Category Archives: Uncategorized

Developing Hands-on Cybersecurity Curriculum with Real-world Case Analysis

Researcher: Yu Cai, Associate Professor, College of Computing

Sponsor: National Security Agency

Amount of Support: $149,184

Duration of Support: 1 year

Abstract: Recent high-profile cyber breaches indicate that cyber attacks are becoming more common, sophisticated and damaging. People with cybersecurity skills are in great demand as the threat environment increasingly becomes more complex and challenging. The need to have well-trained and well-prepared cybersecurity workforce is a pressing issue. The goal of this project is to develop a hands-on cybersecurity curriculum with real-world case analysis. The proposed curriculum includes six cybersecurity related courses: 1. Cyber Ethics; 2. Cyber Security I; 3. Scripting for Automation and Security; 4. Wireless System Administration; 5. Cyber Security II; 6. Digital Forensics. This curriculum is designed for CS and IT students who are interested in cybersecurity.


Under-Ice Mobile Networking: Exploratory Study of Network Cognition and Mobility Control

Researchers:

Min Song, Professor, Electrical and Computer Engineering

Zhaohui Wang, Assistant Professor, Electrical and Computer Engineering

Sponsor: National Science Foundation: EAGER: NeTS

Amount of Support: $299,716

Duration of Support: 3 years

Abstract: Autonomous underwater vehicles (AUVs) with acoustic communication capabilities are the platform of choice for under-ice exploration. Different from commonly studied open-water environment, the sound speed in the under-ice environment exhibits an increasing trend with water depth, which renders sound propagation shadowing and multiple reflections by the ice cover. Such acoustic environment characteristics have to be judiciously accounted in under-ice acoustic communication systems, which otherwise could lead to severe communication disconnection as observed in field experiments. This project focuses on an under-ice AUV network that migrates as a swarm for water sampling in an unknown ice-covered region, and develops algorithms for AUVs to learn the under-ice acoustic environment and adapt AUV mobility to the characteristics of the acoustic environment and the water sample field to achieve optimal under-ice mission performance while maintaining desired acoustic connectivity. This project will expand the frontier of under-ice exploration by autonomous vehicles. Given the vital role of ice-covered regions in many underpinning factors of modern society, such as economic growth and scientific research, this project will yield significant socio-economic impacts. In addition, the project will support two Ph.D. dissertations, and involve junior researchers in both algorithm development and field experiments.

This project will innovate over two interrelated domains: under-ice acoustic environment and network cognition, and adaptive AUV mobility control. Specifically, a recursive algorithm will be developed to estimate the environment parameters pertaining to acoustic propagation, as well as the network state (including AUV positions and velocities), leveraging the acoustic measurements obtained during packet transmissions within the AUV network. The estimated parameters will characterize under-ice acoustic field for AUV mobility control. Moreover, an adaptive algorithm will be designed to adjust the mobility of AUVs to the acoustic field and the water sample field, with a goal of minimizing the sample field estimation error while ensuring desired acoustic connectivity among the AUVs. The developed algorithms will be evaluated via simulations and offline experiment data processing. Within an about 10-month ice-cover period of local lakes in this project, extensive under-ice experiments will be conducted under a wide range of geometric and environment conditions. This project will develop and showcase fundamental and crosscutting techniques for under-ice AUV mobile networking, underlying the synergy of environment cognition, statistical signal processing, and wireless mobile networking.

Publications:

W. Sun, and Z.-H. Wang. “Modeling and Prediction of Large-Scale Temporal Variation in Underwater Acoustic Channels,” Proc. of MTS/IEEE OCEANS Conference, 2016.

W. Sun, C. Wang, Z.-H. Wang, and M. Song. “Experimental Comparison Between Under-Ice and Open-Water Acoustic Channels,” Proc. of the ACM International Workshop on Underwater Networks (WUWNet), 2015.

