Category: Human Factors

ACSHF Forum: Grad Student Presentations

The Department of Cognitive and Learning Sciences will host two speakers at the next Applied Cognitive Science and Human Factors forum: Katrina Carlson and Brittany Nelson, both ACSHF graduate students. Their presentations will be from 2:00 to 3:00 p.m. Monday (April 3) in Meese 109 and via Zoom.

Carlson will present ” Engineering Self-efficacy and Spatial Skills: A two-part study”

Abstract:

The research team behind previous work on the increased academic and retention outcomes of students who have taken a Spatial Visualization Intervention course at MTU postulates that affective changes within the students as a result of the course may be responsible for downstream academic success. One possible explanation may be related to the students’ confidence in their ability (self-efficacy) to gain the skills needed to become an engineer.  Extensive research has been conducted on self-efficacy, and academic self-efficacy has been shown to be significantly correlated with academic performance.

The first part of this study examines the general and engineering self-efficacy of students at the beginning and end of the Spatial Skills Intervention course, Spring 2023 (N= 9), and compares these to students at the beginning and end of a first year engineering class. One hundred sixty-eight students completed general and engineering self-efficacy surveys. The General Self-Efficacy Scale was used; this tool was developed from longer scales and was found to be a reliable and valid measure of overall self-efficacy and not a specific skill area.  The Assessment of Engineering Self-Efficacy V3.0 for undergraduate engineering students  was also used. Items on this measure are related to predictions of future academic ability and their sense of belonging in engineering and STEM classes.

The second part of this study will examine students’ visual and spatial perception, memory, and skills through a battery of tasks using the PEBL Platform.  Previous research has examined the development of spatial skills and the resulting increase in problem-solving skills across domains that require spatial reasoning.  Research has also been conducted to examine whether spatial visualization, the ability to mentally maneuver 2D and 3D objects, is a single ability or is composed of more than one skill or ability. Participants (N=80) will include both Intro to Psychology students, who will also take the Purdue Spatial Visualization Test with Rotations (PSVT:R) as a part of this battery, and first year engineering students.This part of the study will examine the relationships between students’ visual and spatial skills, drawing skills (engineering students only), and their PSVT:R scores and seeks to examine a possible taxonomy of spatial skills.  This battery may serve as a reliable and valid assessment in the future of student skills at the high school and/or college level to indicate a need for additional instruction and practice of skills. There may be applications of these findings in other fields and for other purposes, such as geography, computing education, and military use.

Nelson will present “Title: Preliminary Evaluation for an Educational Intervention: Insights from a Usability Survey”

Abstract: 

Increasing whole grain intake can reduce the risk of chronic health conditions such as cancer and heart disease. However, people continue to make poor dietary health decisions, and the life expectancy for Americans is declining. Therefore, a novel intervention is needed to boost informed dietary decision-making. This study aimed to (1) provide preliminary evidence on the effectiveness, enjoyment, and efficiency of a novel intervention and (2) identify practices for making scientific information more usable. The study used a self-report online survey. Qualitative and quantitative data were collected to test the effectiveness, enjoyment, and efficiency of the educational intervention and how to improve it. Results suggest that the intervention is effective at increasing informed preventative decision-making. One hundred percent of participants showed adequate gist understanding across the four knowledge domains: habit gist understanding, whole-grain gist understanding, gist understanding of benefits, and gist understanding of susceptibility and severity. The results also revealed several strategies for increasing the usability of other educational interventions for a student sample demographic: increase/incorporate graphs, data, and references to increase the trustworthiness of an intervention. These results suggest that an educational video intervention effectively increases informed decision-making for preventative behaviors. These findings are also valuable for future intervention development and testing, making this proposal the next step for preventative care.

ACSHF Forum: Grad Student Presentations

The Department of Cognitive and Learning Sciences will host two speakers at the next Applied Cognitive Science and Human Factors forum: Nishat Alam and Anne Inger Mørtvedt, both ACSHF graduate students. Their presentations will be from 2:00 to 3:00 p.m. Monday (March 27) in Meese 109 and via Zoom.

Alam will present “Types of Questions Teachers Ask to Engage Students in Making Sense of a Student Contribution.”

