Tag: michigan tech online programs

Rev Up Your ICE Knowledge With New Program From MTU and USCAR

A diesel engine, one type of ICE or internal combustion engine.

Internal Combustion Engines (ICEs) Are Definitely Sticking Around.

Very Important Note: The author constructed this blog with the helpful, substantive input and the important, factual content (and snappy title) from these two Michigan Tech staff, writers, and people: Kimberley Geiger, director of Communications for the College of Engineering; and Donna Jeno-Amici, coordinator of Research and Marketing at the Department of Engineering-Engineering Mechanics.

Discover the Latest Internal Combustion Engines (ICE) Breakthroughs.

Michigan Tech is proud to announce an expansion of graduate-level course offerings in the specialized area of internal combustion engines (ICE). These courses will be available on campus at Michigan Tech, as well as online at MTU Global Campus.

Students can enroll in these courses individually if they require expertise in a certain ICE area. Or they can take several to create a graduate certificate that provides more advanced, specialized knowledge in internal combustion engines. Currently, the Department of Mechanical Engineering-Engineering Mechanics is developing a 15-course ICE graduate certificate. Alternatively, those interested may pursue an MS in Mechanical Engineering with a focus area on ICE.

And as with all graduate programs, the online application is free. And no GRE is required.

Enroll in Summer Classes.

Wasting no time, the ME-EM department is offering these courses right away. In fact, there are a few graduate-level offerings on deck for Summer 2024 and one brand-new course for Fall 2024.

Summer 2024 Courses

  • SI Engine Fundamentals (MEEM 5201): June 19-21, 2024, lab course
  • SI Engine Controls (MEEM 5203): July 10-12, 2024, lab course
  • Online Thermodynamics Refresher (MEEM 3990): June 10 – Aug. 8, 2024

New Offering for Fall 2024

  • Thermodynamics for Engine Systems (MEEM 5990) is available, along with our existing courses.

These courses could fill soon, so we recommend that you contact Jeff Naber at jnaber@mtu.edu for more information.

Learn From ICE Industry Experts.

These courses have been developed in collaboration with Dr. Andrea Strzelec, Sr. Research Scientist at USCAR. Strzelec, FSAE, holds a Ph.D. in Combustion Engineering from the University of Wisconsin-Madison Engine Research Center. She specializes in transportation and fuels, as well as engine research. Formerly the program director of Masters of Engineering in Engine Systems at the University of Wisconsin-Madison College of Engineering, Strzelec is lending her substantial expertise to Michigan Tech to launch this new engines-focused program.

USCAR, the United States Council for Automotive Research, is an umbrella organization facilitating pre-competitive research and development collaboration for Ford Motor Company, General Motors, and Stellantis. Its main objective is strengthening the U.S. auto industry’s technology base. It does so by promoting cooperative research efforts, reducing costs, supporting regulatory compliance, and accelerating the development of advanced technologies. Another of USCAR’s goals is keeping the U.S. automotive industry globally competitive.

This new graduate program will not only provide Michigan Tech students with both foundational and specialized ICE knowledge and skills, but also prepare them for advances in the US automotive industry.

Acquire Practical ICE Expertise and Skills.

Despite the move towards electrification and advances in battery technology, the world still needs internal combustion engines. For those unfamiliar with the technology, ICEs generate power by burning fuel inside a confined space (combustion chamber). The combustion process then releases energy, which is converted into mechanical work to move a vehicle or operate machinery. These engines generally run on gasoline, diesel, natural gas, and biofuels.

ICEs are known for their low cost, broad availability, durability, and high performance. They also have a rich research and development history. That is, ICEs have been improved and refined over several years. Besides working on lowering emissions and increasing fuel efficiency, researchers and engineers have made advances in engine design, control systems, and fuel compatibility.

Most importantly, these engines reliably provide high power and torque, features especially important in military, industrial, and other heavy-duty applications. The US military, in fact, uses diesel engines (one type of ICE) in nearly all of its ground vehicles because diesel fuel is less flammable and has a high energy density.

Furthermore, IC engines still feature prominently in automobiles, marine vessels, and aircraft. They also power a lot of portable equipment (lawn mowers, chainsaws) as well as some standby generators. And many hybrid vehicles still use ICEs in conjunction with electric motors, leveraging the benefits of both technologies to improve fuel efficiency and reduce emissions.

For instance, take the new Formula 1 proposed post-2026 regulations. Along with cars that are 30% lighter as well as more aerodynamic and agile, FIA is proposing a power unit redesign that is “an even split between internal combustion engine and electric power plus the use of 100% sustainable fuels.” That is, even a plan for the sustainable future of elite race car driving involves ICEs.

Reach Out About the New ICE Program.

In short, for several applications, ICEs are likely to remain relevant for the foreseeable future.

For additional details on these courses and the new ICE graduate programs from ME-EM, please contact

To learn about all MS online programs, please visit MTU Global Campus.

