Category: Michigan Tech Global Campus

News about Michigan Tech Global Campus: home of MTU’s online programs.

Lean Expert Dr. Ruth Archer Represents MTU

Lean Mind Map for Michigan Technological University
Lean Mind Map for Michigan Technological University

As you can see from the Mind Map above, Lean definitely matters to Michigan Tech.

“Start somewhere and learn from experience.”

“Helping people create more value on their own represents on of the highest forms of respect.”

John Shook, Lean Expert

Helping people learn from experience, equipping them with both the skills and habits of mind to create value, and instructing them in Lean thinking and practices are gifts that Ruth Archer has enthusiastically provided to the Michigan Tech community for over a decade.

Director of Continuous Improvement for Michigan Tech since 2014, Archer “is responsible for facilitating improvements that close the gap between current state and the university’s strategic goals, fostering the continuous process of people development, and promoting collaborative partnerships and sharing Lean expertise in the state, the nation, and the global community” (Faculty Profile).

Dr. Ruth Archer, Director of Continuous Improvement at Michigan Tech

And in just over a month, she will be contributing her leadership and Lean skills to the 2023 Lean Solutions Global Summit. The summit will be held October 2 – 4 at the VanDyk Mortgage Convention Center in Downtown Muskegon, Michigan. This event includes tracks for the LEAN presence in four industries: healthcare, government, business, and higher-ed/non-profit.

At the summit, Ruth and Debra Levantrosser will share a session for the higher ed track. Debra is a lecturer at the University of Michigan, founder and lead advisor for Arbed Solutions, and chief executive at Shimmy Shack. In this session, Debra will discuss what is being taught to our future Lean leaders whereas Ruth will provide advice and plans for implementing Lean in a higher ed institution.

Putting Down Lean Roots

Ruth (what she prefers to be called) is also an MTU Alum (BSEE ‘86) and multifaceted thinker who combines her engineering experience and Lean expertise with a rich, interdisciplinary education. After acquiring her MBA in 1991, she went on to earn a PhD in Business Administration (2016). For her doctorate, she specialized in Industrial/Organizational Psychology (Northcentral University). You can read more about Archer’s accomplishments and credentials at her MTU page.

And her Lean roots go way back. That is, they were seeded in her work as an aircraft mechanic for the United States Air Force (USAF) in the 80s. There, she quicky discovered how “visual management, standard work, 5S, and more were integral to our everyday work.”

Michigan Tech, too, has a long history with continuous improvement.

The PCDA cycle, which is essential to Lean.
The PCDA (Plan, Do, Check, Act) Cycle

That is, in 2008, President Glenn Mroz brought in a Lean consultant to train and coach a Lean Implementation Staff.

Shortly afterwards, that same year, Michigan Tech held its first on-campus kaizen (continuous improvement) event.

Since that time, Lean has expanded across the university; there have been over 210 events involving more than 750 people.

Ruth, in fact, has always been a significant driving force behind Michigan Tech’s commitment to continuous improvement. Along with others, she has helped bring Lean to life.

She also lends her leadership and expertise to two student organizations: Leaders in Continuous Improvement and Silver Wings.

Sharing Her Skills in the Classroom

I believe in the Starfish principle; I might not be able to help everyone but I can make a difference to one! When I support others in learning and practicing the Lean fundamentals–respect for people and continuous improvement–they use their skills to improve their situation, reducing stress and releasing creativity in an upward spiral of changing their lives for the better.

Dr. Ruth Archer

What many might know Ruth for the most is her work in the classroom, both in-person and online. She graciously teaches several courses on Lean principles, teamwork, and communication, which are always well attended and received. And it is largely because of these courses that Michigan has a wealth of Continuous Improvement facilitators and implementation leaders.

Furthermore, anyone who has ever taken a class with Ruth can speak to her limitless knowledge, incredible organization, and boundless energy. That is, she keeps students on their toes with her quick pace, insightful commentary, probing questions, and interactive exercises. If you take one of her courses, your head will be full, I promise.

Helping Her Students Embrace Lean Culture

I make these claims from experience. That is, thanks to generosity of my supervisor, VP David Lawrence, I enrolled in Archer’s online vigorous 7-week course in 2022-2023. From my perspective and that of many others, Archer never seemed to flag (or lose her patience) as she guided us through essential Lean concepts and applications. She made us think about our assumptions, the importance of adding value to our jobs and our workplaces, and the significance of continuous improvement everywhere. With her, we learned about the forces that help and impede change management.

Ruth once asserted, “You can’t unsee Lean.”

She was right. To this day, for instance, I can’t unsee the waste encountered on my job: whether it is sending ten emails to get one answer, searching through six tabs on a webpage to cull essential information, or noticing redundancies (and gaps) in people’s roles. Her course made me analyze and work to ameliorate waste, inefficiency, and unnecessary work.

Throughout the course, Ruth always encouraged all students to take the opportunity (or maybe the gift) to reflect, to challenge themselves, to use continuous improvement principles in their own ways.

Joining Ruth at the Summit

Series of workshops offered at the Lean Solutions Global Summit.
The Variety of Workshops at the Lean Solutions Global Summit

Michigan Tech is excited to be a track partner for the Lean Solutions Global Summit.

If you would like to see Ruth in action or participate in the Lean Solutions Global Summit, you can register below.

Along with talks, the summit also includes teambuilding activities and several workshops. In addition, there are fun, educational tours of Zingerman’s and Menlo Innovations, where people can see Lean in Action.

Use the code SUMMIT500 to save $500.00 on your registration fee.

Global Campus Grows

Whether it’s been covering new education fellowship partnerships, reporting on Michigan Tech’s collaboration with the MEDC, writing about innovative mass timber research initiatives, researching the gifts of adult learners, welcoming new team members, or rushing to keep up with Global Campus Vice President David Lawrence, this blog writer has had a busy year. And while all these initiatives, and more, have been underway, I’ve also had to keep track of Michigan Tech’s new online courses and programs.

Recent Online Programs at Global Campus

For example, in the last year, the College of Business added the online TechMBA and the Master of Engineering Management. Both are accredited, 10-course programs that, in various ways, leverage your STEM expertise. Whereas the TechMBA provides foundational business skills, the MEM allows students to customize degrees that merge engineering and business. To promote these programs, Dr. Mari Buche, David Lawrence, and his Global Campus team graciously led several online virtual interest sessions, which were all well attended.

Leadership and learning are indispensable to each other.

President John F. Kennedy

Furthermore, the College of Engineering met the learning and leadership challenge with its Master of Engineering, a professional terminal degree. This degree allows students to focus on either a HEV (hybrid electric vehicle) track or an engineering track. For the engineering track, learners can combine courses from several disciplines. In fact, the master of engineering is ideal for those collaborating with their employer to develop a program to meet specific on-the-job needs.

More recently, the Department of Applied Computing has also added two new programs to its roster: Public Health Informatics and Foundations in Health Informatics. Both certificates can be stacked to form a master’s degree. Like other HI programs, these prepare students for diverse roles in the data-driven healthcare industry. Guy Hembroff, the Health Informatics director, also ensured that MTU’s CHI students have memberships in HIMSS. HIMSS (Health Information Management Systems Society) is a global society. It enables health information professionals to access resources, enroll in seminars, develop networks, search for jobs, and much more. In other words, it gives MTU’s Health Informatics students an edge.

Global Campus Bridge Courses

Bridge courses are short, intensive, preparatory online courses that help learners acquire the necessary knowledge and skills to enter advanced study. This study might mean an undergraduate program, graduate degree, or graduate certificate. Often, bridge courses are for students who are provisionally accepted into a program.

Linear Algebra: A Bridge Course Offered Through Global Campus
Linear Algebra: A Bridge Course Offered Through Global Campus

For instance, in September of 2022, Teresa Woods, Associate Teaching Professor in Mathematical Sciences and Linear Algebra aficionado, taught our first bridge course: Linear Algebra. Her ten-week, asynchronous online course was aimed at prospective students who needed the LA requirement to enroll in MTU’s Online Master of Science in Applied Statistics program.

Woods’ course covered fundamental linear algebra concepts as used in Applied Statistics. Some of the topics included systems of equations, vectors, matrices, orthogonality, subspaces, and the eigenvalue problem.

To learn more about this course, email Teresa Woods (tmthomps@mtu.edu).

Linear Algebra is once again running for the Fall 2023 semester. And there are still a few seats left. Right now, the proposed start date is Sept. 18, 2023.

Newer Professional Development Opportunities

Fundamental Courses and Bootcamps

Global Campus also had the privilege of working with subject matter experts to promote in-demand professional development courses. Also known as continuing education and career training, these courses allow those in the workforce to hone skills, acquire specialized training, develop leadership abilities, and stay up-to-date on current trends.

Currently, Michigan Tech offers both non-credit and for-credit pd courses.

For example, during the summer of 2023, APS Labs rolled out its short, but rigorous course on Diesel Engine Fundamentals. Despite the turn to EV, this course recognized that diesel engines weren’t going anywhere soon. That is, diesel engines are still in light-duty vehicles, medium and heavy-duty trucks; in commercial vehicles (trains, trucks, buses, barges, and boats); in army vehicles; and in generators.

This course was conveniently available in both online and in-person versions. Its goal was educating those pursuing careers in the automotive industry, commercial vehicles, power generation, or related fields.

A Diesel Engine, which was studied in the APS Labs short course for Global Campus
A Diesel Engine

Also, Kevin Johnson, Assistant Teaching Professor, Manufacturing and Mechanical Engineering, lent his significant expertise to summer students. He taught an an intense 20-hour in-person hydraulics bootcamp. In his course, students learned about several topics crucial to hydraulics, such as valves, pumps, motors, circuits, and closed-loop hydrostatic systems.

