers who share similar interests and goals, improving their personal and professional lives.

And there are other benefits. That is, for many fields, an advanced degree not only gets applicants that job in the first place, but enables them to keep it, especially during economic downturns.

Explore Online Programs at MTU

In other words, when it comes to graduate education, don’t let age hold you back from accessing these benefits. Check out Michigan Tech’s online programs and start your new learning journey.

PS. By the way, the author is speaking from multiple experiences here. From the perspective of a person who has both taught adult learners and earned her PhD post-50, she thinks that (parden the pun) old dogs can definitely learn new tricks!