Bridging Business and STEM

The online Tech MBA program helps people bridge business and STEM.
Engineering and tech companies seek graduates with STEM and business administration expertise.

Discover the Online Tech MBA® and MEM Programs.

The College of Business and Michigan Tech Global Campus are teaming up to hold another virtual interest session on two of MTU’s most popular online programs: The Tech MBA® and the Master of Engineering Management (MEM).

They will be holding another 45-minute virtual interest session on Wednesday, July 17, at 11:30 AM (ET).

Mari Buche, associate Dean of the College of Business and program director; and David Lawrence, vice president for Global Campus and continuing education will lead the presentation. They will highlight and compare these programs, explaining which one is best for you. The team will also provide examples of curriculum pathways and discuss career opportunities.

The Michigan Tech’s Global Campus small but mighty team of admissions representatives (Amanda Irwin and Jacque Smith) will also be present to discuss the application process and accelerated options.

Get an Accredited, Respected Degree.

The Tech MBA® and MEM are not new, though. For several years, the in-person versions of these programs have long been respected at MTU. The Tech MBA in its current form (30 credits) began in 2017 whereas the online format was rolled out in 2022. Next came the in-person and online versions of the MEM (2020, 2023).

Both programs are also accredited by the Association to Advance Collegiate Schools of Business International (AACSB), an honor bestowed on only 5% of the nations’s business schools.

And like their in-person equivalents, the online MBA and MEM programs meet a strict set of standards, ensuring quality in curriculum, rigor, and research.

The Online Tech MBA® is a highly structured program consisting of eight required courses and two electives. In contrast, the MEM degree is more flexible. Students get to build their own programs, combining 4-6 business courses with 4-6 engineering courses.

Both programs provide learning experiences that fuse technological expertise and business administration. Students get to leverage their previous engineering experience, regardless of their field, and/or their former engineering management expertise. They also gain the cross-disciplinary advantage of studying at a school known for not only for its technology and business programs, but also for its Faculty who have leadership and industry experience in tech-centric fields.

Graduates of both programs will leave equipped with critical thinking, communication, problem-solving, project management, and leadership skills. As a result, they are more than prepared to tackle marketing, management, technical sales, leadership, strategy, and entrepreneurship positions. 

Prepare Yourself for Career Opportunities.

Incomes differ, but an investopedia article notes that MBA graduates who specialize in consulting, finances, and technology management earn the most. And according to one Fortune article, the median salaries for those with MBA degrees are substantially higher than those without them. One report ascribes 1.2 million dollars in extra income over a 20-year period.

Also, many organizations seek out and respect MBA holders. In fact, the Graduate Management Admissions Council (GMAC) found that 89% of employers planned to hire MBA graduates in 2021.

And MBA holders apply their skills and expertise in several fields. For instance, in Finance and Accounting, they might work as accounting managers, finance managers, financial analysts, budget analysts, and investment bankers. Whereas in heathcare, they might take on the roles of healthcare administrators and medical health service managers. Still others move to manufacturing where they act as managers for operations, supply chain, quality control, and more.

Typically, MBA programs are one of the most expensive master’s programs, with an average tuition cost of about 56k. This number does not include fees, books, and so on. Michigan Tech’s accredited program, which costs less, is definitely a value.

Learn More!

Prefer to do your own research? We’ve compiled other reasons for earning an advanced degree and pursuing an MBA.

Want to dive deeper? Ask more questions? Please join us at our virtual interest session on the Tech MBA®and MEM programs on Wednesday, July 15, 11:30 AM at ET. Bring your curiosity and your questions.

GIScience for Natural Resources: New Online Grad Cert. From CFRES

Dr. Parth Bhattin the field doing GIScience work.

Dr. Parth Bhatt at work.

Coming in Fall 2024, the College of Forest Resources and Environmental Science (CFRES) will be offering a new online graduate certificate: Foundations in Geographic Information Science (GIScience) for Natural Resources. Taught by Dr. Parth Bhatt, Associate Teaching Professor / Researcher at CFRES, this certificate consists of three foundational courses. They are GIS for Natural Resource Management (4 credits), Map Design With GIS (3 credits), and GPS Field Techniques (2 credits).

This certificate is the first of three that will form CFRES’s new online master’s degree in GIScience (currently under development). The others will be Advanced Geographic Information Science for Natural Resources and Remote Sensing for Natural Resources. These two will comprise rigorous courses in Python, Applied Spatial Statistics, GIS Project Management, Advanced Terrestrial Remote Sensing, Photogrammetry, and more. In other words, this online MS degree will equip graduates with a rich, varied skill set in GIScience. They will also acquire a holistic, deep understanding of the spatial dimensions of the world.

For a decade, CFRES has offered a respected, in-person MGIS. Like its predecessor, this interdisciplinary online master’s degree will emphasize practical skills in spatial visualization and analysis. Students will use real-world datasets and state-of-the-art GIS software and techniques to take on challenges in forestry, natural resources, and other disciplines.