Upcoming Professional Development Courses

Python for Modern GIS

A person working on GIS with Python, one of the courses taught though Global Campus
GIS Workshop

Furthermore, recognizing the need for more Python professionals in the GIS world, Parth Bhatt (Assistant Teaching Professor / Researcher from the College of Forest Resources and Environmental Sciences) is offering a 7-week, asynchronous, online course for Fall 2023.

His Python for Modern GIS and Remote Sensing course will help students learn beginning and immediate-level applications of Python for understanding and writing simple scripts, automating workflows, and solving day-to-day, real-world geoprocessing tasks in the ArcGIS ecosystem and open-source platform.

Dr. Bhatt, a dynamic teaching professor who lives and breathes GIS, is also on deck to develop online for-credit certificates for his department. Stay tuned for more developments.

And, yes, you still have time to register for Bhatt’s course.

Civil Asset Management

As well, the Department of Civil, Environmental, and Geospatial Engineering has recently added a 3-credit, synchronous online course in Civil Asset Management. This course is taught by Mark Declercq, who brings three decades of valuable, practical civil asset expertise to the classroom. In fact, as Grand Rapids Engineer, Declercq was one of the first experts with boots on the ground during that city’s massive flood event.

Civil Asset Management (CEE 5390) will help students develop long-term plans, as well as the strategic, critical thinking they need to recognize and maintain the value of our all-important civil assets. Declercq also maintains that to develop resilient and affordable solutions and to tackle upcoming sustainability challenges, engineers definitely need Civil Asset Management skills.

Keep Up With Global Campus as We Learn and Grow

In the future, Global Campus plans to offer additional non-credit and for-credit courses and programs. Our goals are advancing the personal development, career goals, and leadership opportunities that come with education. We also recognize the importance of challenging all learners to grow, to think creatively and critically, and to prepare for tomorrow.

We’ll keep you posted as we assist in developing and supporting new programs. For updates, read this blog or follow us on social media.

And remember, regardless of where you are in your educational journey, whether you want to take a course for fun or for your future, it is never too late to start learning.

Anyone who stops learning is old, whether at twenty or eighty. Anyone who keeps learning stays young.

Henry Ford

Civil Asset Management Course Comes to Michigan Tech

Aerial view of the Grand Rapids river as it crested during the flood event.

Five years before the 2018 Houghton Father’s Day Flood presented civil engineers with infrastructure challenges, there was the Grand Rapids Flood Event. This flood, which lasted from April 12 to April 25 2013, affected multiple areas in the city. At that time, the Midwest had been receiving a deluge of rain, with Grand Rapids getting 3.5 inches (89mm) of the wet stuff between April 8 and 15. And upriver, the Comstock Park community received 5.04 inches (128mm). With the latter rainfall, the Comstock Park floodwaters moved from minor to moderate, resulting in the river rising to 13.3 feet (4.1m) by April 13.

Rain continued to fall throughout the city, but on April 19, the tipping point was the 9.1 inches that fell in Grand Rapids, breaking the 109-year record from the flood of 1904-1905. Then, things rapidly grew from bad to worse. On April 21, the Grand River crested at 17.8 feet (5.8 feet above flood level) in Comstock whereas it rose to 21.85 feet (3.85 feet above flood level) in Grand Rapids.

1700 residents were evacuated (1000 from the Plaza Towers alone). Roads were closed. Railroads were impassable. The water in the city core was so high, in fact, that people reported fish swimming by their office floor windows. 429 million gallons of wastewater ended up seeping into the Grand River.

After the flood, the investigations began, not only to determine what went wrong, but also to prepare for future disastrous events.

Experts analyzed the events and identified the city’s risk of flood-prone areas using Geographical Information System modeling. They collected the physical data about the flood protection system assets for contingency planning and resiliency analysis against intense storm events.

Flood waters as seen through an office building window.
Floodwaters as seen through a window in the downtown core of Grand Rapids.

Introducing Mark Declercq

Civil Asset Management expert Declercq.
Civil Asset Management expert, Mark Declercq

One of the leading engineers on the front lines was Grand Rapids City Engineer and Civil Asset Management expert, Mark Declercq, PE and MTU Alum (Bachelor’s and Master’s of Structural Engineering, ’88, ’90).

As City Engineer for Grand Rapids, Declercq was responsible for the enterprise asset management program, capital project delivery, and capital maintenance program for the care of public assets.

These assets included the public transportation systems; water distribution and sanitary collection systems; storm water conveyance systems, pumping stations, retention structures and clean water plants; energy audits on public buildings; and solar array systems design and installation. In other words, he played a major role in Grand Rapids infrastructure.

After the flood, Declercq stepped in to co-lead the Grand River Corridor Strategic and Conceptual Planning for the potential river restoration project and riverbank development. The project, indeed, was a success: the Grand River watershed, low-head dam restoration, and flood protection system were all re-certified by FEMA. This recertification was a crucial part of the update and digitalization of nationwide flood insurance maps.

And this restoration project smartly kept the heart of the city in mind, too. For instance, the impressive amphitheater project in downtown Grand Rapids is a result of that strategic plan. In the 2013 Grand Rapids Flood Event, then, Asset Management was crucial for building resiliency, sustainability, and business continuity. (Fun fact, former MTU professor Dr. Henry Sanford acted watershed hydrology expert for the City of Grand Rapids.)

Sharing His Civil Asset Management Expertise With MTU

Declercq will bring his experience as a City Engineer, his expertise in Asset Management Planning, and his over 33 years in the private and public sectors to Michigan Technological University. In Fall 2023, he is teaching a 3-credit, online Civil Asset Management professional development course for the Department of Civil, Environmental, and Geospatial Engineering.

Currently, he serves as president of Applied Asset Management Consultants, an entrepreneurial start-up that was launched in 2018.

And his skills and credentials don’t stop there.

Declercq not only holds certifications in Professional Asset Management, LEAN Management, and Emergency Management, but also has memberships in the Institute of Asset Management, the American Society of Civil Engineers, and the Michigan Society of Professional Engineers. Indeed, his resume is loaded with his accomplishments.

The Grand Rapids flood was one of Michigan’s worst natural disasters. It altered how we worked and lived in the downtown area. It served as a catalyst for a shift in the way we conceived land use and the deployment of resources in order to save our city and construct it in the future.

David Lawrence, Vice President for Global Campus and Continuing Education, who was working in the downtown core during the flood event.
A railroad bridge, an example of a civil asset, inundated with water during the Grand Rapids Flood event.
A railroad bridge, an example of a civil asset, inundated with water during the Grand Rapids Flood event.

Building Connections to Tech

Declercq is no stranger to Michigan Tech either. Previously, he collaborated with Dr. Audra Morse to invite CEGE students and faculty to participate in the IAM Great Lakes Branch quarterly meetings. One goal: exposing students to best practices involved with real-world CEGE challenges. Another goal: introducing students to future employers, such as public municipalities, federal and state regulatory agencies, private sector companies, and engineering consultants.

In addition, at the November 2023 IAM Great Lakes meeting, the CEGE will present the Enbridge Line 5 Risk Assessment under the Straits of Mackinac. This presentation will showcase the work and ingenuity of the CEGE Dept and its students.

So it was only natural that Dr. Morse proposed an Adjunct Professor of Practice opportunity so that Declercq could share his expertise on asset management as it applies to civil infrastructure.

Managing Civil Assets

According to Declercq, all infrastructure has value to its organization, customers, and stakeholders. Thus, in civil engineering, Asset Management is the science and practice (coordinated activity) of managing infrastructure systems and civil assets to realize their value and to achieve the highest levels of services for communities. Asset Management, which is cross-functional, involves several disciplines, such as business management, finance, and risk.

The goal is optimizing the life cycle of the civil assets that shape our lives. Below is just a short list of civil assets.

  • Transportation systems (roads, bridges, tunnels, and all assets within the public right-of-way)
  • Long-span bridge systems (Mackinac Bridge)
  • Potable Water distribution systems (watermain pipelines, groundwater pumping systems, buried and elevated tanks, and water treatment facilities)
  • Wastewater collection systems (underground piping, clean water treatment facilities)
  • Storm water conveyance systems
  • River watersheds and dam structures
  • Flood protection systems
  • Landfill operations
  • Natural assets like trail network system, national and state parks, museums
  • Electrical/Natural Gas generation, transmission, and distribution systems
  • Public-use facilities
Historic Fayette State Park on the Garden Peninsula, an example of a civil asset.
Fayette Historic State Park on the Garden Peninsula, Michigan: An example of a civil asset

Interviewing Mark Declercq

To let him speak, I asked Declercq a few questions about his course and the future of civil engineering.

Q. When is the course running? How is it delivered? What content does it cover?

A. The 14-week, for-credit course “Civil Asset Management” (CEE 5390) will first be available in Fall, 2023. It is delivered in a synchronous online format. That is, classes will run Tuesdays and Thursdays from 4:00-5:20 pm. Each class will consist of brief instructor-led lectures, followed by student engagement activities. There is also a weekly online laboratory session for applying concepts and working with real-life scenarios.

This course is suitable for all civil engineering students who want to broaden their skills. Civil Asset Management spans a diversity of disciplines including business, finance, risk, supply chain managers, construction managers, facility managers, resource managers, and operational and maintenance managers. CAM, in short, is necessary for the long-term design, maintenance, and sustainability of civil engineering infrastructure and facility asset types in the United States.

The course covers several topics fundamental to Civil Asset Management. Topics include asset data and risk assessment; environmental, social, and governance principles; six working capitals; overview of computerized maintenance systems; sustainability strategies; and funding mechanisms. Central to this course is a rich case study on the 2013 Grand Rapids flood event.

Students will acquire many valuable skills, such as evaluating asset value against cost, risk, and performance in managing the long-term care of civil engineering infrastructure. They will also apply the 10-steps to building an Asset Management Plan. Finally, they will use the A3 Lean Management tool for scenario and business case evaluation.