Z.-H. Wang, C. Wang, and W. Sun. “Adaptive Transmission Scheduling in Time-Varying Underwater Acoustic Channels,” Proc. of MTS/IEEE OCEANS Conference, 2015.

C. Wang, and Z.-H. Wang. “Signal Alignment for Secure Underwater Coordinated Multipoint Transmissions,” IEEE Transactions on Signal Processing, 2016.

X. Kuai, S. Zhou, Z.-H. Wang. And E. Cheng. “Receiver design for spread-spectrum communications with a small spread in underwater clustered multipath channels,” Journal of Acoustical Society of America, 2017.

C. Wang, and Z.-H. Wang. “Signal Alignment for Secure Underwater Coordinated Multipoint Transmissions,” IEEE Transactions on Signal Processing, 2016.

L. Wei, Y. Tang, Y. Cao, Z.-H. Wang, and M. Gerla. “A Simulation Platform for Software-Defined Underwater Wireless Networks,” Proc. of the ACM International Workshop on Underwater Networks (WUWNet), 2017.

W. Sun, and Z.-H. Wang. “Modeling and Prediction of Large-Scale Temporal Variation in Underwater Acoustic Channels,” Proc. of the MTS/IEEE OCEANS Conference, 2016.

W. Sun, C. Wang, Z.-H. Wang, and M. Song. “Experimental Comparison Between Under-Ice and Open-Water Acoustic Channels,” Proc. of the ACM International Workshop on Underwater Networks (WUWNet), 2015.

W. Sun, C. Wang, Z.-H. Wang, and M. Song. “Estimation of the Under-Ice Acoustic Field in AUV Communication Networks,” Proc. of the ACM International Workshop on Underwater Networks (WUWNet), 2017.

More info


Understanding and Mitigating Triboelectric Artifacts in Wearable Electronics by Synergic Approaches

Researchers:

Ye Sun, Assistant Professor, Mechanical Engineering—Engineering Mechanics

Shiyan Hu, Adjunct Professor, Electrical and Computer Engineering

Sponsor: National Science Foundation

Amount of Support: $330,504

Duration of Support: 3 years

Abstract: Electrophysiological measurement is a well-accepted tool and standard for health monitoring and well-being management. A great number of electrophysiological measurement devices have been developed including clinical equipment, research products, and consumer electronics. However, until now, it is still challenging to secure long-term stable and accurate signal acquisition, especially in wearable condition, not only for medical application in hospital settings, but also for daily well-being management. Motion-induced artifacts widely exist in electrophysiological recording regardless of electrodes (wet, dry, or noncontact). These artifacts are one of the major impediments against the acceptance of wearable devices and capacitive electrodes in clinical diagnosis. This project is to provide new strategies to mitigate motion-induced artifacts in wearable electronics and design accurate wearable electronics for daily monitoring and disease diagnosis. The PIs will disseminate the research products to both students and the research community. New course materials will be developed for undergraduate and graduate education. Undergraduate and graduate students involved in the research program will obtain diverse knowledge in hardware design and data analytics. For K-12 students, the PIs will provide an integrated research and educational experience through the programs of Engineering Exploration Day for Girls and the Summer Youth Program at Michigan Technological University. A research demo and hands-on experience for triboelectric generation in textile materials will be developed and provided to K-12 students.

The research goal of this proposal is to understand the fundamental mechanism of triboelectric artifacts in wearable devices and provide synergistic solutions to mitigating the artifacts. Three approaches are proposed to achieve the goal: 1) understanding the mechanism of triboelectric charge generation in wearable condition by physical modeling and experimental validation; 2) guided by the understanding, developing tribomaterial-based sensors to manipulate triboelectric charges for artifact removal; 3) leveraging the proposed new tribomaterial-based sensors and statistical data analytics for true electrophysiological signal estimation. If successful, the synergic knowledge produced by the project will not only help improve the traditional bioinstrumentation in the medical society, but also benefit industrial community of consumer wearable electronics.