The reputation of CFRES, the program’s emphasis on natural resources, and its robust curriculum promise to make this program a highly esteemed online GIS master’s degree. Global Campus is thrilled to be involved with it!

Applying GIScience in Forestry and Natural Resources

If you’re not familiar with Geographic Information Science, it is an exciting, growing, multidisciplinary field. It focuses on the study of geographic information, spatial data, as well as their applications. Combining principles from geography, computer science, mathematics, and other disciplines, GIScience has the ambitious goal of understanding, analyzing, and modelling the spatial aspects of the world.

GIS, or Geographical Information Systems, focuses on the what: the hardware and software that capture geographic information. In contrast, GIScience, focuses on the why: finding practical ways to improve GIS data, software, and professional practice.

This certificate and upcoming MGIS will provide fundamental GIScience expertise to foresters and natural resource experts. In Natural Resource Management, for example, professionals use GIScience for several purposes:

  • resource inventory and mapping
  • environmental impact assessment
  • habitat modeling and conservation planning
  • natural disaster management
  • sustainable land use planning
A forest, which is often managed by natural resource experts with GIScience experience.
GIScience is often used in forest management.

Take resource inventory and mapping. Natural resource managers turn to GIScience to create detailed inventories and maps of natural resources. This data then allows them to analyze the distribution and abundance of resources within an area: forest stands, wetlands, mineral deposits, endangered species habitats, and other important ecological features.

Alternatively, in habitat modeling and conservation planning, experts use GIScience tools to analyze the suitability of habitats for different species. This suitability is based on environmental variables such as temperature, precipitation, elevation, and vegetation cover. GIScience, in short, is crucial to conservation planning. It can help identify critical habitats, corridors for wildlife movement, and areas for habitat restoration or protection.

Solving Multiple Problems With GIScience

First and foremost, GIScience offers practical skills and tools for professionals in several natural resource fields. These include GIS Analysts/Technicians, foresters, civil and environmental engineers, spatial/transportation planners, wildlife ecologists, forest analysts, surveyors, geospatial specialists, water resources analysts, environmental scientists, geologists, community forest specialists, and urban forestry technicians.

Several, in fact, turn to this toolkit regularly. One previous alum from the in-person MGIS now works as a Senior GIS Analyst. In this role for Pine Gate Renewables, he uses GIS and Remote Sensing daily. These tools help him to identify risks for setting up solar farms, creating hydrology models, and locating wetlands.

Another alum with broad responsibilities also confirmed the daily use of GIScience. He oversees the creation of maps, spatial data analysis, surveying projects, data checks on road segments, and storm water analysis “to create pervious and impervious classification.” This person also admits to “diligently maintaining maps detailing water infrastructure” and managing and reviewing “various city assets, ensuring their accuracy and reliability through spatial data analysis.”

In other words, these alumni regularly manage several responsibilities with GIScience and Remote Sensing.

Contending With Climate Change

Regardless of their discipline, GIScience can also equip professionals with the tools and the strategies to predict and combat the effects of climate change.

This skillset is especially relevant now: 2023 was the warmest year on record. (The temperature was 1.18°C [2.12°F] above the 20th-century average of 13.9°C [57.0°F]. In fact, the last ten warmest years in the 174-year record have all occurred between 2014 and 2023. And with a heating planet come more impactful environmental events: floods, extreme weather, drought, and forest fires.

According to NOAA, 2023 also set another record–for natural disasters. During this year, there were 28 devastating weather and climate disasters. The price tag for these events was almost 93 billon dollars.

For contending with climate change’s effects, then, GIScience can aid with hazard mapping, risk assessment, and emergency response planning. For instance, by analyzing spatial data related to factors such as terrain, vegetation, hydrology, and population density, professionals can identify areas prone to natural hazards. Whether these are floods, wildfires, and landslides, experts can develop strategies to mitigate risks and respond effectively during emergencies.

The Pakistan Flood Events

Dr. Parth Bhatt, himself, used GI Science to document the effects of Pakistan’s historic floods, which lasted from June 15 to October 2022.

A map of the Pakistan floods made with GIScience.
Map of the area affected by the floods in Pakistan.
A flooded street in a Pakistani province.
Citizens traverse a flooded street in Pakistan.

In these devastating flood events, waters inundated more than one million homes. The flood hit all four of the country’s provinces, resulting in at least two million houses destroyed.

In total, 33 million people were directly affected with 20.6 million requiring urgent humanitarian assistance. (Unfortunately, nine months later, the monsoons brought more flooding, further exacerbating the crisis.)

Looking Ahead to the Future of GIScience

GIScience, in short, can help professionals in many fields manage the world’s resources, plan infrastructure, mitigate and plan for natural hazards, and combat (or prepare for) the effects of climate change, and more.