Q. Why is Civil Asset Management important to civil engineers? What organizations use it?

A. Civil Asset Management is an important and necessary technical and business skill set for today’s civil engineers. That is, civil engineers must learn to be strategic about developing recommendations and formulating decisions. They must be able to optimize the value of asset infrastructure.

This skill set has several societal benefits, too, such as enabling the affordability of and accessibility to basic infrastructure, such as water, wastewater, and multi-modal transportation options. It also equips engineers with the skills to develop strategic plans that incorporate resiliency and sustainability against climate change. And in these plans, engineers learn how to account for disruptors to business continuity.

Most importantly, Asset Management values Environmental, Social, and Governance (ESG) principles embraced by many international governments, as well as the United Nations Sustainability Development Goals. Also, traditional US civil engineering firms need those with Civil Asset Management expertise to develop plans and frameworks for organizations.

Although early in its journey in the United States, Civil Asset Management has been adopted by several Michigan organizations. These include the Michigan Department of Transportation; the Michigan office of Environment, Great Lakes, and Energy (E.G.L.E.); and the Michigan Chapters of the American Water Works Association (AWWA) and Water Environmental Association (MWEA). Asset Management has also been incorporated at the federal level. It is employed by the Department of Defense, the US Army Corps of Engineers, the Department of Interior for US Parks, and the Environmental Protection Agency (EPA).

Q. How does Civil Asset Management help civil engineers prepare for some of the challenges in their fields?

A. Critical thinking is a significant challenge in our civil engineering industry. Or to put it another way, strategy, planning, and the art of “big picture” thinking comprise an undervalued skill set in our industry. This skill set, though, is crucial to both Asset Management and Project Management.

Another challenge for civil engineers is understanding the concept of “value” from the viewpoint of the customer or end user. For example, consider watermain breaks caused by freezing winter temperatures and an unreliable, aged distribution system. The risks are high if the geographical impacts are widespread and felt for a prolonged period of time. Hence, the “value” of the water system in this state is considered less than desirable, especially from users facing affordability challenges with their monthly water rates. Electric outages from recent storm damages throughout Michigan are another example.

Asset Management Planning, then, enables both the strategic thinking and long-term planning to develop scenarios based on data, science, and known risks that improve customer/user outcomes, such as affordable water rates and electrical reliability. Implementing Asset Management’s best practices and tools helps civil engineers do better for their communities and beyond.

Q. Where are those with Civil Asset Management expertise employed?

A. Those with Civil Asset Management experience often begin their careers in a variety of roles: young project engineers, data analysts, engineering technicians, product designers, and project managers. This expertise also opens up opportunities for moving up to positions, such as a CEO, COO, Vice President, or Director of assets and capital project delivery programs.

Additionally, those who have knowledge in managing civil assets might take on the roles of City Managers, City Engineers, Finance Officers, Risk Managers, County Administrative Managers, Water/Sewer/Storm Asset Managers, Public Works/Services Directors, Facility Managers, and other top management and C-, VP-level leadership positions. Furthermore, Civil Asset Management expertise signals an understanding of key business outcomes, a valuable attribute that private and public sectors seek in recruiting leadership talent.

Q. Is there anything else you’d like to add?

A. My life, both on and off the job has provided me with considerable real-life stories and examples that serve as valuable teaching and mentoring for students. For instance, I love the environment and protecting its value.

I have hiked all the Isle Royale trails, made over a dozen visits to the island. And I have thru-hiked the 2,200-mile Appalachian Trail in 2018 over a six-month period, thru-hiked the John Muir Trail in the California High Sierra Mountains in 2022, and hiked the Patagonia W-trek in spring 2023. Next, I plan to thru-hike the 2,600-mile Pacific Crest Trail in 2024.

Civil Asset Management expert Declercq at Baxter Peak.
Declercq finishing another challenging hike on a high note:
at Baxter Peak.
Civil Asset Management expert Declercq at the top of Mount Whitney.
A victorious Declercq at the top of Mount Whitney.

These hiking experiences tell me that we must do more to advocate for and protect our environment, perhaps our most valuable civil asset.

Five Advantages That Adult Learners Have

The letters "learn" on a scrabble board, which represent that education has no limits and that adult learners can still grow,

D—, that was the name of one of my most memorable non-traditional students when I taught writing courses in Edmonton, Alberta, Canada.

Straight out of high school, he was recruited by the Western Hockey League (WHL). (MTU’s own Brian Hannon even remembers playing against him a few times.)

After spending 15 years playing professional hockey, D— had returned to university. At 33 (or maybe 34), he was older than I, his teacher, was. When he walked into the classroom, looking damaged and world-weary from years of playing enforcer, I was, admittedly, a bit scared. Would this guy, who looked like he had his nose broken at least a few times, be a good student? Or would he be a total pain?

He struggled a bit, at first, feeling a bit awkward sharing his voice, getting his footing. His writing was initially rusty, but always truthful. But throughout the semester, he became one of the most enthusiastic classroom participants. The deepest readings of the texts were his. And he could spot bad arguments from a mile away. Recalling his time on the ice, he wrote a brilliant essay sympathizing with Frankenstein’s creation, who, too, experienced the pain and scorn of being made to be ugly.

By the end of the semester, his writing and critical thinking skills had improved more than those of anyone in the class. Sadly, that was the last I heard of him until recently, when I found out he became a lawyer.

There were so many others, too. An older student who barely passed the course, but who joined Doctors Without Borders. And G—–, who took my class at the age of 57. After dedicating her life to being a foster parent for troubled kids, she was pursuing a BS and then an MS in Social Work.

Defining Adult Learners

The previous stories exemplify what many of us have known for a long time: that adult learners, rather than having disadvantages, bring many benefits to the undergraduate and graduate classrooms.

Adult learners bring skills and experience to the classroom.

Put simply, adult learners are those who take on the responsibility of education later in life than do traditional students. These learners, like those students mentioned above, may have been working all their lives. They may have no previous post-secondary education. Alternatively, they may have completed some university education and are now moving on to advanced degrees.

Adult learners are often referred to as non-traditional students. According to the National Center for Education Statistics, there are several characteristics of adult learners. That is, beyond being older, they may be single parents, have dependents, be working adults, and be financially secure. Or they might combine several of these traits.

Adult Learners Improve the Classroom

Admittedly, there is a plethora of articles on tips for succeeding as a non-traditional student. But there are few on the substantial skills and wisdom that adult learners bring to the classroom.

#1 Increased Experience

Adult learners bring diverse skills to the classroom.
Adult learners bring skills and experience to the classroom.

It goes without saying that adult students have the benefit of that extra knowledge that comes with age. They may have decades of on-the-job, real-life, management, leadership, communication, and team-work experiences. They may have acquired unique abilities from their previous roles.

These experiences not only help them succeed in their courses, but also enrich and diversify the classroom for everyone.

For instance, a 57-year-old student who remembers the emergence of the Blackberry will have a much more informed perspective on our current (and some would say, troubling, if not addicting) relationship to digital technology.

Adult learners can draw on their rich histories to understand and apply complex ideas; and assume teamwork and leadership roles in the classroom. Those years or even decades of understanding may help them more deeply interpret and apply course materials. For instance, I fondly recall G—– interrupting and offering her foster-parent perspective when a younger student stereotyped a story character as “just another bad, lazy kid who didn’t deserve to be helped.”

Also, some programs, such as Michigan Tech’s Online MBA , the MS in Health Informatics, and our various MS in Engineering programs (Civil, Electrical, and Mechanical) are very well suited to professionals who have been in the workforce for awhile.

#2 Superior Problem-Solving Skills

This breadth of experience, no doubt, comes with encountering more obstacles. That is, adult learners, simply from being on the planet and in the workforce for longer, have most likely encountered several tricky personal and professional problems. Therefore, they may be better at analyzing and troubleshooting issues, as well as generating practical solutions. Or to put it another way, they have made more mistakes, so they know what works and what doesn’t.

For instance, our Vice President of Global Campus and Continuing Education, David Lawrence, has over a decade of collaborating with industry. He is applying his substantial practical knowledge in his dissertation, which is on the challenges and affordances of industry/higher ed partnerships.

#3 Advanced Focus

Adult learners are often more mature and better able to handle the responsibilities of higher education, whether as undergraduates or graduates.

Why? In their various roles, they have most likely developed time management and organizational skills. These skills enable them to focus and to better juggle their academic and personal responsibilities. This focus, when combined with maturity, often makes adult learners better at handling the challenges of college life.

And if they have ever felt exhausted on the job, they may also recognize when they can no longer concentrate and work effectively. That is, they know when to stop studying and to take a break, resulting in a deeper appreciation of the importance of work-life balance.

#4 Crystallized Knowledge

And even if adult learners may sometimes not seem as quick as their younger counterparts, they are just as smart. In fact, a 2017 study in Gerontology discovered that fluid problem-solving ability increases from early adulthood to about the age of 50. But it’s not game over (as this author can attest) at 51. After age 50, adults rely more on crystallized intelligence, which comes from one’s experiences and stored information. CI, which grows throughout life, includes procedural (practical), declarative (factual), general, and specialized knowledge.

Or to put it another way, older adults maintain performance on many cognitive tasks by relying on crystallized knowledge and experience to compensate for declines in fluid abilities and processing speed.

Here’s an example. In one experiment involving a verbal memory task, young and middle-aged adults relied more on fluid abilities whereas older adults relied more on vocabulary (an index of crystallized ability) for optimal performance. It may take adult learners longer to get the answer, but when get it, they will probably be correct.

#5 The Gift of Perseverance

Last but certainly not least, whether you’re an adult thinking about going back to school, don’t worry. Whether 31 or 51, you will bring the gift of perseverance to the classroom.