Publications:
Li, Xian and Sun, Ye. “WearETE: A Scalable Wearable E-Textile Triboelectric Energy Harvesting System for Human Motion Scavenging,” Sensors, v.17, 2017. doi:10.3390/s17112649

Huang, Hui and Hu, Shiyan and Sun, Ye. “Energy-efficient ECG compression in wearable body sensor network by leveraging empirical mode decomposition,” 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 2018. doi:10.1109/bhi.2018.8333391

More info


Self-Interference Modeling in Active Phased Arrays

Researchers

Timothy Havens, PI, William and Gloria Jackson Associate Professor of Computer Systems
Director, Institute of Computing and Cybersystems

Timothy Schultz, Co-PI, University Professor, Electrical and Computer Engineering

Sponsor: Massachusetts Institute of Technology, Lincoln Laboratory

Amount of Support: $15,000

Abstract: The latest research in phased array systems has focused on accommodating multiple functions—radar, communications, electronic warfare—simultaneously on a single array. However, the work has not thoroughly addressed whether or not the partitioning of the antennas and signal generation in the array could be optimized to maximize the performance of the different functions on the array. This work explores these questions.


An Actuarial Framework of Cyber Risk Management for Power Grids

High voltage towers in the dusk of the evening

Researchers

Chee-Wooi Ten, Associate Professor, Electrical and Computer Engineering

Yeonwoo Rho, Assistant Professor, Mathematical Sciences

Sponsor: National Science Foundation, CPS: Medium: Collaborative Research

Amount of Support: $348,866

Duration of Support: 3 years

Abstract: As evidenced by the recent cyberattacks against Ukrainian power grids, attack strategies have advanced and new malware agents will continue to emerge. The current measures to audit the critical cyber assets of the electric power infrastructure do not provide a quantitative guidance that can be used to address security protection improvement. Investing in cybersecurity protection is often limited to compliance enforcement based on reliability standards. Auditors and investors must understand the implications of hypothetical worst case scenarios due to cyberattacks and how they could affect the power grids. This project aims to establish an actuarial framework for strategizing technological improvements of countermeasures against emerging cyberattacks on wide-area power networks. By establishing an actuarial framework to evaluate and manage cyber risks, this project will promote a self-sustaining ecosystem for the energy infrastructure, which will eventually help to improve overall social welfare. The advances in cyber insurance will stimulate actuarial research in handling extreme cyber events. In addition, the research and practice related to cybersecurity and cyber insurance for the critical energy infrastructure will be promoted by educating the next generation of the workforce and disseminating the research results.

The objective of this project is to develop an actuarial framework of risk management for power grid cybersecurity. It involves transformative research on using insurance as a cyber risk management instrument for contemporary power grids. The generation of comprehensive vulnerabilities and reliability-based knowledge from extracted security logs and cyber-induced reliability degradation analysis can enable the establishment of risk portfolios for electric utilities to improve their preparedness in protecting the power infrastructure against cyber threats. The major thrusts of this project are: 1) developing an approach to quantifying cyber risks in power grids and determining how mitigation schemes could affect the cascading consequences to widespread instability; 2) studying comprehensively how hypothesized cyberattack scenarios would impact the grid reliability by performing a probabilistic cyber risk assessment; and 3) using the findings from the first two thrusts to construct actuarial models. Potential cyberattack-induced losses on electric utilities will be assessed, based on which insurance policies will be designed and the associated capital market will be explored.