However, its tools are also becoming increasingly integral in fields beyond traditional domains like urban planning and environmental science.

As GIScience “continues to evolve and adapt to new demands, its impact on industries and disciplines worldwide is set to expand. As such, it will drive “transformative change and unlocking new possibilities for spatial analysis and decision-making” (GIS Analyst II). For instance, some of the newer industries hiring GIS experts are construction, engineering, insurance, real estate, and oil and gas.

One Senior GIS Specialist (Pine Gate Renewables) further confirmed that in the solar industry, there are more people being hired with a GIScience background than there were before. More professionals use “GIS and remote sensing to help identify issues, notice change over time, help drive decisions, and keep projects moving forward.”

Another expert stated that proficiencies in ArcGIS, QGIS, Python, R, and Javscript are becoming increasingly essential in GIS specialist roles.

From agriculture to healthcare, smart cities to disaster management, GIS and Remote Sensing are revolutionizing how we analyze spatial data, make informed decisions, and address complex challenges. Integration with emerging technologies like AI, along with a focus on environmental monitoring, public health, and conservation, underscores their pivotal role in shaping a more sustainable and interconnected world.

GIS Analyst II, Metro Consulting Associates

Learning From a Passionate Teacher

And it’s not just what you will learn in these programs but who you will learn it from. That is, Foundations in GI Science for Natural Resources (and the online MGIS) are both helmed and taught by Dr. Parth Bhatt, whose passion for the subject was covered in a previous blog.

Bhatt’s portfolio of GIScience skills is also diverse: he has expertise in Geographical Information Systems, remote sensing, digital image processing (Multispectral, LiDAR, UAV, Hyperspectral), land use/cover mapping, invasive species mapping, forest health and natural resource management, spatial data analysis, and Web GIS/ArcGIS Online.

Most recently, he has received a grant to put these skills to work: acting as a PI on research projects for The Nature Conservancy in Michigan.

Dr. Parth Bhatt in the classroom, teaching GI Science.
Dr. Parth Bhatt in the classroom

Bhatt has also been instructing the very popular, noncredit, professional development course, Python for Modern GIS and Remote Sensing. This course, which runs several times a year, has had rave reviews.

Taking the Next Steps

If you’d like to learn more about GIScience or you require more information about the Online GIS Certificate from CFRES, please contact Program Director Parth Bhatt (ppbhatt@mtu.edu).

Alternatively, reach out to Program Assistant Marjorie Banovetz (marjorie@mtu.edu).

There is still plenty of time to get started for Fall 2024 and develop your versatile GIS toolkit! And accelerated options are also available.

Jacque Smith: Graduate School Champion and MTU Ambassador

Jacque Smith talks to Peter Lynch, CEO of MAHLE.
Director of Graduate School Operations and Enrollment Services and Global Campus team member, Jacque Smith, chats with MAHLE CEO and President Peter Lynch at the MAHLE Corporate Fellowship Signing Event.

1978. That was the year that a young Jacque Smith, a junior at Marist High School, stopped at a bulletin board. Why? His eye caught a flier for one of Michigan Tech’s Summer Youth Programs.

Growing up in the busy city of Chicago, and fascinated by science, this flier spoke to him.

It offered the winning combination of an experience at a STEM school, a taste of the great outdoors, and, of course, a chance for many adventures.

So he just had to go.

That early taste of Tech, which also introduced Jacque to the UP, stuck with him.  So when it was time to apply to colleges, Michigan Tech was not at the top of his list; it was the only school on that list. Off he went, eventually graduating with a BS in Mechanical Engineering in 1985.

But his relationship with Michigan Tech did not end there. That is, as a valuable staff member, Jacque has been involved with and dedicated to MTU for over 18 years. During this time, he has graciously shared his substantial and varied talents with our Husky community. After beginning under Dave Reed, the Vice President for Research, he moved over to the Graduate School. While there, he has had multiple roles involving admissions and graduate education. He even, for seven years, leant his service to the Alumni Board.

Readers have already learned about the busy schedule and ambitious initiatives of Vice President for Global Campus and continuing education, David Lawrence. They’ve learned about Brian Hannon’s hockey history, MTU origins, and KRC involvement. They’ve also caught a glimpse of Amanda Irwin’s commitment to students and online education. So it was time to introduce Jacque Smith, a crucial part-time team member of Global Campus.

I felt grateful, nay privileged, to catch up with this busy man (and very personable guy).

Thank you for agreeing to this interview. First, please state your title and your position at the Graduate School. What do you do in this role? And how is it connected to your role at Global Campus?

In the Graduate School, I am Director of Graduate School Operations and Enrollment Services where I’m involved with pretty much all the Graduate School processes and policies. Although I don’t have an official title in Global Campus, I feel directly connected to it because we have common goals. That is, I’m a liaison who’s trying to optimize processes and outcomes for Global Campus. Doing so then optimizes those same things for the Graduate School. We’re all trying to improve the admissions experience and get students into programs.