Yes, pursuing an education when you have other responsibilities is tough. Juggling a career, a family, and coursework is certainly not easy. But adult students often have most of these challenges figured out. They’ve developed strategies for handling stress and for managing time. They’re often laser-focused when pursuing their goals. Lastly, in their education, they have the perseverance, or as we say in the UP, SISU, to succeed.

Adult Learners and Online Programs

When it comes to advanced education, adult learners often gravitate to online courses and programs because of their accessibility and flexibility. Online education, such as that offered by the Michigan Tech Global Campus, enables adult learners to set their own learning goals, identify their needs, and customize their degrees.

In 2020, approximately 33.5 million people in the United States took at least one online course. This number represented a huge increase since 2018. In that same year, online courses accounted for 32.4% of all postsecondary enrollments in the United States. The most popular online programs are business (22%), health (17%), computer science (14%), and engineering (11%). Of those taking online courses, 31% are between 25-44. The average age of online learners is 33 and that number is slowly moving upward.

And why enroll in these programs? Over half of all online students (51%) reported that they had taken online courses to gain new skills, upgrade their careers, and increase their incomes. Furthermore, returning to school, along with giving adult learners a sense of accomplishment and pride, also provides networking opportunities. Adult learners, that is, get the opportunity to connect with peers who share similar interests and goals, improving their personal and professional lives.

And there are other benefits. That is, for many fields, an advanced degree not only gets applicants that job in the first place, but enables them to keep it, especially during economic downturns.

Explore Online Programs at MTU

In other words, when it comes to graduate education, don’t let age hold you back from accessing these benefits. Check out Michigan Tech’s online programs and start your new learning journey.

PS. By the way, the author is speaking from multiple experiences here. From the perspective of a person who has both taught adult learners and earned her PhD post-50, she thinks that (parden the pun) old dogs can definitely learn new tricks!

Brian Hannon Joins Global Campus

Brian Hannon

Global Campus is proud to welcome Brian Hannon (‘88), former MTU hockey star and long-time coach, as a part-time member of our team.

Currently Director of Strategic Partnerships and Alliances for the Keweenaw Research Institute, Hannon will be offering his expertise to GC for a few days a week.

Getting His Start at Tech

Born in 1965 in Clinton, NY, Hannon set season and career scoring records at Clinton High School. Michigan Tech quickly noticed his talent, putting Hannon to work as a sponsored student athlete in 1983, where he played hard for the university until 1988.

There were several other successes along the way. For instance, in 1983, he was named to the Lansing State Journal CCHA All-Rookie team and the GLI (Great Lakes Invitational) All-Tournament Team.

And in 1984, he was selected to play for the 1985 United States Junior Team in Helsinki, Finland. He performed extremely well, ending up as the 3rd leading scorer for Team USA.

An 1985 article from the Winter Carnival edition of The Lode praised his skills:

Several young players have made their presence known, too. Freshmen Center John Archibald and sophomores Brian Hannon (right wing), and Don Porter (left wing), have been big scorers both in goals and assists. Their game intensity, team work, and explosive styles promise to give Tech some big victories in the next few years

The Lode

Although an injury forced Hannon out of action in 1985-1986, he returned in full form for the 1986-1987 and 1987-1988 MTU seasons. In these seasons, he scored, respectively, an impressive 37 and then 47 points. During these years, he also had several honors. For instance, he was an Assistant Captain, a WCHA player of the week, and a member of the WCHA all-academic team.

In other words, Hannon was a bonafide star for MTU. In fact, he ended his career as the all-time American-born leading goal scorer in Huskies Hockey History and the tenth highest scorer overall.

Turning Pro

After graduating from Tech, Hannon brought his talents to professional hockey in ten different hockey leagues, primarily playing in Germany from 1990-2001.

Several of these years were spent playing for the Bundesliga/DEL, a German elite hockey league in operation from 1965 to 1994.

In 1988-1989, his team, the Carolina Thunderbirds, won the Kelly Cup in the ECHL (East Coast Hockey League). In that same season, Hannon scored a whopping 67 points.

For many of these teams, he also took on the responsibility of assistant coach.

Hannon Hockey Card from his time with The Frankfurt Lions
Hannon Hockey Card from his time with The Frankfurt Lions

Thereafter, Hannon hung up his professional hockey skates.

But he didn’t take a break for long. Coaching and hockey continued to call him. In 2002-2003, he worked as Head Coach for the Springfield Spirit before bringing his talents a little closer to home as Volunteer Assistant Coach for the Finlandia Lions from 2004 to 2023.

This is just a summary of his career.

So, I asked Brian some questions and let him do the talking.

Remembering His Time at Michigan Tech

What is your favorite memory of playing hockey and being a student at Tech?

There is not just one. I fondly remember my teammates (they were a very diverse group), the Greatest PEP Band in the Land, the fans, the GLI tourney, and the Winter Carnival, of course, which is the best festival on any college Campus!

What was it like being an MTU student back in the 1980s?

I think the biggest difference is that we were on trimesters and on an accelerated  summer track. Now there is a Fall and Spring term with a summer session and the students get out around the end of April. But we stayed until almost the end of May. I totally understand the reasoning for the change and feel that MTU has always evolved with the students’ best interests in mind. Also, we didn’t have today’s technology, so you had to go to class and retain what you were learning by getting your work done and studying hard. We relied a lot more on study groups and projects that were more apt to have group or team concepts.

Making Memories in Germany

So, I noticed you played hockey in Germany for a long time. So many games, too! And goals. Can you speak about your experience of playing hockey in Germany. That is, what was it like? What did you enjoy about it?

I had a great experience and still have great memories about my time in Europe. Truthfully, I decided to go to Germany because I wasn’t good enough to make it to the NHL; I mean, I wasn’t big enough for the style of game played during that generation. (Author’s note: in the 1988-1989 season, Brian Hannon was 5’10” and 180 pounds. In that season, the NHL’s top scorer was not, in fact, Wayne Gretzky, but Mario Lemieux, who stood 6’4″ and weighed in at a whopping 229 pounds.)

However, I was fast-skilled and could definitely score. The bigger ice rink in the European leagues was an advantage for me and my particular skill set, which was more in tune with the European game. Initially, I saw hockey as a vehicle to travel and experience the world before getting back to living a traditional life. But that decision actually turned into a pretty fun, long, and amazing career that I wouldn’t change for anything.

While in Germany, I was able to learn a new language and immerse myself and my family into a different culture. The friendships made there are also lifelong. I still have teammates that come to visit me here. And now that my son, Connor, is playing professionally in Germany (defense), I’ve had the opportunity to reunite with some of those same folks. Most of all, I was lucky enough to play on some great teams and win a few championships, which create bonds that you have for for life.

Learning Life Skills Through Hockey

Hockey has been a significant part of your life. Beyond the physical skills, what else can people learn from/through hockey?

No matter who you talk to, hockey is all about the people. It doesn’t matter if they’re your family, teammates, coaches or fans; the people are the ingredient that make the game so enjoyable, so worth playing.

From the first day I stepped on Michigan Tech campus as a student athlete, I quickly learned that no matter how many goals I scored or how well the team was doing, I was responsible for getting good grades and remaining in good academic standing. I think any current or former MTU student athlete will tell you the same thing. Because of the time you miss away from campus for travel to games, practice time, etc., you really learn to manage your time and prioritize your schedule. It takes a lot of work and planning to achieve your academic and athletic goals.

Obviously a team sport requires teamwork, but it also requires leading by example, committing to excellence, and devising a strategy to reach group goals. Looking back on those championship teams, I remember that everyone was playing for each other. Everyone was sacrificing individual success for the good of the group and invested in each other’s well-being. That’s why we were able to achieve our team goals. We were a family! Beyond these skills, hockey also taught me the importance of being self-disciplined and motivated enough to stick with a process until the end.

Returning to the Upper Peninsula

You were born in New York, spent several years living in Germany, but returned to the UP. What drew you back to the Upper Peninsula?

I would say that I never really left the UP. I would say I put down roots right when I started playing hockey in 1983. And then when I graduated on May 22, 1988 and married my wife, Pam, on June 17, those roots grew deeper. (She was also a Michigan Tech student from Houghton.) And even when I started my Pro Hockey career in September, 1988, I was still here for the summers.

Let me explain. Well, during my playing years, the summer usually begins at the last game of the season. That’s about a 4-month period where we didn’t compete, but we trained. So as a student and as a professional athlete, I would stay up here during the summer and train. Remember that 40 years ago, there weren’t many ice arenas in New York state, especially those with ice during the summer months! But Michigan Tech had ice to skate on and other world-class facilities to use.

Those years were wonderful; I could train with my former Huskies, golf, fish, relax, play baseball, work at the hockey school, visit family and friends. So it was a natural when one summer, I bought some property here. At that moment, we made a decision for our children’s future. Next thing, I am building a house with my father-in-law knowing that one day, when my playing days were over, we would raise our family here.

Sharing His Talents

You just mentioned hockey school. What has been your involvement in Summer Youth Programs at MTU?

I am proud to say that I am currently the longest serving on-ice summer youth hockey instructor in the history of MTU Hockey School. I began coaching at the hockey school after graduating in 1988 (old NCAA rule where we couldn’t coach while being a student) and have worked at least one week during every summer since. That is 33 years. It would have been 35, but one year they put a new compressor system in and there was a pause because of COVID.

I’ve always enjoyed coaching, passing on what I know to the next generation. And the kids are great! I am pleased that several of the youth I coached went on to play college or professional hockey. A great example is Hancock-born Michigan Tech’s former standout Tanner Kero, who is currently with The Texas Stars.

It is delight to see many of my corporate alumni contacts bringing their children to this camp, as well as other other great sports or stem-related summer youth programs offered at MTU.