Abstract:

In the student center classroom, where teachers constantly make decisions based on what is happening surrounding them, what they are noticing, and how they are interpreting student contributions, a teacher’s interpretation and response to student mathematical contributions plays an important role to shape and direct students’ thinking. In particular, failing to ask productive questions that help students to engage in a sense-making discussion could deteriorate cognitive opportunities. This research is planning to study what types of questions teachers indicate they would ask to engage students in making sense of a high-leverage student mathematical contribution, what Leatham et al. (2015) refer to as a MOST (Mathematically Significant Pedagogical Opportunities to Build on Student Thinking) and their reasoning about why particular questions are or are not productive. In this study, a scenario-based survey questionnaire will be sent via email to 100 middle and high school teachers. In the given scenario, a MOST has surfaced, and teachers will be asked three questions about how they would respond in the scenario. This research could lead us to determine if teachers are selecting the questions which are likely to be productive in supporting students’ mathematical thinking and why they select the questions that they do. Knowing this will inform future work with teachers to productively use student thinking in their teaching.

Mørtvedt will present “Relationship between Program Usability Characteristics and Intention to Use: Preliminary Data Implementing a Sport Injury Prevention Program.”

Abstract:

Adherence to exercise programs is low across multiple populations. For example, within the target population for ACL injuries, only ~4-20 % of sports teams have implemented evidence based injury prevention programs. This study explored the relationship between usability characteristics and implementation likelihood for a newly developed ACL injury prevention program. Twenty-two female handball players, aged 16 to 18, participated in the intervention study. Data on usability characteristics was collected through a modified usability scale similar to the System Usability Scale. Subcomponents of the usability scale included
learnability, perceived effectiveness, ease of use, enjoyability and efficiency. Paired sample’s t-test revealed a significant difference between all constructs from pre to post intervention, except for the perceived effectiveness score. Enjoyability and efficiency were the constructs that changed the most, both scores going down post intervention. Perceived effectiveness, enjoyability and efficiency were significantly correlated with intention to use the program (rho 0.50, p = 0.02, rho 0.50, p= 0.02, rho 0.65, p < 0.001, respectively), indicating that program adherence is affected by whether they believe the program will work (e.g. reduce injuries),
whether they enjoy performing the program and whether they find it reasonable with regard to time use. We did not find any significant relationships between the two other subcomponents (e.g. learnability, ease of use) and intention to use. This preliminary data suggests that program designers may want to make sure participants understand why it is important to perform the program, in addition to developing an exercise program that they seem to enjoy performing and find worth their time. Future studies should capture more data on the usability scale/subscales to ensure the factor structure is consistent and items display appropriate psychometric properties.

Bettin paper in SIGCSE 2023 Proceedings

Briana Bettin’s (CLS/CS) paper, “Challenges, Choice, & Change: Experiences and Reflections from the First Semester of a Technology and Human Futures Course,” was recently published in the SIGCSE 2023 Proceedings of the 54th ACM Technical Symposium, March 2023.  

The paper explores survey responses from graduate students who completed Bettin’s newly designed course, “Reimagining Technofuturism” during spring 2022. The course explored facets of human identity and societal systems in order to understand technology’s role, how technology impacts our human futures and how we might design differently in order to arrive at future technologies that better center human identities and futures.

In the paper Bettin discusses the general design of the course as well as literature background that suggests courses like this are novel but growing in presence nationwide. In addition to the overall value of the course—exploring how design choices, emphasizing computing technology design, impact society and the ways identity can alter those impacts for individuals and groups.

The paper contains student quotes that Bettin pulled together with a narrative thread. Bettin closed the paper with her own quote as she reflected on the outcomes of the course:

“I expected some level of general interest and engagement, but marvel at how much the students consistently exceeded my expectations. From diverse discussion examples to a breadth of project directions—the students not only grappled with the complex and vast space, but seemed to enjoy “tackling” such depth in some meaningful way.”

The ACM Technical Symposium is SIGCSE’s flagship conference. It has been held annually in the United States since 1970. This year, for the first time, the conference is being held in Toronto, Canada, March 15-18, 2023.

Briana Bettin is an assistant professor in the departments of computer science and cognitive and learning sciences (psychology and human factors). She received her master’s in human-computer interaction from Iowa State University and her bachelor’s and PhD in computer science from Michigan Tech. Her research work broadly centers computing education with focus on human interests, impacts, and learning within our increasingly technological society. Her goal is to help us all learn to better live with, work with, (re)imagine with, and be represented equitably within the increasingly digital landscape of our world.