More info


Developing Anisotropic Media for Transformation Optics by Using Dielectric Photonic Crystals

Researchers

Elena Semouchkina, Professor, Electrical and Computer Engineering

Sponsor: National Science Foundation

Amount of Support: $337,217

Duration of Support: 3 years

Non-Technical Description: Transformation optics (TO) is based on coordinate transformations, which require proper spatial dispersions of the media parameters. Such media force electromagnetic (EM) waves, moving in the original coordinate system, to behave as if they propagate in a transformed coordinate system. Thus TO introduces a new powerful technique for designing advanced EM devices with superior functionalities. Coordinate transformations can be derived for compressing, expanding, bending, or twisting space, enabling designs of invisibility cloaks, field concentrators, perfect lenses, beam shifters, etc., that may bring advances to various areas of human life. Realization of these devices depends on the possibility of creating media with prescribed EM properties, in particular, directional refractive indices to provide wave propagation with superluminal phase velocities and high refractive indices in the normal direction to cause wave movement along curvilinear paths. Originally, artificial metamaterials (MMs) composed of tiny metallic resonators were chosen for building transformation media. However, a number of serious challenges were encountered, such as extremely narrow frequency band of operation and the high losses in metal elements. The proposed approach is to use dielectric photonic crystals to overcome these major limitations of MM media. This project will allow graduate and undergraduate students, especially women in engineering, to participate in theoretical and experimental EM research. Outreach activities include lectures and hands-on projects in several youth programs to K-12 students.

Technical Description: This project will develop a platform for engineering photonic crystal (PhC)-based media that are free from the major limitations of metamaterial media. The project aims to control wave propagation in media along orthogonal crystallographic directions and relies upon self-collimation phenomena at formulating TO-based prescriptions for refractive indices. For realizing directional dispersions of both superluminal and ordinary indices along desired axes of crystals, proper variations of their lattice parameters will be used. Accurate control of index values will be provided by building the media from crystal fragments with optimized dimensions. Microwave experiments using a parallel-plate waveguide chamber will be performed to record wave propagation and to verify computational results. Technologies developed earlier for fabricating low-loss PhCs will help to implement the practical devices. This interdisciplinary research will integrate electromagnetics, physics, optics, and materials science concepts; employ full-wave computational modeling and design; engineer complex materials architectures; and master characterization techniques for complex structures. The project will open up perspectives for TO by developing new approaches for media engineering and by solving fundamental problems, including integration of self-collimation. This research will integrate electromagnetics, physics, optics, and materials science concepts and will advance the potential of PhCs.

Publications:

Semouchkina, E.. “A Road to Optical Cloaking Using Transformation Media Built from Photonic Crystals,” 1st International Conference on Optics, Photonics, and Lasers, (OPAL 2019), Barcelona, Spain, 2018.

S Jamilan, G Semouchkin. “Spatial dispersion of index components required for building invisibility cloak medium from photonic crystals,” Journal of optics, v.20, 2018. doi:https://doi.org/10.1088/2040-8986/aab25c

N. P. Gandji, G. B.. “All-dielectric metamaterials: irrelevance of negative refraction to overlapped Mie resonances,” Journal of physics. D, Applied physics, v.50, 2017. doi:https://doi.org/10.1088/1361-6463/aa89d3

Semouchkina, E.. “From microwaves to optics: all-dielectric solutions for coordinate transformation-based devices,” International Symposium NGC2017 (Nano and Giga Challenges in Electronics, Photonics and Renewable Energy), Tomsk, Russia, 2017. Citation details

Gandji, N P and Semouchkin, G B and Semouchkina, E. “All-dielectric metamaterials: irrelevance of negative refraction to overlapped Mie resonances,” Journal of Physics D: Applied Physics, v.50, 2017. doi:10.1088/1361-6463/aa89d3

Jamilan, S. and Semouchkin, G. and Gandji, N. P. and Semouchkina, E.. “Specifics of scattering and radiation from sparse and dense dielectric meta-surfaces,” Journal of Applied Physics, v.125, 2019. doi:10.1063/1.5087422

Jamilan, Saeid and Gandji, Navid Pourramzan and Semouchkin, George and Safari, Fatemeh and Semouchkina, Elena. “Scattering from Dielectric Metasurfaces in Optical and Microwave Ranges,” IEEE Photonics Journal, 2019. doi:10.1109/JPHOT.2019.2908307