Forging New Partnerships

Vice President for Global Campus and Continuing Education David Lawrence praised you for having impressive connections with Tech Alumni and with local industry. Can you speak more about these? How do you plan to leverage these for Global Campus?

I’ve had over 40 years of being associated with both the Michigan Tech brand and MTU initiatives. For instance, I was involved with the Youth Engineering and Science (YES) Expo. YES evolved into MTU’s nationally acclaimed Mind Trekkers program.

Overall, in various roles, I have had the great pleasure of meeting, interacting, and partnering with our Michigan Tech Alumni and friends, especially in the corporate world. I’ve also made a lot of connections with industry leaders who have relationships with Tech. As a result, I have quite a bit of experience navigating the cultures of various organizations. I am hoping to leverage my skills and contacts to reach out to both alumni and MTU corporate partners to introduce them to Global Campus.

We’re still growing our online offerings, I know. But I think I am well suited to listen to the needs of organizations and connect them to the best MTU online program, project, professional development, and continuing education. I’m just getting my feet wet learning about all our initiatives, such as our role on the Semiconductor TAT, but I believe I can be of value to the team.

Promoting the KRC and Michigan Tech

Along with Global Campus, I am proud, of course, to be a part of the multidisciplinary, Keweenaw Research Center (KRC), which is the UP’s best secret. This center is active across a broad spectrum of vehicle development. KRC also maintains more than 900 acres of proving grounds, specifically developed for the evaluation of ground vehicle systems. For instance, one of our main partners is the Department of Defense, so there are usually very tight security measures in place. Unfortunately, because of our work with DoD, I can’t say too much about my role at the KRC.

I’d like you all to know that on August 4, 2024, Alumni and interested public will be able to experience this amazing research center. As part of the Alumni Weekend, the KRC will be celebrating its 70th anniversary with its very first open house.

I’ll end by saying that I have been very lucky to have a great mentor in Jay Meldrum, whom I continue to work with. Now the Director of the Grand Traverse Area Initiative, he had a wealth of industry experience long before his career in academia. He instilled in me that if I am involved with a certain project, but there is no synergy for the potential partner, don’t give up. Find a way. That is, find out what they are interested in and reach out to a different campus group, program, or project and make a new connection, forge a new partnership.

Because at the end of the day, we all play for Michigan Tech.

ChatGPT: Friend or Foe? Maybe Both.

This blog was originally published in May, 2023, but was shortened and re-released to on Nov. 2023.

In 2006, British mathematician and entrepreneur Clive Humby proclaimed that “data is the new oil.”

At the time, his enthusiastic (if not exaggerated) comment reflected the fervor and faith in the then expanding internet economy. And his metaphor had some weight, too. Like oil, data can be collected (or maybe one should say extracted), refined, and sold. Both of these are also in high demand, and just as the inappropriate or excessive use of oil has deleterious effects on the planet, so may the reckless use of data.

Recently, the newest oil concerning many, one that is shaking up the knowledge workplace, is ChatGPT. Released by OpenAI on November 2022, ChatGPT combines chatbot functionality with a very clever language model. Or to be more precise, the GPT in its name stands for Generative Pre-trained Transformer.

Global Campus previously published a blog about robots in the workplace. One of the concerns raised then was that of AI taking away our jobs. But perhaps, now, the even bigger concern is AI doing our writing, generating our essays, or even our TV show scripts. That is, many are worried about AI substituting for both our creative and critical thinking.

Training Our AI Writing Helper

ChatGPT is not an entirely new technology. That is, experts have long integrated large language models into customer service chatbots, Google searches, and autocomplete e-mail features. The ChatGPT of today is an updated version of GPT-3, which has been around since 2020. But we can go back farther. We can trace its origins to almost 60 years ago. That is when MIT’s Joseph Weizenbaum rolled out ELIZA: the first chatbot. Named after Eliza Doolittle, this chatbot mimicked a Rogerian therapist by (perhaps annoyingly) rephrasing questions. If someone asked, for instance, “My father hates me,” it would reply with another question: “Why do you say your father hates you?”

The current ChatGPT’s immense knowledge and conversational ability are indeed impressive. To acquire these skills, ChatGPT was “trained on huge amounts of data from the Internet, including conversations.” An encyclopedia of text-based data was combined with a “machine learning technique called Reinforcement Learning from Human Feedback (RLHF).” This is a technique in which human trainers provided the model with conversations in which they played both the AI chatbot and the user.” In other words, this bot read a lot of text and practiced mimicking human conversations. Its responses, nonetheless, are not based on knowing the answers, but on predicting what words will come next in a series.

The results of this training is that this chatbot is almost indistinguishable from the human voice. And it’s getting better, too. As chatbot engages with more users, its tone and conversations become increasingly life-like (OpenAI).

Using ChatGPT for Mundane Writing Tasks

Many have used, tested, and challenged ChatGPT. Although one can’t say for certain that the bot always admits its mistakes, it definitely rejects inappropriate requests. It will deliver some clever pick-up lines. However, it won’t provide instructions for cheating on your taxes or on your driver’s license exam. And if you ask it what happens after you die, it is suitably dodgy.

But what makes ChatGPT so popular, and some would say dangerous, is the plethora of text-based documents it can write, such as the following:

  • Long definitions
  • Emails and letters
  • Scripts for podcasts and videos
  • Speeches
  • Basic instructions
  • Quiz questions
  • Discussion prompts
  • Lesson plans
  • Learning objectives
  • Designs for rubrics
  • Outlines for reports and proposals
  • Summaries of arguments
  • Press releases
  • Essays

And this is the short list, too, of its talents. That is, there are people who have used this friendly bot to construct emails to students, quiz questions, and definitions. The internet is also awash with how-to articles on using ChatGPT to write marketing copy, generate novels, and speeches.

Constructing Learning Goals

“College-educated professionals performing mid-level professional writing tasks experience substantial increases in productivity when given access to ChatGPT . . . . The generative writing tool increases the output quality of low-ability workers while reducing their time spent, and it allows high-ability workers to maintain their quality standards while becoming significantly faster.”

Shakked Noy and Whitney Zhang

Noy and Zhang’s findings are taken with a grain of salt. That is, just as many writers don’t trust Grammarly to catch subject-verb agreement errors, others don’t trust ChatGPT to write their emails or press releases.

Nonetheless, as an experiment, this writer tested the tool by asking it to generate two tasks of college instructors.

First, ChatGPT was given this heavy-handed command: “Please generate five learning goals for an introductory course on Science Fiction. Make sure that you do not use the words “understand” or “know” when constructing these goals. Also please rely on Bloom’s taxonomy.

ChatGPT-generated learning goals for a Sci-Fi course.

In a few seconds, out popped the learning goals on the right, which use several of Bloom’s verbs: analyze, evaluate, apply, create, and compare and contrast.

The prompt for the second attempt asked ChatGPT to put these goals in order of ascending complexity, to which it quickly obliged.

(Truthfully, no Sci-Fi course could live up to these goals, but this task was a fun one nonetheless.)

Generating Reference Letters

Next, ChatGPT was assigned a task common to many academics: writing a reference letter.

Students often request these letters, often at the end of the semester, an unfortunate time when many instructors are bone-tired from grading. It turns out that ChatGPT could have helped (however badly) with this task.

Why badly? ChatGPT is only as smart as its user. In this case, the prompt didn’t specify the length of the reference letter. So the little bot dutifully churned out an 8-paragraph, ridiculously detailed, effusive letter, one no reasonable human would write, let alone read or believe.

Let’s hope that admissions officers and scholarship officials are not wading through these over-the-top AI-generated reference letters.

ChatGPT reference letter.
An overly long and over-the-top reference letter generated by ChatGPT.

Recognizing ChatGPT’s Limited Knowledge

Despite helping us with onerous writing tasks, this artificial intelligence helper does have its limitations. In fact, right on the first page, OpenAI honestly admits that its chatbot “may occasionally generate incorrect information, and produce harmful instructions or biased content.” It also has “limited knowledge of world and events after 2021.”

And it reveals these gaps, often humorously.

For instance, when prodded to provide information on several well-known professors from various departments, it came back with wrong answers. In fact, it actually misidentified one well-known department chair as a Floridian famous for his philanthropy and footwear empire. In this case, ChatGPT not only demonstrated “limited knowledge of the world” but also incorrect information. As academics, writers, and global citizens, we should be concerned about releasing more fake info into the world.

Taking into consideration these and other errors, one wonders on what data, exactly, was ChatGPT trained. Did it, for instance, just skip over universities? Academics? Respected academics with important accomplishments? As we know, what the internet prioritizes says a lot about what it and its users value.

Creating Mistakes

There are other limitations. ChatGPT can’t write a self-reflection or decent poetry. And because it is not online, it cannot summarize recent content from the internet.

It also can’t approximate the tone of this article, which shifts between formal and informal and colloquial. Or whimsically insert allusions or pop culture references.

To compensate for its knowledge gaps, ChatGPT generates answers that are incorrect or slightly correct.

In the case of generating mistakes, ChatGPT does mimic the human tendency to fumble, to tap dance around an answer, and to make up material rather than humbly admit ignorance.

Passing Along Misinformation

Being trained on text-based data, which might have been incorrect in the first place, ChatGPT often passes this fakery along. That is, it also (as the example above shows) has a tendency to generate or fabricate fake references and quotations.

It can also spread misinformation. (Misinformation, unintentional false or inaccurate information, is different from disinformation: the intentional spread of untruths to deceive.)

The companies CNET and Bankrate found out this glitch the hard way. For months, they had been duplicitously publishing AI-generated informational articles as informational articles under a byline. When this unethical behavior was discovered, it drew the ire of the internet.