Related story: Q&A with Teaching Award Winner Briana Bettin

ACSHF Forum: Paul Ward

The Department of Cognitive and Learning Sciences will host Dr. Paul Ward at the next Applied Cognitive Science and Human Factors forum.

The presentation, “Beyond Academia: From Adaptivity to Augmented Decision Making and Back Again”, will be from 2:00 to 3:00 p.m. Monday March 20 via Zoom.

Abstract:

In this presentation, I will provide an overview of my research conducted on both sides of the research
isle—as a university academic and as a scientist supporting government sponsors. This overview will
span a range of topics from expertise and adaptive skill to technology-enabled decision superiority to
human-centered AI assurance. Specifically, I will summarize a handful of research projects examining
the training principles required to develop expert levels of adaptive skill, the impact of providing humans
with more AI-enabled courses of action than they could generate without technological support,
considerations for supporting human-machine teams, and end with a discussion of what it means to assure
human-centered AI. A common theme throughout this research is that context matters, irrespective of
whether we are concerned with developing expertise or human-centered systems, improving system
performance, or empowering humans to achieve their goals. As part of this talk, I will provide a brief
overview of MITRE, the capabilities we offer, and a description of my journey from University Professor
to Chief Scientist. I will end by posing some questions about the pressing future challenges where
transdisciplinary teams, including Human Factors and Applied Cognitive Scientists, could be leveraged to
produce more robust outcomes for a safer, more secure, and more equitable world.

BIO:

Dr. Paul Ward is Chief Scientist for the Social and Behavioral Sciences and Principal Cognitive Scientist
at The MITRE Corporation—a not-for-profit organization based in McLean VA that runs multiple
Federally Funded Research and Development Centers whose aim is to solve problems to create a safer
world. Since joining MITRE in 2019, Dr. Ward’s research has focused on issues related to decision
making, sensemaking, and adaptivity, and on using cognitive science and cognitive engineering methods
to address tough human-in-the-loop problems, such as human-machine teaming, artificial intelligence-
(AI-)enabled decision support, and human-centered AI. In his current role he is responsible for supporting
innovative Department- and Division-level research and developing transdisciplinary and transformative
research priorities, especially those related to enhancing and augmenting human cognition in complex
sociotechnical systems.
Dr. Ward is internationally known for his pioneering research on how expert decision makers think and
adapt to real-world complexity and uncertainty. He has published three books, including The Oxford
Handbook of Expertise, Accelerated Expertise, over 200 scientific papers and book chapters on related
topics, and received grant funding from a range of agencies internationally, including National Science
Foundation, US Office of Naval Research, UK Department for Transport, and UK Ministry of Defense. In
addition, he has also provided expert consultation on related topics to multiple agencies, including the
U.S. Olympic Committee, UK Sport, English Institute of Sport, US Soccer, New York Police
Department, Police Federation of England and Wales, and Norwegian Defence Cyber Academy.
Prior to joining MITRE, Dr. Ward held various university faculty appointments worldwide, including as
Professor of Applied Cognitive Science in the UK and USA. He has taught undergraduate and graduate
level courses in Cognition, Cognitive Task Analysis, Human Factors, Work Psychology, Expertise,
Research Methods, and Statistics. He currently holds an adjunct appointment at Michigan Technological
University as Professor of Psychology, serves on numerous editorial boards and, previously, served as
associate editor for the Journal of Cognitive Engineering and Decision Making and the Journal of
Expertise. Dr. Ward received his PhD in Applied Experimental Psychology in the UK and subsequently
completed two postdoctoral fellowships in Human Factors and Cognitive Science in the USA.

ACSHF Forum: Jason Archer

The Department of Cognitive and Learning Sciences will host MTU Humanities Assistant Professor Jason Archer at the next Applied Cognitive Science and Human Factors forum.

The presentation, “The Embrace of the Surgical Machine: Touch, Practice, and Power in the Operating Room”, will be from 2:00 to 3:00 p.m. Monday (February 6) in Meese 109 and via Zoom

In this presentation, Jason Archer will talk about his work in the area of Human Machine Communication, focusing on research related to the da Vinci Surgical System (dVSS), a system widely used in robotic-assisted surgery. Dr. Archer will discuss how concerns with touch-oriented media sparked his investigation of the dVSS, explain the challenges of doing research in a surgical setting, and share stories from interviews with robotic surgeons, and observations from the OR, that help highlight some of his findings.