Jamilan, Saeid and Semouchkina, Elena. “Employing GRIN PC-Inspired Approach for Building Invisibility Cloak Media from Photonic Crystals,” 2018 IEEE Photonics Conference (IPC), Reston, VA, 2018, 2018. doi:10.1109/IPCon.2018.8527322

Jamilan, S. and Semouchkina, E.. “Broader Analysis of Scattering from a Subwavelength Dielectric Sphere,” 2018 IEEE Photonics Conference (IPC), Reston, VA, 2018, 2018. doi:10.1109/IPCon.2018.8527193

Gandji, N. and Semouchkin, G. and Semouchkina, E.. “Electromagnetic Responses from Planar Arrays of Dielectric Nano-Disks at Overlapping Dipolar Resonances,” 2018 IEEE Research and Applications of Photonics In Defense Conference (RAPID), Miramar Beach, FL, 2018, 2018. doi:10.1109/RAPID.2018.8509022

More info


Kuilin Zhang (CEE) will present “A Best-Case Rosenthal Equilibrium based Coordination Mechanism for N-person Online Routing Games of Connected and Automated Vehicles”

Kuilin ZhangMotivated by connected and automated vehicle technologies, this talk presents a best-case Rosenthal Equilibrium based coordinate mechanism for online automated routing decisions of connected and automated vehicles in a connected transportation network system.

Zhang is a member of the Editorial Advisory Board of Transportation Research Part E, as well as Transportation Research Board (TRB) standing committees of Transportation Network Modeling (ADB30) and Freight Transportation Planning and Logistics (AT015). Zhang’s research interests include data-driven optimization and control modeling of connected and automated vehicles, big data analytics of advanced traffic sensing data from mobile and crowdsourced sensors, interdependency and resiliency between smart grid and intelligent transportation systems, multimodal freight logistics and supply chain systems, traffic flow theory and large-scale traffic simulation, and dynamic transportation network equilibrium.


Kuilin Zhang Wins CAREER Award for Connected and Autonomous Vehicles

Kuilin Zhang
Kuilin Zhang

by Allison Mills, University Marketing and Communications

Smart traffic is more than self-driving cars. One engineer is tackling these transportation systems with an early career award grant from the National Science Foundation (NSF).

Changing lanes, upcoming merges, blind spots — wouldn’t it be great to broadcast to other vehicles what your own car is doing and where? Well, the technology does exist, and the data-rich messages in vehicle-to-vehicle communication are less salty than the ones exchanged in human languages. But the technology needs more development before it’s ready for rush hour.

Kuilin Zhang explained the challenge is forecasting traffic, which is inherently uncertain. Zhang, assistant professor of civil and environmental engineering and affiliated assistant professor of computer science at Michigan Tech, is a recipient of an NSF CAREER Award to improve automated driving decisions using predictive, real-time feedback within and between vehicles. The project totals $500,000 over a five-year span and puts some of Michigan Tech’s prime mobility testing facilities to use.

Read the full story.



Yu Cai and Team Recognized by NSA National Cybersecurity Curriculum Program

Yu Cai
Yu Cai

Yu Cai (SoT) and his team are recognized as featured curriculum authors as part of the National Security Agency (NSA)’s National Cybersecurity Curriculum Program (NCCP). In the 2017 fiscal year, NSA awarded 54 grants to universities to build courses and modules in high need cybersecurity areas. All curriculum has undergone a strenuous multi-faceted review before being released. In the recognition note sent by the NSA NCCP program manager, it says “Curriculum developed by your institution has been released nationally in this unique and transformative effort as we work to secure our nation by strengthening the cyber workforce. We congratulate Cai and appreciate the institutional support provided to him for his hard work in developing this curriculum.”

Yu Cai is the principal investigator of two NSA NCCP grants. The goal of these projects is to integrate concepts and best practices of cybersecurity into undergraduate IT/Computing curricula.

Published in Tech Today, March 11, 2019