Jacque, give me a breakdown of what you do on a regular day.

I’m a morning person, so I am usually on campus before 7am. And I start my day reading my emails, looking at things that are going on, and then I have my first meeting every day at 8:15 AM with the rest of my admission colleagues and Amanda Irwin from Global Campus. This meeting is where we interact every day to solve problems and to help people. Then, there are various meetings, which could be with Faculty, Global Campus, corporate partners.

A big part of my day is admission matters, in which I’m helping students get to a completed application so they can, ultimately, get a decision. I also make admission decisions for multiple masters’ programs here on campus. So I’m reviewing students’ completed files and making decisions on which students we think will have the best chance of success for our programs.

Why get involved with graduate education? That is, why do YOU think that graduate education matters? What’s your personal motivation to help students get advanced degrees whether online or in-person?

I often tell students that it’s not a question of if you’re going to go on to an advanced degree; it’s a question of when you’re going to do it. In reality, I think advanced degrees are required for our students to get to where they want to go, to get into the types of positions they want, whether it’s management and so on.

Many of our students are striving for more and want different paths. So they need that extra degree. And some people who have their bachelor’s are moving along, they’re doing great things, but they decided they don’t want to do that job forever. I want to help people pivot in their lives, to move in different directions and hopefully be more satisfied.

Jacque, you’re also one of the most enthusiastic advocates, or maybe ambassadors, for Global Campus, Michigan Tech, and the Graduate School. Where have you traveled to recruit students?

I not only have been around the State and the country recruiting students for Michigan Tech, but also have traveled to Thailand, India, and Japan in search of students who are the right fit for this university. Tomorrow, on March 20, I’m traveling down to Chicago to take part in the national MANRRS conference. The mission of MANRRS is to “promote academic and professional advancement by empowering minorities in agriculture, natural resources, and related sciences.” While there, I will be representing Michigan Tech and trying to recruit students.

What is the most rewarding part of your job?

The most rewarding part of my job is helping students get through the admissions process and into programs that, I believe many times, are life-changing events. Students come in and when they come out the other side, they often have amazing careers and do amazing things. So helping people get started is probably one of the most rewarding things for me.

Then there is working in the Graduate School itself. I’m dealing with people all around the world: over 50 different nations. So it’s fascinating to sit at my desk and interact with people from all kinds of different countries, helping them out. Another thing I really like about being in the Graduate School is that it encompasses the whole campus. I’m not just dealing with one individual academic program; I’m dealing with all the different academic programs and all their nuances. So, on a daily basis, my job gets me more involved in MTU.

What is the most challenging part of your job?

The most challenging part of my job is choosing the best opportunities for Tech. That is, there are so many wonderful things we can be doing to improve the exposure of Michigan Tech, increase our enrollment, and make connections. The tough part is balancing the resources we have while deciding what will bring the best result for the university.

As part of MTU’s mission to support industry in the state of Michigan, Michigan Tech and Global Campus are involved with several corporate partners, which you occasionally get to meet during formal events. Jacque, can you speak of some of your experiences at these events?

Often when we visit these companies, we get to see their facilities. These companies are proud of what they do, just as Michigan Tech is, so they want to show it off. It’s always a privilege to get an inside peek at many of these corporations. We get to tour their facilities, their plants, and meet with their employees and leaders. And we see behind the scenes. It’s also impressive to see the Michigan Tech alumni who are working at these places, helping to build these technologies.

Why Michigan Tech? That is, what is it about this university and this area that make them a natural fit for you?

As I’ve said before, I’m both a graduate of the summer youth program and Michigan Tech, so I have a long history!

About Michigan Tech. I believe it’s the size and the resources and its focus on STEM, which were and are still appealing to me. I’ve always been interested in technical fields. But then I’ve always had an outdoor side to me too. And this university is like a natural extension of these interests. Along with the academics and the programs, there is the location. This area allows me the ability–and I know other people use this term, too–to have micro adventures. I don’t need two weeks to go do something. I can go out on an afternoon and have an amazing experience just because everything is so close in the Upper Peninsula.

When you’re not working for the Graduate School or Global Campus, what do you like to do in your free time? Where can we find you, for example, on the weekend?

I’ve always been an adventurer: a hiker, a climber, and a camper. I’ve done many different activities and I still do a lot of them. Right now, you can often find me on jeeping adventures where I go off-roading to access out-of-the-way areas to camp and stay—to just kind of get out of town and find visually beautiful places. And I often meet great people on these adventures. There’s a certain camaraderie about these experiences. Luckily, I have a wonderful girlfriend who supports me and my jeep journeys!

Jacque standing in front of his jeep during one of his adventures.
Jacque standing in front of his jeep during one of his Upper Peninsula adventures.
Jacque on one of his jeeping adventures.
The reward at the end of the journey: a fire, a quiet place, and a view of the lake.