ACSHF Forum: Grad Student Presentations

The Department of Cognitive and Learning Sciences will host ACSHF PhD Students Lauren Sprague and Brandon Woolman at the next Applied Cognitive Science and Human Factors forum. Their presentations will be from 2:00 to 3:00 p.m. Monday (January 23) in Meese 109 and via Zoom.

Sprague will present “Pilot test of critical flicker fusion in combination with functional near-infrared spectroscopy (fNIRS) in order to accurately measure cognitive workload during a visuospatial vigilance task.

Abstract:
Vigilance tasks are largely considered to be stressful to perform, difficult to stay on task, and cognitively draining due to the mental demands of sustaining attention. These tasks, which involve the monitoring of an environment for critical signals while avoiding more frequent neutral signals, induce what has been dubbed the vigilance decrement. The vigilance decrement typically involves a decline in performance as well as an increase in response time. During the investigation of this decrement, some tools need to be validated before they should be used to investigate it. Functional near-infrared spectroscopy is a non-invasive brain imaging technique that provides real-time data on changes in light absorption caused by the hemodynamic activity of the brain region in question. This hemodynamic activity provides information about cognitive effort. The flicker fusion threshold is the frequency at which an observer perceives a flickering light as static. This threshold can provide information about cortical arousal, alertness, fatigue, and cognitive workload. This study seeks to determine if these two methods, utilized alongside the NASA-TLX a measure of mental workload, can provide detailed information about the cognitive effort of a task as well as any decline in mental resources due to the mental effort of a visuospatial vigilance task.  

Woolman will present “Assessing Cognitive Impairment and Early Alzheimer’s Disease Using a Reverse Visually Guided Reaching Task.

Abstract:
Alzheimer’s Disease (AD) is the most common form of dementia, which is known for its impacts on cognitive functions, especially memory. Early signs of AD can be difficult to diagnose (Porsteinsson et al., 2021), neuropsychological test batteries designed for dementia are only moderately reliable. Recent findings in the field of motor behavior have show novel motor tasks to be sensitive to cognitive differences between younger and older adults. Some motor tasks have shown to be more sensitive to cognitive deficits compared to neuropsychological test batteries (Watral & Trewartha, 2021). For example, tasks like the visuomotor rotation task, where participants adapt to a visuomotor perturbation, have been identified as a means for assessing cognition (Buch, Young & Contreras-Vidal, 2003). Recent work by Tippet and Sergio (2006) developed a reverse visually guided reaching task (rVGR) in which participants make a series of aimed movements toward a target. During the rVGR task, the visual cursor moves in the opposite direction of the physical reach, forcing the participant to correct their movements by reversing the reaching direction. Measures of performance in this task, such as movement speed and inconsistency of movements, have been shown to change in preclinical Alzheimer’s populations (Hawkins & Sergio, 2014). The current investigation seeks to further characterize rVGR performance differences between younger adults, older adults, and individuals with early AD (diagnosed with MCI or mild AD). For this purpose, we are recruiting 20 younger adults, 20 healthy older adults, and 20 early AD patients. We are testing the prediction that participants with AD should perform similarly to the controls on a VGR task but show significant deficits on the rVGR task. Additionally, correlations will be examined between performance on a neuropsychological battery and the rVGR task performance to test the prediction that performance on the motor task are related to changes in cognition in AD. This work may provide the foundation for using motor tasks as a diagnostic tool for cognitive impairments in preclinical stages of MCI and Alzheimer’s Disease. Early diagnosis of cognitive impairments due to MCI and AD could allow physicians to maximize the effectiveness of available treatment methods for slowing the progression of the disease.

CLS Faculty Receive Exceptional Teaching Score

photos of Amber Bennett, Kelly Steelman, Linda Wanless, and Destaney Sauls
Clockwise starting top left: Amber Bennett, Kelly Steelman, Linda Wanless, and Destaney Sauls

Cognitive and Learning Sciences’ faculty Amber Bennett, Destaney Sauls, Kelly Steelman, and Linda Wanless (CTL) have been identified as four of only 70 instructors who received an exceptional “Average of 7 Dimensions” student evaluation score for fall semester 2022.

