Category: Research

New Funding: Stephen Techtmann’s Ice Control Co-Op

Stephen Techtmann is the principal investigator (PI) on a project which has received a $798,426 research and development co-op joint agreement from the U.S. Department of Defense, DARPA. The title of the project is “Ice Control Compounds from Bacterial Isolates and Functional Metagenomics.”

Stephen Techtmann
Stephen Techtmann

Trista Vick-Majors is the co-PI on this potential two and a half year project.

Dr. Stephen Techtmann is an environmental microbiologist who studies microbial communities in diverse ecosystems. In addition to ice control compounds, he studies how complex microbial communities can perform functions of industrial interest. He seeks to use culture-based and culture-independent methods to understand how microbial communities respond to anthropogenic activity and environmental change, in addition to how we can leverage these microbes for a biotechnological application. 

Techtmann has experience in teaching Environmental Microbiology, Microbial Physiology, Applied Genomics, Modern BMB Laboratory, and Principles of Computational Biology.

About the Biological Sciences Department

Biological scientists at Michigan Technological University help students apply academic concepts to real-world issues: improving healthcare, conserving biodiversity, advancing agriculture, and unlocking the secrets of evolution and genetics. The Biological Sciences Department offers seven undergraduate degrees and three graduate degrees. Supercharge your biology skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at biology@mtu.edu. Follow us on Facebook and Instagram, or read the Biological Sciences Newsblog for the latest happenings.

New Funding: Olin Nets Great Lakes Fishery Commission Grant

We are pleased to announce Jill Olin is the principal investigator (PI) on a project that has received a $193,533 research and development contract from the Great Lakes Fishery Commission. The project is titled “Assessing population structure and the role of burbot (Lota lota) in coupling nearshore and offshore habitats of Lake Superior.”

Jill Olin
Jill Olin

Gordon Paterson and Kristin Brzeski are co-PIs on this potential two-year project.

Dr. Jill Olin is a community ecologist who studies the processes that affect the structure and stability of ecosystems. She studies issues in freshwater and coastal marine ecosystems due to the diversity and economic importance of species inhabiting these environments and the fact that they are threatened by anthropogenic influences. She teaches courses in Marine Ecology, Ecology and Evolution, and Ecogeochemical Tracer Techniques.

About the Biological Sciences Department

Biological scientists at Michigan Technological University help students apply academic concepts to real-world issues: improving healthcare, conserving biodiversity, advancing agriculture, and unlocking the secrets of evolution and genetics. The Biological Sciences Department offers seven undergraduate degrees and three graduate degrees. Supercharge your biology skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at biology@mtu.edu. Follow us on Facebook and Instagram, or read the Biological Sciences Newsblog for the latest happenings.

New Funding: Trista Vick-Majors Collaborative Research

Trista Vick-Majors
Trista Vick-Majors

Trista Vick-Majors is the principal investigator (PI) on a project that has received a $481,851 research and development grant from the National Science Foundation. The project is titled “Collaborative Research: Advancing a comprehensive model of year-round ecosystem function in seasonally frozen lakes through networked science.” This is a potential four-year project.

About the Biological Sciences Department

Biological scientists at Michigan Technological University help students apply academic concepts to real-world issues: improving healthcare, conserving biodiversity, advancing agriculture, and unlocking the secrets of evolution and genetics. The Biological Sciences Department offers seven undergraduate degrees and three graduate degrees. Supercharge your biology skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at biology@mtu.edu. Follow us on Facebook and Instagram for the latest happenings

In Print: Jill Olin Co-Authors Article Suggesting Subsequent Studies Spotlighting Sharks

Jill Olin
Jill Olin

Jill Olin was co-author of a paper that recently appeared in the Journal of Fish Biology. The co-authors argue that research about sharks and their populations needs to be expanded in the face of recent spikes in shark-human interactions in the coastal areas of New York. In addition, ECO Magazine recently mentioned the paper in a story about shark attacks along the New York coast.

Dr. Olin is a community ecologist who studies the processes that affect the structure and stability of ecosystems. She studies issues in coastal marine and freshwater ecosystems due to the diversity and economic importance of species inhabiting these environments and the fact that they are threatened by anthropogenic influences. She teaches courses in Ecology and Evolution, Marine Ecology, and Ecogeochemical Tracer Techniques.

