Day: May 14, 2024

Doctoral Finishing Fellowship – Summer 2024 Recipient – Jeff Kabel

Jeff Kabel in formal attire standing in front of a brick background
Jeff Kabel – Applied Physics

I entered the field of nanotechnology rather unexpectedly. During a casual conversation at my undergraduate institution, a professor asked me if I was looking for a job, and with my background I was in no position to say no. A week later I was in lab, and I haven’t looked back since. The Department of Physics at Michigan Tech welcomed me in the Fall of 2018, and I began structuring my dissertation work shortly after. Originally my research was solely on two-dimensional materials, however, through some serendipitous discoveries, my scope has broadened to include many other van der Waals materials.

One of my favorite aspects of nanotechnology is that it is fundamentally interdisciplinary. Nanomaterials have such wildly varied properties that they have found applications in many fields. Through my studies I’ve been allowed to peer into the windows of various fields, including energy production, electronics, photovoltaics, chemical sensing, and bioimaging. A significant portion of my dissertation is centered on the synthesis of an easily-made, cost-effective, high-brightness fluorophore – it is unfortunate that I can not disclose much more until the patent is finalized. One project I can discuss is the internal functionalization of boron nitride nanotubes; I have been taking very small tubes – about 50,000 times thinner than the average human hair – and filling them with different materials (I’ve often described my research goal as “making the world’s smallest cannoli”). The applications of these filled nanotubes thus far include novel transistors and photostable fluorophores, and we hope to test their capabilities in solar technology soon.

As my time here comes to a close, I would like to express gratitude for the opportunities provided to me at Michigan Tech. Dr. Yoke Khin Yap has been an invaluable mentor, and his unwavering patience through my academic pursuits has been much appreciated. The support I have received from the King-Chávez-Parks Initiative and the Henes Center for Quantum Phenomena has enabled me to progress this far, and I am deeply grateful that Graduate Dean Awards Advisory Panel has granted me the opportunity to expeditiously conclude my dissertation.

Cheers.

DeVlieg Graduate Research Recipient – Summer 2024 – Fatemeh Razaviamri

Fatemeh Razaviamri standing outside with body of water, trees, and cityscape behind
Fatemeh Razaviamri – Biomedical Engineering

I am a third-year PhD student in the Biomedical Engineering department. My research focuses on designing polymeric biomaterials for antimicrobial, hemostatic, and wound healing applications under the supervision of Dr. Bruce Lee. Currently, I am working on a project aimed at developing a novel, antimicrobial hemostatic agent inspired by the strong adhesive properties of mussel adhesive proteins.

Hemorrhage is one of the leading preventable causes of death associated with trauma. Additionally, trauma patients are at a higher risk for developing infection, leading to substantial morbidity and mortality. I aim to develop a novel and portable hemostatic agent that could achieve hemorrhage control in a prehospital setting and prevent infection. This powder-form hemostatic agent can be activated by hydration through the patient’s bodily fluid or blood, which greatly simplifies the criteria for packaging and storage. The proposed hemostatic agent provides multiple mechanisms to prevent infection, including the ability to kill drug-resistant bacteria. The ability to disinfect the wound site in a prehospital setting will limit complications associated with infection and will greatly improve the rate of recovery.

I am immensely grateful for the support provided by the DeVlieg Foundation and the Graduate Dean Awards Advisory Panel. With their support, I will spend the summer conducting in vivo hemostatic and infected wound healing tests using a mouse model to evaluate the rapid and effective hemostatic properties of the designed hemostatic agent, as well as its ability to promote the infected-wound healing.