Is there anything else you’d like to add?

One thing has always struck me. Wherever I’ve traveled, it always seems that I find a link to Michigan Tech. Or I meet MTU alumni. It’s a very small world. That is, it seems like no matter where I go, I’m delighted to discover yet another Michigan Tech connection!

I’d like to end by saying that, again, I really enjoy having conversations with current and potential students, determining what their needs are and how Michigan Tech can help fulfill those needs. And I think that graduate school, whether online or in-person, allows students to achieve their goals and get them to where they need to be.

Jacque Smith

Michigan Tech Global Campus: A Great Fit for Amanda Irwin

Amanda promoting the Michigan Tech Global Campus to prospective students.

Amanda doing what she does best: being an advocate and team player for Global Campus

Guiding Students With Expertise and Representing Global Campus With Passion

Michigan Tech Global Campus, which is responsible for housing MTU’s online graduate programs, continuing education, and more, is staffed by a small but mighty team. You previously learned about Vice President David Lawrence, such as his rigorous schedule and his passion for developing partnerships. Then, Brian Hannon, Director of Strategic Partnerships and Alliances, and former MTU hockey star (or should we say celebrity!), skated across the digital pages of this blog.

But there are a few people left to write about, two team members and student champions you need to meet. And one of them is Amanda Irwin, Graduate Admissions Manager for Global Campus. She was kind enough to take some time out of her busy schedule to let me interview her.

Before we get into the details of what you do at Michigan Tech Global Campus, tell us a little more about you.

Amanda Irwin, Graduate Admissions Manager for the Michigan Tech Global Campus.
Amanda Irwin, Graduate Admissions Manager for Michigan Tech Global Campus

In 2009, I graduated with my Bachelor’s in Business Administration (BBA), majoring in Accounting, from Saginaw Valley State University (SVSU). While completing my degree, I also worked full time in workforce development and case management.

That is when and where I found my passion for higher education. In my job, I worked closely with dislocated workers, helping them take advantage of grant money for retraining. And I loved it.

That experience is what launched me onto the path of helping students with their educational journeys. I am also a mom of four super cool kids!

What, exactly, do you do on your job?

In my role, I help prospective students through all stages of the inquiry and enrollment process. In doing so, I answer questions about our programs and application process. But probably the most impactful of my duties is walking students through the admissions process step by step, detailing the timeline, and letting them know what to expect next. I think students appreciate the insight. They feel more at ease knowing what the process will look like from start to finish.

What was your previous role before coming to Michigan Tech Global Campus and how did that experience prepare you for this one?

Well, I have worked in admissions since 2012, at a local university and at a community college. The decision-making process is very different for a high school student coming to their freshman year of college vs. that of an adult student returning later in life (or starting for the first time). These experiences with students have provided me with perspective. They’ve also opened my eyes to so many different life paths that people will walk through. Lastly, my previous roles have helped me develop a deeper understanding of diverse student experiences. And patience and empathy, of course!

What is the favorite part of being the Graduate Admissions Manager for Michigan Tech Global Campus?

Talking to cool people is my favorite part of the job. I enjoy being in a relationship and making a connection with students, chatting about kids or the weather or sports….finding that common ground with them. A close second is hearing from students semesters later and learning that they are doing well and planning their graduations. In other words, it is that feeling of accomplishment in knowing that you helped them get started.

Why have you chosen to work in online learning? That is, what about online learning resonates with you?

I think online learning is the wave of the future, especially for our adult learners. Online learning offers the flexibility students need to be able to say, “Yes, I can move toward that next goal while working at my current job or caring for my family, and so on.” Online learning allows nontraditional students to fulfill their personal and professional goals and to finish what they started. Or get a brand new start altogether.

Along with guiding students through the application process, you’ve often done outreach for Michigan Tech Global Campus. Can you say a little more about this work?

Amanda Irwin represents Michigan Tech Global Campus at the MAHLE Corporate Fellowship signing ceremony.
Amanda Irwin, sixth from the left, represents Michigan Tech Global Campus at the MAHLE Corporate Education Fellowship signing ceremony. In the center are MAHLE CEO and President Peter Lynch and MTU President Richard Koubek.

Well, I regularly travel to and participate in our corporate partner events to represent Michigan Technological University and Global Campus. For instance, in Fall 2023, I attended corporate fellowship signing ceremonies for both ITC (September) and MAHLE (November).

I’m also very active in my local chamber of commerce where I go to various events and spread the word about Michigan Tech and Global Campus. One of the most memorable events was the Midland Business Association’s (MBS) Women in STEM panel discussion, in which female researchers and leaders talked about some of their challenges in STEM roles. This event was partially sponsored by Global Campus. Global Campus was also a program sponsor for one of our WakeUp Midland networking breakfast events. These events offer a great opportunity to make business contacts, enjoy breakfast, and create networks.