About the Biological Sciences Department

Biological scientists at Michigan Technological University help students apply academic concepts to real-world issues: improving healthcare, conserving biodiversity, advancing agriculture, and unlocking the secrets of evolution and genetics. The Biological Sciences Department offers seven undergraduate degrees and three graduate degrees. Supercharge your biology skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at biology@mtu.edu. Follow us on Facebook and Instagram for the latest happenings.

In Print: Erika Hersch-Green and Angela Walczyk

Congratulations to Dr. Angela Walczyk (recent Ph.D. from Biological Sciences) and her advisor Dr. Erika Hersch-Green for their two new publications! You can access the papers here:

Erika Hersch-Green
Erika Hersch-Green

1. Exciting findings that genome size can affect resource requirements and genomic/transcriptomic functional trait trade-offs. 

Abstract

Premise: Increased genome-material costs of N and P atoms inherent to organisms with larger genomes have been proposed to limit growth under nutrient scarcities and to promote growth under nutrient enrichments. Such responsiveness may reflect a nutrient-dependent diploid versus polyploid advantage that could have vast ecological and evolutionary implications, but direct evidence that material costs increase with ploidy level and/or influence cytotype-dependent growth, metabolic, and/or resource-use trade-offs is limited.

Methods: We grew diploid, autotetraploid, and autohexaploid Solidago gigantea plants with one of four ambient or enriched N:P ratios and measured traits related to material costs, primary and secondary metabolism, and resource-use.

Results: Relative to diploids, polyploids invested more N and P into cells, and tetraploids grew more with N enrichments, suggesting that material costs increase with ploidy level. Polyploids also generally exhibited strategies that could minimize material-cost constraints over both long (reduced monoploid genome size) and short (more extreme transcriptome downsizing, reduced photosynthesis rates and terpene concentrations, enhanced N-use efficiencies) evolutionary time periods. Furthermore, polyploids had lower transpiration rates but higher water-use efficiencies than diploids, both of which were more pronounced under nutrient-limiting conditions.

Conclusions: N and P material costs increase with ploidy level, but material-cost constraints might be lessened by resource allocation/investment mechanisms that can also alter ecological dynamics and selection. Our results enhance mechanistic understanding of how global increases in nutrients might provide a release from material-cost constraints in polyploids that could impact ploidy (or genome-size)-specific performances, cytogeographic patterning, and multispecies community structuring.

Angela Walczyk
Angela Walczyk

2. Finding that tetraploid Giant Goldenrods may be pre-adapted to be good invaders but that polyploidy per se does not increase phenotypic plasticity. 

Abstract

Polyploidy commonly occurs in invasive species, and phenotypic plasticity (PP, the ability to alter one’s phenotype in different environments) is predicted to be enhanced in polyploids and to contribute to their invasive success. However, empirical support that increased PP is frequent in polyploids and/or confers invasive success is limited. Here, we investigated if polyploids are more pre-adapted to become invasive than diploids via the scaling of trait values and PP with ploidy level, and if post-introduction selection has led to a divergence in trait values and PP responses between native- and non-native cytotypes. We grew diploid, tetraploid (from both native North American and non-native European ranges), and hexaploid Solidago gigantea in pots outside with low, medium, and high soil nitrogen and phosphorus (NP) amendments, and measured traits related to growth, asexual reproduction, physiology, and insects/pathogen resistance. Overall, we found little evidence to suggest that polyploidy and post-introduction selection shaped mean trait and PP responses. When we compared diploids to tetraploids (as their introduction into Europe was more likely than hexaploids) we found that tetraploids had greater pathogen resistance, photosynthetic capacities, and water-use efficiencies and generally performed better under NP enrichments. Furthermore, tetraploids invested more into roots than shoots in low NP and more into shoots than roots in high NP, and this resource strategy is beneficial under variable NP conditions. Lastly, native tetraploids exhibited greater plasticity in biomass accumulation, clonal-ramet production, and water-use efficiency. Cumulatively, tetraploid S. gigantea possesses traits that might have predisposed and enabled them to become successful invaders. Our findings highlight that trait expression and invasive species dynamics are nuanced, while also providing insight into the invasion success and cyto-geographic patterning of S. gigantea that can be broadly applied to other invasive species with polyploid complexes.

New Funding: Amy Marcarelli and Michelle Kelly

Amy Marcarelli is the principal investigator (PI) on a project that has received a $300,000 research and development grant from the National Science Foundation.