Each of their scores were in the top 10% of similarly sized sections university-wide that had at least a 50% response rate and a minimum of 5 responses. Only 91 sections out of more than 1,379 surveyed were rated this highly by students.

Andrew Storer, Interim Provost and Senior Vice President for Academic Affairs, recently congratulated the faculty stating, “On behalf of Michigan Tech’s students, I want you to know that I am aware of your accomplishment. I know that exceptional teaching takes a great deal of time and effort, and I appreciate your commitment to the success of our students. Providing excellent learning opportunities is an important part of Michigan Tech’s mission.”


Michigan Tech’s Department of Cognitive and Learning Sciences offers bachelor of science degrees in Psychology and Human Factors, along with a Minor in Psychology. We also offer an Accelerated Masters degree in Applied Cognitive Science and Human Factors (ACSHF), which typically requires only one additional year of course work. Our graduate program includes masters and doctoral degrees in Applied Cognitive Science and Human Factors (ACSHF).

Questions? Contact us at cls@mtu.edu. And follow us @clsmtu on Instagram and Facebook for the latest happenings.

ACSHF Forum: Destaney Sauls

Destaney Sauls, Department of Cognitive and Learning Sciences (CLS) Visiting Instructor, will kick off the spring semester forums for Applied Cognitive Science and Human Factors (ACSHF) with her presentation, “Tried and True: The Role of Perceived Loyalty in Friendship Functioning,” from 2-3 p.m. Monday (January 9) in Meese 109 and via Zoom.

Abstract: Research concerning social relationships has often suggested that loyalty is an important feature of a wide variety of relationships – however, this research has also produced inconsistent results regarding the actual impact of loyalty. Generally speaking, much of the research concerning social relationships has focused on romantic relationships, rather than platonic. The current research utilizes the context of a platonic friendship to examine the possibility that perceived loyalty may be more impactful on a relationship than actual loyalty – essentially, how loyal someone is might matter, but what might matter more is how loyal their friend “thinks” they are.

Graduate Spotlight: Matt Chard

It’s beginning to look a lot like . . . mid-year commencement here at Michigan Tech! As we wind down the semester and wind up the excitement, lets find out what’s next for our most recent accelerated masters student, Matt Chard, in this Q&A spotlight.

Matt earned the degree Bachelor in Management Information Systems (MIS) from Michigan Tech in fall 2021. The following semester he continued his studies with the accelerated masters program in Applied Cognitive Science and Human Factors (ACSHF). One year later, Matt will graduate with a masters degree in ACSHF and begin his career as a Human Factors Engineer with Pacific Science & Engineering in San Diego, CA.

Q: As a MIS undergrad, what attracted you to the ACSHF masters program?

A: As part of my MIS degree, I had a user-centered design class where I first learned about UX/human factors and the class left me wanting more. After hearing about the ACSHF program, it was clearly the right direction for me. I was hooked.

Q: What advantages do you feel you have gained from adding an ACSHF accelerated masters to your business degree?

A: My MIS undergraduate program taught me how to develop and maintain technical systems, which was a great starting point to then learn the scientific basis and human factor tools in the ACSHF program. The combination of degrees and skills learned are needed to inform complex human machine interface solutions, which is what I will be doing for my job at Pacific Science and Engineering after I graduate.

Q: To give us a better idea of what information and skill set someone obtains from adding an accelerated masters in ACSHF to their undergrad degree, what type of courses did you complete during your additional year in the program?

A: A combination of several classes such as the human factors specific courses, and the applied cognitive science course taught me the fundamental science and research. For example, learning about working memory capacity will be useful when designing a system that requires a user to manage several tasks at once. On the other hand, courses such as the cognitive task analysis class taught me about the tools and methods needed to solve problems.

Q: Were you able to take advantage of any internships or co-ops during your time at Michigan Tech? If so, can you tell us a bit about them?

A: Yes! During my undergraduate degree I interned at several companies, and I was mostly working on systems within manufacturing settings. My most recent internship was my first professional experience in the human factors field, and it was a big change of pace for me. Though I was always focused on designing user friendly systems in previous internships, I am now able to use human factors tools combined with scientific based evidence to inform my decisions around user needs, which is what human factors is all about.