And when Michigan Technological University sponsored Dr. Ruth Archer at the Lean Summit, I set up a Global Campus table there.

The goal in all of these events is getting exposure for Global Campus, building on the respect and reputation of our little school in the north, and letting people know that we can bring Michigan Tech to them.

Amanda Irwin, Graduate Admissions Manager for Global Campus

When you are not working, what do you like to do?

I love helping with my kids’ sports teams, especially basketball. Watching them play any sport is where you will find me most weekends.

When we aren’t playing sports, I enjoy adventuring with my husband and kids. We fish, explore parks, go rock hunting, go on waterfall adventures. The whole family loves going for a drive and searching for eagles and other cool birds.

I also enjoy some recreation league sports that I play in a few times a year, hanging with family and friends, and doing puzzles.

Amanda Irwin, Global Campus Admissions Manager, stands with  her husband and four small children in front of an icy waterfall.
Amanda Irwin and her family doing one of their favorite things: exploring waterfalls.

Anything else you’d like to add?

Yes. In the second week of March, I will be holding an in-person information session on our accelerated master’s degrees, accelerated certificates, and online graduate programs. At this event, there will be program directors; the always amazing Director of Graduate Enrollment Services, Jacque Smith; and, of course, free pizza. If you’re an eligible student, you’ll get an email from me. So check your inboxes!

If you have questions about any of Michigan Tech’s online programs or the application process, please reach out to me at globalcampus@mtu.edu or make an appointment on my calendar. You’ll get friendly service from someone who knows our programs and the application process inside and out.

ITC Signs Education Fellowship Agreement

Leaders of MTU and ITC at the Corporate Fellowship Program Signing Event.

(Leaders and employees of MTU and ITC at the official signing event for the Corporate Education Fellowship. In the center is Linda Apsey, CEO and president of ITC Holdings Corp. To her left (our right) are Michigan Tech President Richard Koubek; and David Lawrence, vice president for Global Campus and continuing education. Contracts Specialist Felicia Milam stands on Apsey’s right. Directly behind her is Brian Slocum, senior vice president and chief operating officer of ITC Holdings Corp.)

Michigan Technological University recently signed a Corporate Education Partnership Agreement with ITC Holdings Corp., the nation’s largest independent electricity transmission company.

ITC owns and operates high-voltage transmission infrastructure in Michigan, Iowa, Minnesota, Illinois, Missouri, Kansas, and Oklahoma. It has more than 700 employees and 1,000 contractors. The company provides transmission grid solutions to improve reliability, expand access to markets, allow new generating resources to interconnect to its systems, and lower the overall cost of delivered energy.

The signing ceremony took place at ITC’s headquarters in Novi, Michigan, on Tuesday, August 22, 2023. In attendance were Michigan Tech President Richard Koubek; David Lawrence, vice president for Global Campus and continuing education; Linda H. Apsey, president and CEO of ITC; and Brian Slocum, senior vice president and chief operating officer of ITC. Other leaders from both organizations, MTU alumni, and fellowship recipients were also present.

Making Advanced Education More Accessible

The Corporate Education Fellowship was spearheaded by David Lawrence. This program supports ITC employees in their pursuit of online graduate education through Michigan Tech’s Global Campus. That is, current employees will receive fellowships to enroll in one of Michigan Tech’s online graduate certificates or master’s degree programs. These fellowships are available for up to four years, provided the recipients continue to be employed by ITC and that they meet Tech’s eligibility requirements.

The program allows employees to acquire further industry-needed skills, follow areas of professional interest, and meet the evolving demands of next-generation energy infrastructure.

The fellowship program is part of Global Campus’s dual missions of building relationships between academia and industry; and making quality online education more accessible to diverse adult learners.

President and CEO of ITC Holdings Corp., Linda Apsey; and President Richard Koubek sign the fellowship agreement.

Preparing ITC Employees For the Future

Linda Apsey, president and CEO of ITC, reflected on the fellowship and on collaborating with MTU. “We’re at this really pivotal moment in time, as we are on the cusp of an energy transformation. And innovation, new skills, new experiences, leadership: all of those things are so important now more than ever.”

Apsey also spoke highly of ITC employees who are Michigan Tech graduates: “What we observe and experience is that Michigan Tech grads come to ITC ready and prepared day one. They also come with the right skills and technical knowledge. And I would say even more importantly, that they arrive with the demonstrated desire to continue and to learn and grow in an organization like ours.”

Moira Morgan, director of organizational learning and development of ITC, affirmed that this fellowship helps employees be “prepared not just for today, but tomorrow. What they learned two years ago, three years ago, may not be applicable today.” So, thanks to this program, “they’re preparing themselves for the future.”

Supporting Industry in Michigan

At the ceremony, President Richard Koubek referred to MTU’s founding charter that mandates its support of industry, particularly in Michigan. He also addressed the importance of alignment between education and industry for both innovation and growth in organizations.