The project is titled “MSA: Quantifying whole-stream denitrification and nitrogen fixation with integrated modeling of N2 and O2 fluxes.”

Michelle Kelly is a co-PI on this potential two-year project.

Amy is an ecosystem ecologist with interests in energy and biogeochemical cycles in freshwaters. Her research program blends basic and applied research and integrates across aquatic habitats, including streams, rivers, wetlands, lake littoral zones, and the nearshore regions of the Great Lakes. Dr. Marcarelli’s past and future research trajectory is governed by an interest in understanding the role of small, poorly quantified fluxes or perturbations on ecosystem processes and in linking those ecosystem processes to the underlying structure of microbial, algal, macrophyte, and animal communities.

Congratulations Dr. Marcarelli and Michelle Kelly!

Amy Marcarelli
Amy Marcarelli
Michelle Kelly
Michelle Kelly

New Funding: Yan Zhang

Yan Zhang
Yan Zhang

Yan Zhang is the principal investigator on a project that has received a $469,500 research and development grant from the National Institutes of Health.

The project titled “High urinary phosphate induces TLR4-mediated inflammation and cystogenesis in polycystic kidney disease” is a potential two-year project.

Autosomal dominant polycystic kidney disease (ADPKD) is the most common, potentially lethal genetic disorder characterized by the progressive enlargement of numerous fluid-filled cysts and the development of interstitial inflammation and fibrosis. ADPKD is caused by the mutation of PKD1 or PKD2 gene. Approximately 50% of patients progress to end-stage renal disease by middle age and require dialysis or renal transplantation. Currently, treatment options for ADPKD patients are limited; thus, the development of new effective therapies is urgent. Dr. Zhang’s research lab investigates the role of innate immunity in the pathological microenvironment of ADPKD and the potential therapeutic effects of manipulating innate immunity. Dr. Zhang’s lab shows interest in determining the function of polycystin-1 encoded by PKD1.

Congratulations Dr. Yan Zhang!

About the Biological Sciences Department

Biological scientists at Michigan Technological University help students apply academic concepts to real-world issues: improving healthcare, conserving biodiversity, advancing agriculture, and unlocking the secrets of evolution and genetics. The Biological Sciences Department offers seven undergraduate degrees and three graduate degrees. Supercharge your biology skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at biology@mtu.edu. Follow us on Facebook and Instagram for the latest happenings.

Catherine Rono Receives 2023 Songer Research Award

Matthew Songer (Biological Sciences ’79) and Laura Songer (Biological Sciences ’80) have generously donated funds to the College of Sciences and Arts (CSA). This will be used to support a research project competition, the Songer Research Award for Human Health, for undergraduate and graduate students. Remembering their own eagerness to engage in research during their undergraduate years, the Songers established these awards to stimulate and encourage opportunities for original research by current Michigan Tech students. This is the sixth year of the competition.

Students may propose an innovative medically-oriented research project in any area of human health. The best projects will demonstrate the potential to have a broad impact on improving human life. This research will be pursued in consultation with faculty members within the College of Sciences and Arts. The Songers’ gift will support one award for undergraduate research ($4,000) and a second award for graduate research ($6,000). Matching funds from the College will allow two additional awards.

Catherine Rono
Catherine Rono

What are you studying and why?

I am currently pursuing a Ph.D. in Biological Sciences with a specialization in Cancer Biology. My decision to focus on Cancer Biology stems from a profound passion and unwavering interest in cancer research. I strongly believe that advancing scientific knowledge in this field is crucial for improving human health and making a significant impact on society.

Having witnessed the devastating effects of cancer firsthand, I was deeply motivated to dedicate my career to understanding and combating this disease. The global impact of cancer and the challenges it presents have only intensified my determination to make a meaningful difference in the lives of those affected. Being part of the scientific community and working towards finding solutions to this global health concern is both a privilege and a responsibility that I take to heart.

Are you getting the award to continue your research?