CNET’s stories even contained both plagiarism and factual mistakes, or what Jon Christian at Futurism called “bone-headed errors.” Christian humorously drew attention to mathematical mistakes that were delivered with all the panache of a financial advisor. For instance, the article claimed that “if you deposit $10,000 into a savings account that earns 3% interest compounding annually, you’ll earn $10,300 at the end of the first year.” In reality, you’d be earning only $300.

All three screwups. . . . highlight a core issue with current-generation AI text generators: while they’re legitimately impressive at spitting out glib, true-sounding prose, they have a notoriously difficult time distinguishing fact from fiction.

John Christian

Revealing Biases

And ChatGPT is not unbiased either. First, this bot has a strong US leaning. For instance, it was prompted to write about the small town of Wingham, ON. In response, it generated some sunny, non-descript prose. However, it omitted this town’s biggest claim to fame: the birthplace of Nobel Prize winning Alice Munro.

This bias is based on ChatGPT being trained on data pulled from the internet. Thus, it reflects all the prejudices of those who wrote and compiled this information. This problem was best articulated by Safiya Umoja Nobel in her landmark book Algorithms of Oppression. In this text, she challenges the ideal that search engines are value-neutral, exposing their hegemonic norms and the consequences of their various sexist, racist biases. ChatGPT, to be sure, is also affected by if not infected with these biases.

Despite agreeing with Nobel’s concerns, and thinking that ChatGPT can be remarkably dumb at times, many writers don’t have want to smash the algorithmic machines anytime soon. Furthermore, many writers DO use this bot to generate definitions of unfamiliar technical terms encountered in their work. For instance, it can help non-experts understand the basics of such concepts as computational fluid dynamics and geospatial engineering. Still, many professional writers choose not to rely on it, nor trust it, too much.

Letting Robots Do Your Homework

But it is students’ trust in and reliance on one of ChatGPT’s features that is causing chaos and consternation in the education world.

That is, many recent cases of cheating are connected to one of this bot’s most popular features: its impressive ability to generate essays in seconds. For instance, it constructed a 7-paragraph comparison/contrast essay on Impressionism and Post-Impressionism in under a minute.

And the content of this essay, though vague, does hold some truth: “Impressionism had a profound impact on the art world, challenging traditional academic conventions. Its emphasis on capturing the fleeting qualities of light and atmosphere paved the way for modern art movements. Post-impressionism, building upon the foundations of impressionism, further pushed the boundaries of artistic expression. Artists like Georges Seurat developed the technique of pointillism, while Paul Gauguin explored new avenues in color symbolism. The post-impressionists’ bold experimentation influenced later art movements, such as fauvism and expressionism.”

With a few modifications and checking of facts, this text would fit comfortably into an introductory art textbook. Or maybe a high-school or a college-level essay.

Sounding the Alarm About ChatGPT

Very shortly after people discovered this essay-writing feature, stories of academic integrity violations flooded the internet. An instructor at an R1 STEM grad program confessed that several students had cheated on a project report milestone. “All 15 students are citing papers that don’t exist.” An alarming article from The Chronicle of Higher Education, written by a student, warned that educators had no idea how much students were using AI. The author rejected the claim that AI’s voice is easy to detect. “It’s very easy to use AI to do the lion’s share of the thinking while still submitting work that looks like your own.”

And it’s not just a minority of students using ChatGPT either. In a study.com survey of 200 K-12 teachers, 26% had already caught a student cheating by using this tool. In a BestColleges survey of 1,000 current undergraduate and graduate students (March 2023), 50% of students admitted to using AI for some portion of their assignment, 30% for the majority, and 17% had “used it to complete an assignment and turn it in with no edits.”

Soon, publications like Forbes and Business Insider began pushing out articles about rampant cheating and the internet was buzzing. An elite program in a Florida high school reported a chatbot “cheating scandal”. But probably the most notorious episode was a student who used this bot to write an essay for his Ethics and Artificial Intelligence course. Sadly, the student did not really understood the point of the assignment.

Incorporating ChatGPT in the Classroom

According to a Gizmodo article, many schools have forbidden ChatGPT, such as those in New York City, Los Angeles, Seattle, Fairfax County Virginia.

But there is still a growing body of teachers who aren’t that concerned. Many don’t want to ban ChatGPT altogether. Eliminating this tool from educational settings, they caution, will do far more harm than good. Instead, they argue that teachers must set clearer writing expectations about cheating. They should also create ingenious assignments that students can’t hack with their ChatGPT writing coach, as well as create learning activities that reveal this tool’s limitations.

Others have suggested that the real problem is teachers relying on methods of assessment that are too ChatGPT-cheatable: weighty term papers and final exams. Teachers may need to rethink their testing strategies, or as that student from the Chronicle asserted, “[M]assive structural change is needed if our schools are going to keep training students to think critically.”

Sam Altman, CEO of OpenAI, also doesn’t agree with all the hand-wringing about ChatGPT cheating. He blithely suggested that schools need to “get over it.”

Generative text is something we all need to adapt to . . . . We adapted to calculators and changed what we tested for in math class, I imagine. This is a more extreme version of that, no doubt, but also the benefits of it are more extreme, as well.

Sam Altman

Read MTU’s own Rod Bishop’s much briefer take on academic integrity and AI.

APS LABS Offering Short Non-credit Courses on Diesel Engines

Diesel Engine Controls: just one of the topics explored in APS LABS professional development courses.

Diesel engines play a significant role in Automotive, Off-Highway, and Industrial
applications, and they continue to evolve with increasingly stringent emissions
and fuel economy standards. Understanding their operation and control are
critical skills that are in high demand.

Dr. Daniel Madison
OEM Diesel Engine Performance Development Superviso Expert

Driving the American Economy

Despite the automotive industry’s increasing investment in battery electric vehicles (BEVs) and the public’s demand for them, there is a still a need for diesel engines. Why? These engines are still found in light-duty vehicles, medium and heavy-duty trucks and in commercial vehicles (trains, trucks, buses, barges, and boats). The US military, in fact, uses diesel in nearly all of its ground vehicles because this fuel is less flammable and has a high energy density. And, of course, many industrial facilities (not to mention remote towns) rely on diesel engine generators as their backup or even primary sources of electricity.

Most obviously, diesel engines power the vehicles that transport the plethora of products we consume. They also keep farming, construction, and mining equipment moving. In short, diesel fuel has been and will remain important to the American economy. So engineers must continue to learn not only how diesel engines work but also how to improve them.

A Diesel Engine

Diesel Fast Facts

Improving Diesel Engines

Compared to other types of internal combustion engines (ICEs), in fact, diesel engines have superior durability and efficiency. That is, by some estimates, diesel engines are anywhere from 20-35% more economic and cost-effective than gasoline engines. To put this fact in perspective, if a gasoline engine gets 40 mpg, its diesel equivalent would get you 48 to 54 mpg. For huge vehicles, these numbers certainly matter.

And thankfully, diesel fuel has also come a long way. Prior to 2006, most US diesel fuel had high qualities of sulfur. Currently, most of this fuel sold in the US qualifies as ULSD (ultra-low sulfur density), which means it has 15 sulfur parts per million. And then there is the diesel fuel made from both petroleum and biomass sources.

But diesel fuel, because it is often expended in large amounts, still produces emissions. And when it comes to climate change, reducing carbon emissions requires an all-hands-on-deck approach. This approach will involve improving all power systems, such as striving to make even cleaner, more efficient diesel engines.

Without the low operating costs, high efficiency, high reliability, and great durability of diesel engines, it would have been impossible to reach the extent of globalization that now defines the modern economy.

Vaclav Smil

Teaching Fundamental Diesel Skills

Recognizing the ongoing importance of diesel engines is Michigan Tech’s Advanced Power Systems (APS) LABS. The expert instructional team from MTU’s acclaimed multidisciplinary research center comprises Dr. Jeffrey Naber, Dr. Jeremy Work, Dr. Vinicius Bonfochi Vinhaes, and Grant Ovist. Together, they are teaching two condensed courses on diesel engines. These 20-hour (2.5 day courses) come in two modalities to suit the diverse needs of learners. That is, students may take the F2F version, or they may study from home in the Live/Online Version.

Both courses, which focus on diesel engines, are suitable for those interested in pursuing careers in the automotive industry, commercial vehicles, power generation, or related fields.

MEEM 5202 (Diesel Engine Fundamentals)

This non-credit course is ideal for those who want to gain foundational knowledge in diesel engines. It runs from Wednesday, May 31, 2023 to Friday, June 2, 2023.

MEEM 5204 (Diesel Engine Management Systems, Emissions, and Aftertreatment)

This non-credit course equips students with a deeper understanding of diesel engine management systems, emissions, and aftertreatment. It runs from Wednesday, June 28, 2023 to Friday, June 30, 2023.

Visit the Global Campus page for APS LABS to see more details about these courses.

Promoting Professional Development

Michigan Tech Global Campus is proud to partner with and support APS LABS in promoting their professional learning short courses. We understand the importance of offering non-credit continuing education that meets the ever-evolving needs of learners.

Whether it is professional development, professional learning, short online courses, bridge courses, or specialized corporate training, Global Campus wants to help in providing continuing education that is practical, flexible, and accessible.

Stay tuned for other learning opportunities that offer practical skills and competencies for keeping pace with technology and upskilling your career.

Online MBAs Grow in Popularity

Potential online TechMBA® students sharing data visualizations.

45,038 is the number of students enrolled in online MBA programs in the 2020-2021 academic year. For the first time ever, the online student population outnumbered the in-person full-time one (43,740). At last count, in fact, there were 1,095 online MBA programs offered by US higher-ed institutions alone. MTU’s TechMBA® ranks well among this crowd.