Q: What new opportunities and/or adventures are you looking forward to in your move to the west coast?

A: I am excited to take advantage of the year around sunshine in San Diego by getting out to surf and rock climbing. Though, I will miss being able to sneak in a ski right before class in Houghton.

Q: Anything else you’d like to share with a prospective undergraduate or graduate student considering a degree in Applied Psychology and Human Factors at Michigan Tech?

A: It can be difficult to conceptualize what a human factors expert may actually do day-to-day in the real world. I would encourage anyone who is considering the program to reach out to the faculty to learn from their diverse backgrounds. You might be surprised to hear about all the opportunities out there, and you might also discover the program to be a great match, as it was for me!

CLS congratulates Matt and wishes him all the best in his new position at PSE!


Pacific Science and Engineering mission: The majority of accidents, particularly major accidents, are attributed to human error. Those errors are almost always due to bad design. Pacific Science & Engineering (PSE) exists to create science-driven human-machine interfaces that allow humans to safely and effectively operate high consequence and high complexity systems. Function drives form, always.

#humanfactors, #humancentereddesign


Michigan Tech’s Department of Cognitive and Learning Sciences offers bachelor of science degrees in Psychology and Human Factors, along with a Minor in Psychology. We also offer an Accelerated Masters degree in Applied Cognitive Science and Human Factors (ACSHF), which typically requires only one additional year of course work. Our graduate program includes masters and doctoral degrees in Applied Cognitive Science and Human Factors (ACSHF).

Questions? Contact us at cls@mtu.edu. And follow us @clsmtu on Instagram and Facebook for the latest happenings.

ACSHF Forum: Grad Student Presentations

The Department of Cognitive and Learning Sciences will host ACSHF PhD Students Anne Linja and Alex Watral at the next Applied Cognitive Science and Human Factors forum. Their presentations will be from 2:00 to 3:00 p.m. Monday (November 28) in Meese 109 and via Zoom.

Linja will present her research titled “Through the Eyes of Tesla FSD Drivers: Tesla Drivers’ Social Media Posts Never Run Out of Gas”

Abstract: With the recent deployment of the latest generation of Tesla’s Full Self-Driving (FSD) mode, consumers are using semi-autonomous vehicles in both highway and residential driving for the
first time. As a result, drivers are facing complex and unanticipated situations with an unproven technology, which is a central challenge for cooperative cognition. One way to support cooperative
cognition in such situations is to inform and educate the user about potential limitations. Because these limitations are not always easily discovered, users have turned to the internet and social media
to document their experiences, seek answers to questions they have, provide advice on features to others, and assist other drivers with less FSD experience. In this presentation, I will explore a novel approach to supporting cooperative cognition: Using social media posts can help characterize the limitations of the automation in order to get information about the limitations of the system and explanations and workarounds for how to deal with these limitations. Ultimately, our goal is to determine the kinds of problems being reported via social media that might be useful in helping users anticipate and develop a better mental model of an AI system that they rely on. To do so, we examine a corpus of social media posts about FSD problems to identify (1) the typical problems reported, (2) the kinds of explanations or answers provided by users, and (3) the feasibility of using such user-generated information to provide training and assistance for new drivers. The results reveal a number of limitations of the FSD system (e.g., lane-keeping and phantom braking) that may be anticipated by drivers, enabling them to predict and avoid the problems, thus allowing better mental models of the system and supporting cooperative cognition of the human-AI system in more situations.

Watral will present her research titled “Sensitivity of a Robotic Hit & Avoid Task to Executive Control and Global Cognitive Changes in Healthy Aging and Cognitive Impairment”

Abstract: We recently found that a rapid motor decision-making task is sensitive to age differences in executive control and can isolate the cognitive from the sensorimotor contributions to task performance (Watral & Trewartha, 2021). However, we are also interested in this task’s ability to distinguish between healthy aging and cognitive impairment as seen in the early stages of Alzheimer’s. In this presentation, I will revisit the results from Watral & Trewartha (2021) and show preliminary findings comparing task performance between healthy older adults and those who exhibit cognitive impairment. Additionally, task parameters thought to be associated with executive control will be compared to a traditional measure of executive functioning (Trail Making Test) and a global measure of overall cognitive functioning (Montreal Cognitive Assessment).