I am truly honored to be selected as the recipient of the 2023 Songer Research Award for Human Health in the amount of $6,000. This prestigious award will support my research that aims to understand the mechanisms associated with the loss of Liver Kinase B1 (LKB1) function in Non-Small Cell Lung Cancer (NSCLC). Specifically, I aim to examine the effect of LKB1 loss in sensitizing NSCLC cell lines to Phosphodiesterases 3A (PDE3A) modulators and its role in tumorigenesis. Through these investigations, I hope to uncover valuable insights that will aid in proposing novel biomarker candidates for the treatment of patients with LKB1-deficient cancers. Ultimately, this study will help to contribute to the advancement of personalized and effective therapeutic approaches.

What does the Songer Award mean to you?

This prestigious award holds immense significance for me as it validates the importance of my research and also provides the necessary resources to further contribute to this vital field of study.

I would like to extend my sincere appreciation to Matthew Songer and Laura Songer for their generous donation and their commitment to supporting groundbreaking research in human health. The confidence and trust that has been placed in me through this award inspires me to push the boundaries of scientific exploration and strive for excellence in my work.

I would also like to express my gratitude to the esteemed panel of judges and reviewers who evaluated the applications. Their time, expertise, and dedication are greatly appreciated.

Lastly, I am indebted to my mentor, colleagues, research team, and the entire Biological Sciences Department for their guidance, encouragement, and invaluable contributions. Their support has been instrumental in the progress I have made thus far. I look forward to their continued collaboration as I continue with my research journey.

In Print: Trista Vick-Majors

Congratulations to Trista Vick-Majors and colleagues who recently published a paper titled “Constraints on the Timing and Extent of Deglacial Grounding Line Retreat in West Antarctica” in AGU Adventures.

Graph indicating the subglacial core locations along with filling and draining amounts
(a) Southern Ross Sea sector ice streams with previous subglacial core locations (Whillans Subglacial Lake (SLW; Tulaczyk et al., 2014), Whillans Grounding Zone (WGZ; Venturelli et al., 2020), the upstream site at of Whillans Ice Stream (UpB; Engelhardt & Kamb, 1997), and Crary Ice Rise (CIR; Bindschadler et al., 1988) marked with gray circles, Mercer Subglacial Lake (SLM) indicated with a purple circle, and the lake directly upstream Conway Subglacial Lake (SLC) labeled. Ice velocity (Mouginot et al., 2019) is overlain on an imagery mosaic (Scambos et al., 2007), with active subglacial lake areas (blue polygons; Siegfried & Fricker, 2018), hydropotential flow paths (blue lines; Siegfried & Fricker, 2018), and grounding line (black; Depoorter et al., 2013) indicated. (b) Volume changes in Mercer Subglacial Lake inferred from CryoSat-2 radar altimetry (Siegfried et al., 2023) with a yellow star marking the timing of sampling.

Abstract

Projections of Antarctica’s contribution to future sea level rise are associated with significant uncertainty, in part because the observational record is too short to capture long-term processes necessary to estimate ice mass changes over societally relevant timescales. Records of grounding line retreat from the geologic past offer an opportunity to extend our observations of these processes beyond the modern record and to gain a more comprehensive understanding of ice-sheet change. Here, we present constraints on the timing and inland extent of deglacial grounding line retreat in the southern Ross Sea, Antarctica, obtained via direct sampling of a subglacial lake located 150 km inland from the modern grounding line and beneath >1 km of ice. Isotopic measurements of water and sediment from the lake enabled us to evaluate how the subglacial microbial community accessed radiocarbon-bearing organic carbon for energy, as well as where it transferred carbon metabolically. Using radiocarbon as a natural tracer, we found that sedimentary organic carbon was microbially translocated to dissolved carbon pools in the subglacial hydrologic system during the 4.5-year period of water accumulation prior to our sampling. This finding indicates that the grounding line along the Siple Coast of West Antarctica retreated more than 250 km inland during the mid-Holocene (6.3 ± 1.0 ka), prior to re-advancing to its modern position.

O-fish-ally Fin-tastic Research!

Tessa Tormoen is a fourth-year student majoring in ecology and evolutionary biology with a minor in fish biology. She is one of the most adventurous people you’ll ever meet. You can often find her cross-country skiing on the Swedetown and Tech Trails. Not only is she a fan of heart-racing adventures, but her curiosity has also led to her getting involved in undergraduate research. Throughout Tessa’s classes, she learned the basic skills and processes needed in the lab. Her confidence grew. She was ready to put these skills into practice and take on an independent project. In the fall of 2021, she discussed her interest with Dr. Kristin Brzeski, assistant professor at Michigan Tech.