Why the rapid increase in both online MBA programs and enrollment? Well, one of the main reasons is that the COVID-19 pandemic changed the education game. At first, universities were forced to offer online and hybrid options. But then they kept rolling these out. In other words, the coronavirus crisis made both prospective students and employers more receptive of online programs. A New America poll also found that the belief in the quality of online learning actually increased by 16% during the pandemic.

Furthermore, 83 percent of the hiring executives in a CNN survey affirmed that an accredited online degree is as credible as an on-campus program. When it comes to online MBA degrees, a survey from the Center for the Future of Higher Education and Talent Strategy Fund had similar findings. That is, 71 percent of employers now view the quality of business degrees earned online as equal to or even better than traditional in-person programs.

So Why Earn MTU’s TechMBA®?

Back in July 2022, in my first blog, I introduced Michigan Tech’s newest online program: the TechMBA®. This program is still going strong. And there are several reasons for both its popularity and credibility.

Accreditation

Only 248 percentage of the 1,095 online MBA programs (less than 25%) offered by US institutions are accredited by the Association to Advance Collegiate Schools of Business. MTU’s TechMBA® is one of these select programs. In other words, the TechMBA® is not only accredited but also respected by industry, business, and STEM professionals. In fact, MTU’s online MBA program regularly ranks as one of the top in the state.

Stem Focus

Michigan Tech’s online MBA is not just business (adminstration) as usual. The TechMBA® is also one of the 24% of US online MBAs that have a STEM focus. That is, MTU’s online MBA degree allows students to leverage their STEM backgrounds and technological competencies. Students develop the fundamental business administration, project management, and communication skills required for STEM-professional roles. These skills qualify graduates for leadership roles in their chosen engineering fields. Those who complete the TechMBA® program are also adept at taking on project management, technical sales, and entrepreneurship positions in STEM-related workplaces.

Flexibility

The US News reports that when it comes to in-person MBA programs, the average age of students is 27. For online programs, however, that age rises to 33.

And 91% of online MBA students even worked full time while pursuing their degree.

What these numbers mean is that online MBA programs, like the TechMBA®, attract older students seeking flexibility in their education. Online learning, for sure, does involve an adjustment period. But there is no need to relocate, readjust your schedule, or leave your job. (There is also no need to frantically dig out from a snowstorm only to arrive to class a late, sweaty mess.)

Smaller, Tighter Class Community

Online learning often means increased interactivity. Research has shown that online learning is as good as if not better than face-to-face instruction. When it comes to peer-to-peer interaction and discussions, online classes may even surpass the effectiveness of their in-person versions. And in a smaller program, such as that of the TechMBA®, there are even more opportunities to connect with peers and instructors. More opportunities to develop those communication skills that are central to leadership roles.

Career Advancement

As early as 2016, Fast Company reported on how several employers began increasing their education requirements. A later CareerBuilder survey revealed that this trend has continued. In other words, an advanced degree may help you not only get that job in the first place but also move up the corporate ladder more easily.

Then there is the matter of salaries. According to a study done by the Georgetown University Center on Education and the Workforce, those holding advanced degrees may earn over 30% more over the span of their career than employees with only bachelor’s degrees.

Strong Return on Investment

Investopedia has noted that MBA graduates who specialize in consulting, finances, and technology management earn the most. And according to one Fortune article, the median salaries for those with MBA degrees are substantially higher than those without them.

The Corporate Recruiter Survey survey (Graduate Management Admission Council) also found that the median 2022 starting salary of new MBA hires was $115,000. And that salary, which is a historically high figure, doesn’t include the median signing bonus of $10,500.

And you also get that ROI faster with an MBA. A recent Wall Street Journal analysis of federal student loan data found that 98 percent of MBA programs leave students with more manageable debt loads than graduates of other programs.

Other Benefits of the TechMBA®

The short list of why you might pursue an advanced degree, such as an MBA, includes the following: acquiring the necessary credentials, pursuing your interests, moving into more fulfilling, impactful roles, gaining additional job security,and increasing your compensation.

But there are other, more personal incentives. Whatever your current degree or desired career path, we’ve summarized some of the advantages for pursuing an advanced degree or earning an MBA degree.

Learn More About the TechMBA®.

If you’d like to learn more about the in-demand MTU’s online MBA degree, come listen to the experts.

That is, Mari Buche (College of Business), David Lawrence (Vice President for Global Campus and Continuing Education), as well as members of the Global Campus team will be holding a virtual interest session on the TechMBA®.

This online event will be on April 11, 2023, at 11:30 AM – 12:15 PM. Please bring your curiosity and your questions.

Powering the World

an electric power tower against the blue sky

“It’s an unstable system, but we’re bringing stability to it,” so confirmed Glen E. Archer, Teaching Professor of Electrical and Computer Engineering at Michigan Technological University. While making this statement, Archer is standing in EERC 134, or the Smart Grid Operations Center. In this sophisticated classroom, students attack such topics as interoperability, energy management and emergency control, and system protection; as well as monitoring the connections into MTU’s Energy Management System and the regional grid. And so, so much more. It is, from my starry-eyed perspective, a very cool room.

At this point, the Michigan Tech Global Campus team has been touring the Electrical Engineering Resources Center (EERC) and picking Archer’s brain for the last hour. This room is the last stop on our educational tour.

As he speaks, my attention is divided between the brilliant, glowing grid on the wall and the energy and experience of Archer. He clearly has a passion for the important work and research that transpires in MTU’s electrical engineering classrooms and laboratories. And even more of a passion for electrical power engineering itself.

Which brings me, once again, to his earlier comment. He had mentioned that power engineering jobs might not seem particularly trendy, but those employed in this field have very important work to do. And much of this work is done behind the scenes. “Maybe the humble, unsung heroes of the engineering world,” I suggested. He didn’t comment, but smiled.

Power Engineers: Working Wherever the World Needs Them

Electric power engineering, a subfield of electrical engineering, is dedicated to all things electric power: from its generation, transmission, distribution, conversion, utilization, and management. The electrical apparatus and components associated with these systems, both large and small (wiring, cables, circuit breakers, fuses, switches, converters, vehicle drives, and so on), also fall under power engineering. Depending on their specialty and educational pathway, electric power engineers may work with electric power systems, power stations, solar voltaic cells, wind turbines, and electrical grids.

Electric power engineering may also go by other names, such as power engineering, power system engineering, power management, and power systems management. Its engineers are found wherever people and organizations need power, energy storage, renewables, and intermittent power sources.

Some Electric Power Engineering Workplaces

  • Utility companies
  • Manufacturing plants
  • Engineering Firms
  • Infrastructure related to the oil and gas industry
  • Other industries
  • Airports
  • Hospitals
  • Residential complexes
  • Schools
Industrial Power Plant

Filling a Shortage of Electric Power Engineers

Although they may not outwardly seem flashy, careers in electric power engineering have the advantage of being both flexible and mobile. Or to put it another way, the knowledge and competencies that power engineers acquire on one job may be transferred to another. This versatility means significant career choice and mobility, both within and between organizations as well as in workplaces throughout the world.

That is, as more countries transition to renewable energy sources and advanced technologies and invest in more infrastructure, the global demand for electric power engineers will likely increase. Some experts even believe that there is a definite shortage right now.

According to a summary of the Global Energy Talent Index Report, “power companies everywhere are struggling to balance talent shortages with changing skills.” The writers continue to say that there is a “looming skills shortage of engineers in the power, nuclear, and renewables sectors.”

What does this shortage look like? The GETI document confirms that as many as 48% of power professionals are concerned about an upcoming skills crisis whereas 32% believe the crisis has already hit the sector. 28% contend that their company has been affected by a skills shortage.

There are three main causes of this crisis: massive retirements, an aging workforce that requires upskilling, and a need for more workers with training in new power electric technologies. The report states that 13% of power workers are 55 years and older whereas 17% are between 45 and 54.

Confronting Upcoming Challenges

In short, both United States and the world need power engineers to not only fill these gaps but also address present and upcoming challenges.

In this nation, one of the biggest issues facing American engineers is contending with an outdated American grid in need of both repair and replacement. This aging grid can cause reliability problems, power shortages, and other complications. However, electric power engineers face other challenges, which affect the United States and beyond.

Improving Energy Storage

A photovoltaic system, otherwise known as a solar panel array.

Increasing the capacity and efficiency of energy storage systems is one key concern. To enable the widespread adoption of renewable energy sources, electric power engineers must develop better and more cost-effective energy storage solutions.

There is a need to improve the performance and efficiency of battery technology, which is essential for the large-scale energy storage. The excess electricity generated by renewable sources can then be used to help meet peak demand or provide back-up power during outages.

Increasing Grid Reliability

As electric grids integrate with more renewable sources (such as wind and power), power engineers must ensure grid stability and reliability. They must also develop solutions for reducing grid congestion. And create strategies for maintaining system stability and resilience in the face of climate change, extreme weather events, cyber-attacks, and other potential threats.

In fact, right here at Michigan Tech, Dr. Chee-Wooi Ten (Electrical and Computer Engineering), has spearheaded an impressive, interdisciplinary research team since 2010. This group contains members from the fields of statistics, business, engineering, and computer science. Its goals are advancing power engineering and developing strategies for improving power grid cybersecurity, grid reliability, interdependence, and sustainability.

Integrating Smart Technologies

Smart technologies are helping to make electricity consumption more efficient. For instance, smart meters allow utility companies to track and measure electricity consumption in real-time. They also enable consumers to monitor and adjust their own energy usage. Automated demand response systems can also reduce or increase electricity consumption according to fluctuations in the grid. And then there are advanced distribution management systems for utility companies to monitor and manage their electric grid in real-time. These can detect outages, schedule maintenance, and react to changing electricity demand.

There is a need for power engineers to understand these technologies and develop ways to integrate new smart systems into the existing grid. These strategies might include implementing communication protocols, creating intelligent control systems, and developing cybersecurity policies.