A picture of Tessa in the lab using a pipette to transfer a sample.
Tessa in the lab

Fishing for DNA

Dr. Brzeski put Tessa to work observing Golden and Blueline Tilefish. She extracted DNA from the digestive tracts of predator fish and constructed what the taxonomic group looks like by using a method called Metabarcoding, which is a process of DNA sequencing and identification. Using this technique she was able to characterize the dietary composition of the two different tilefish species to better determine the species’ niche breadth (or use of food resources in this case) and degree of similarity. This is one factor showing how the two species co-exist.

Like any craft, it’s a continual learning process. Working alongside graduate students and mentors, she developed her independent problem-solving and management technique. Learning the ins and outs of research was a steep learning curve, but Tessa was able to gain valuable skills and knowledge during her time as a researcher. “It’s a joy to have an undergraduate like Tessa in the lab. She brings passion, intelligence, and a genuine interest in research and natural resource conservation to every interaction,” said Dr. Brzeski.

Tessa exhibited her research at the 2023 Undergraduate Research Symposium, winning the third place GLRC award. She also won a merit award at the Ecosystem Science Center poster session. And she presented her findings at the Wildlife Society National Conference in Spokane, Washington with others in her lab.

Tessa is presenting her research to an audience by referring to a poster. The audience is pictured from behind.
Tessa presents her research “Using DNA Metabarcoding to Evaluate Dietary Resource Partitioning Between Two Sympatric Tilefish” at the 2023 Undergraduate Research Symposium

A Close-Net-Bunch

Tessa believes that her experiences in research have helped shape the future for the better. “I’m a lucky person. I’ve had an incredible four years. Jill Olin and Kristin Brzeski [have] built me into an independent scientist. They taught me how to solve problems, how to be independent and confident in my abilities,” she says. She credits both graduate and undergraduate colleagues in the lab with perpetuating the culture Drs Brzeski and Olin cultivated. “It was a welcoming and hopeful atmosphere.”

That feeling extends to the department. “Everyone is extremely kind, no matter who you talk to! All of my professors throughout my coursework have been very approachable and extremely passionate about what they study. I love that the biological sciences department is so personal and you can build relationships with the faculty. It truly makes the department’s environment so incredible. The support I have received from my advisor and my professors has been a valuable part of my education. I also love how the biological sciences department is a bit smaller compared to other departments like engineering. Each semester I recognize many familiar faces. I’ve been able to create great relationships with my peers through this,” Tessa said.

The Water is Just Right at Michigan Tech

Like many before her, Tessa chose to study ecology and evolutionary biology at Michigan Tech because she fell in love with this area. “I realized that I have a passion for understanding the world around me and this is a beautiful place to do that,” she said. “Plus, the experiences you’re able to have in this degree are fantastic, and I was compelled by the sheer amount of opportunities available to me.”

Tessa appreciated the flexibility the ecology and evolutionary biology degree program offered. “A lot of the coursework is electives that you get to choose from, so you can tailor your education to what you are most interested in. Thus, I was able to take courses like Mammalogy, Tropical Island Biology, Valuing the Great Lakes, Botany, and more!” Tessa said. “Sometimes you get to go outside for classes; one of my biggest memories from my degree is my Tropical Island Biology course, where we stayed in the Bahamas over Spring Break. This degree program has given me such a strong foundation and a whole list of interests that I can build upon with secondary education and post-education work experience.”

Tessa Tormoen
Tessa Tormoen enjoys the views of Portage Lake from the Biological Sciences Lounge

In addition to research and the degree program, Tessa took advantage of other opportunities on campus. She served as vice president of the Ski and Snowboard Club. Tessa also coordinated activities as part of the Women’s Leadership Council.

Leaving the School: Tessa’s Post-Graduation Plan

Following commencement this month, Tessa plans to “go with the flow.” This summer, you’ll find her on Isle Royale working as a fisheries technician, performing limnological assessments and fish surveys on their inland lakes. “I’m excited about this opportunity as it honestly feels like a dream job,” she said.

After taking one year to work in the field and gain more experience, Tessa wants to return to school for her master’s degree and potentially a Ph.D. “I think my experience at Michigan Tech has helped me greatly in understanding the opportunities available to me after graduation. I think that my education, research experience, and relationships at Tech have set me up for success once I leave,” she said.

We are certain her future will go swimmingly well!