Ensuring Cybersecurity

Cyberattacks on the grid are not just the stuff of movies. For instance, in 2022, Russian cyber-hackers targeted Ukraine’s power grid. And in 2016, hackers chose a Florida power utility as their mark. The result: pumps ran continuously, causing not only waste but also physical damage. And since 2018, the US has been fending off Russian cyber-attacks on critical infrastructure.

Cyberattacks on electrical grids, then, can cause major disruptions and blackouts. It is obvious that one of the responsibilities of power engineers is improving the cybersecurity of the grid. This task is also one of the main objectives of Dr. Chee-Wooi Ten’s CIResilience team.

Addressing Environmental Concerns

Power plants, especially coal-fired ones, generate substantial emissions. And the cooling and operation of these plants require sizeable amounts of water. In fact, the power sector is the largest industrial power user. Therefore, a main engineering challenge is lessening the environmental impact of electric power systems, including reducing emissions and water consumption, improving efficiency, and minimizing waste.

Pursuing Electric Power Engineering at Michigan Tech

In short, as the world’s population continues to grow, the demand for electricity will increase significantly. Additionally, global citizens are requesting more sustainable and environmentally friendly energy infrastructure. Engineers may answer these calls by developing renewable energy sources and technologies as well as reducing electricity consumption and improving power efficiency.

If you’re up for these (and other) challenges, Michigan Tech offers several educational routes in electrical power engineering. For instance, there is a 13-credit undergraduate certificate in Electric Power Engineering and a 15-credit Graduate Certificate in Advanced Electric Power Engineering. Both of these certificates have been designed with consultation from experts from electric utilities and industry. In other words, students receive the knowledge, skills, and aptitudes that working electric power professionals regularly apply in their careers.

And, of course, there is the 30-credit MS in Electrical and Computer Engineering, with a Focus in Power Systems.

Whatever your preferred educational or career path in power engineering, Michigan Tech can help you get started.

Enhancing Wearable Tech

The pocket watch, the original smart wearable.

Remembering the Humble Origins of Today’s Smart Watches

Eyeglasses. Some might argue they were the first piece of wearable tech. But not everyone wears glasses. So many see the most influential piece of wearable tech as 1462’s first pocket-watch, then termed a pocket clock. The first pocket clocks were made by the Swiss. Why? Well, Geneva’s jewelers needed something to create and, of course, sell when John Calvin’s 1541 sumptuary laws banned the wearing of jewelry. When these bauble makers retooled their skillset, they started the Swiss watchmaking industry.

Watches, which were out of sight, tucked under clothing, or stuffed into pockets, didn’t count as jewelry. They had a purpose, after all. The first wrist watch, created in 1810, was made for the Queen of Naples by Brequet. That’s right; the first wrist watches were invented for ladies because it would be impractical for men to frivolously expose their wrists and time pieces to the elements.

19th century ingenuity eventually sped up the evolution of wrist watches, with the first automatic one invented in 1904. But the mass-production of watches didn’t happen until 1923. In other words, modern wrist watches are just a little over a century old. Eventually there came water-proofing, quartz movements, electric versions, and digital read outs.

It wasn’t only the mechanics of watches that evolved, so did their impact on our lives. These things on our wrists transformed from devices that helped us keep schedules (and get out of awkward conversations: “Oh my, look at the time; I gotta run!” ) They are now our organizers, personal trainers, fitness trackers, health monitors, communication managers, entertainment machines, and even purchasers. Just as robots have transformed the workplace, watches have changed and reorganized our lives.

Pushing Out the First Smart Watches

But the smart watch as we now know it had some very awkward (and unusable) beginnings.

The Ruputer

Seiko launched the Ruputer or on-hand computer in 1998. This hefty watch could run apps and connect to your PC through a docking station. It had an 8-way joystick that allowed you to write memos, make calendar appointments, use a calculator, and update your lists. But its 2-inch screen, only 102 x 64 LCD, limited its usability. And it ran on standard watch batteries that died very quickly if you unwarily attempted to use too many of these smart features simultaneously.

Play 1st Gen Smart Watch – Seiko Ruputer (Matsucom OnHand PC) Retro Review video
Preview image for 1st Gen Smart Watch - Seiko Ruputer (Matsucom OnHand PC) Retro Review video

1st Gen Smart Watch – Seiko Ruputer (Matsucom OnHand PC) Retro Review

https://www.engadget.com/seiko-ruputer-first-smartwatch-133015434.html

The Original Garmin

The original Garmin Forerunner, one of the first smart running watches and wearable fitness tracker.
A Dusty Old Garmin

Although I didn’t have one of the Ruputers, I was the proud owner, in 2003, of the original Garmin Forerunner.

The device measured 8.28 x 4.35 x 2.3 centimeters (or 3.3 inches x 1.74 x .9 inch). And it weighed about 72g without the strap (approximately 2.5 ounces).

In other words, it was about the size and weight of a pack of cards, or a small brick, that sat rather clumsily on one’s wrist.

My friend Micheline, an early adopter, exclaimed, “I remember that watch; I could actually see my running pace!” And so could everyone else, from at least ten feet away, which made running races, well, interesting.

To top it off, the original Garmin Forerunner beast ran on two AAA batteries. If you were lucky, you got 14-15 hours of working time. So, many of us trudged over to Radio Shack and rather grumpily invested in lithium batteries and a recharger.

At that time, Garmin had been a leader in the GPS market since 1990, so many anxiously awaited this watch. The Forerunner came with built-in GPS, maps (routes, history, waypoints/favorites/locations), along with a handful of training, planning, analysis and cycling features. Many thought these apps constituted information overload. Little did we know what lied ahead.

The Popularity of Smart Watches

20 years later, Garmin still has a fleet of advanced watches that offer the above features and more. Users can purchase watches with apps for counting calories, measuring stress, monitoring sleep, tracking body temperature and heart rate, and so on. In fact, these and other features are standard fare in many smart watches and wrist bands. And people rely on these devices daily. In fact, 25% of US women and 18% of US men wear some sort of fitness tracker, according to a 2022 survey.

Despite Garmin being one of the first on the scene, the biggest share of the US smart watch market (over 50%) goes to Apple, which has taken wearable tech to the next level. Following Apple are the companies Fitbit (30%), which made its name with its slim fitness trackers; Samsung (21%), Garmin and LG (9% each). However, among many runners, Garmin still remains one of the more trusted brands.

Developing Other Smart Wearables

As impressive as these contemporary watches are, wearable tech has also moves far beyond them.

Clothing

Designers and engineers have been hard at work developing wearable smart clothing that prevents injury and workplace accidents. Take SolePower boots, for example. This footwear is supposed to reduce or eliminate on-the-job injuries. How? The boots contain technology that monitors the wearer’s real-time location, environmental conditions, and even fatigue. The company claims that boot-wearers have advanced situational awareness, which is supposed to improve workplace safety.

Beyond boots, smart clothing is another form of wearable technology that incorporates sensors and other electronics into fabric, tracking physiological signals (heart rate, body temperature, and respiration) and providing feedback to the user.

Some brands, such as Sensoria and Athos, analyze user performance and activity metrics, such as heart rate, steps taken, calories burned, and distance traveled. Others, such as Spire, send ongoing, real-time health statistics to medical professionals to monitor health conditions.

This clothing can also connect to other devices such as smartphones, tablets, and laptops.

A person wearing a piece of wearable tech: an Athos smart shirt.
Athos Shirt, Picture by Unknown Author, Licensed Under CC BY-SA-NC

Applications of Smart Fabrics

And there are other potential applications of smart clothing as well. These include tracking location, helping wearers find assistance when they are lost or in danger, detecting injuries and falls, and alerting emergency contacts.

And perhaps because of the versatility and potential applications of these fabrics and garments, the demand for them is growing. According to Statista, although the global worth of smart fabrics is about 2 billion, it will grow to 7 billion by 2027.

And research on smart fabrics has been done right here at Michigan Tech. Dr. Yoke Khin Yap, Professor of Physics, Affiliated Profess of Materials Science and Engineering, and MTU Faculty Fellow, has previously worked on Boron Nitride Nanotubes (BNNTs) to create a efficient, strong, and stable electronic fabric.


Example of what current smart watches can do: an analysis of the author’s fitful sleep.

“I have no doubt that in the future, wearable devices like Fitbit will know my blood pressure, hydration levels and blood sugar levels as well. All of this data has the potential to transform modern medicine and create a whole new era of personalized care.”

Michael Dell, founder, CEO, and chairman of Dell Technologies

Medical Devices and Sensors

Then there are wearable medical devices and sensors, which are small, lightweight, unobtrusive devices. People use these to monitor and measure a variety of medical conditions and to track vital signs such as heart rate, blood pressure, and body temperature. They can also measure activity levels, sleep patterns, and other physiological data. Additionally, they can be used to monitor and deliver medication, provide real-time access to medical information, and provide feedback on lifestyle changes.

Examples of wearable medical devices and sensors beyond smart watches include hearing aids, insulin pumps, devices for respiratory therapy and sleep apnea, non-invasive ventilation devices, continuous glucose monitoring devices, blood pressure monitors, cardiac and heart rate monitors, and wearable pulse oximeters. One of the most impressive of these, which bridges a high-end medical device and a smart watch, is the blood-pressure measuring Omron HeartGuide. It supposedly can take your blood pressure in thirty seconds.

And the manufacturers of these devices and sensors are many: Sorrel Medical, Willow, Medtronic, Johnson and Johnson, Siemens AG, Omron, Nokia, Samsumg, and Hoffman-La Roche are just a few of the players. In fact, 85 million wearable medical devices and sensors were shipped in 2021. This number is expected to almost double by 2024.

Medical sensors, smart watches, and other health-tracking wearables are just a few transformational trends in electronics that are worthy of following.