ITC CEO and President, LInda Apsey and President Koubek shake hands.
ITC CEO and President, LInda Apsey and President Koubek shake hands.

There is a change, transformational times, certainly in the energy industry. Also, there are a lot of transitions, tectonic shifts, happening in higher ed. In my opinion, having a close relationship with industrial partners is going to be key for universities succeeding in the future.

President Koubek

President Koubek also added, “It’s so important that what the students are learning in the classroom is directly relevant to what they’re going to do once they graduate. And I think having a tight feedback loop between industry and the academic institution makes that so.”

Continuing Its Relationship with Michigan Tech

Michigan Tech and ITC have a long-established relationship. For instance, ITC recently instituted the Jon E. Jipping Annual Scholarship for undergraduates. Jipping (MSEE ’91), who was one of ITC’s first employees, retired as executive vice president of ITC Holdings in 2023. He is now a member of the Michigan Tech Board of Trustees.

Following in his footsteps, several current ITC employees are Michigan Tech alumni. Additionally, many MTU students join ITC for summer internships, with several interns becoming full-time employees upon graduation.

Senior Vice President and Chief Operating Officer of ITC Holdings Corp. Brian Slocum confirmed that “the impact from Michigan Tech students on ITC has been longstanding. Over the years, we’ve heard from many, many Michigan Tech students that ITC and Michigan Tech share a similar mindset and culture, which is why our relationship has endured. What they [Michigan Tech students] continue to bring to the table is an ability to solve problems from a technical standpoint and a deep knowledge about the power industry, which gives them a kick-start on their career at ITC. I’m excited to see how that will grow as we move forward with our relationship.”

Brian Slocum, senior vice president and chief operating officer of ITC Holdings Corp.; and David Lawrence, vice president for Global Campus and continuing education sign the fellowship agreement.

Moving Forward with MTU

One of the fellowship recipients is Liz Martin, an engineering project manager. When asked about why she is pursuing the online TechMBA program, Martin asserted that she’s an “engineer through and through; it’s huge part of who I am. So I love that their [Michigan Tech’s] MBA program marries aspects of engineering with business, which is exactly what I was looking for.”

Then she enthusiastically added, everyone at ITC “loves Michigan Tech. We’re a big Michigan Tech company. I’ve always heard about how amazing it was. Most of my friends went to Michigan Tech. So I couldn’t miss an opportunity to also be a husky and join the fandom.”

Michigan Tech is proud to work with ITC, an organization committed to solving next-generation energy infrastructure challenges.

Global Campus Grows

Whether it’s been covering new education fellowship partnerships, reporting on Michigan Tech’s collaboration with the MEDC, writing about innovative mass timber research initiatives, researching the gifts of adult learners, welcoming new team members, or rushing to keep up with Global Campus Vice President David Lawrence, this blog writer has had a busy year. And while all these initiatives, and more, have been underway, I’ve also had to keep track of Michigan Tech’s new online courses and programs.

Recent Online Programs at Global Campus

For example, in the last year, the College of Business added the online TechMBA and the Master of Engineering Management. Both are accredited, 10-course programs that, in various ways, leverage your STEM expertise. Whereas the TechMBA provides foundational business skills, the MEM allows students to customize degrees that merge engineering and business. To promote these programs, Dr. Mari Buche, David Lawrence, and his Global Campus team graciously led several online virtual interest sessions, which were all well attended.

Leadership and learning are indispensable to each other.

President John F. Kennedy

Furthermore, the College of Engineering met the learning and leadership challenge with its Master of Engineering, a professional terminal degree. This degree allows students to focus on either a HEV (hybrid electric vehicle) track or an engineering track. For the engineering track, learners can combine courses from several disciplines. In fact, the master of engineering is ideal for those collaborating with their employer to develop a program to meet specific on-the-job needs.

More recently, the Department of Applied Computing has also added two new programs to its roster: Public Health Informatics and Foundations in Health Informatics. Both certificates can be stacked to form a master’s degree. Like other HI programs, these prepare students for diverse roles in the data-driven healthcare industry. Guy Hembroff, the Health Informatics director, also ensured that MTU’s CHI students have memberships in HIMSS. HIMSS (Health Information Management Systems Society) is a global society. It enables health information professionals to access resources, enroll in seminars, develop networks, search for jobs, and much more. In other words, it gives MTU’s Health Informatics students an edge.

Global Campus Bridge Courses

Bridge courses are short, intensive, preparatory online courses that help learners acquire the necessary knowledge and skills to enter advanced study. This study might mean an undergraduate program, graduate degree, or graduate certificate. Often, bridge courses are for students who are provisionally accepted into a program.

Linear Algebra: A Bridge Course Offered Through Global Campus
Linear Algebra: A Bridge Course Offered Through Global Campus

For instance, in September of 2022, Teresa Woods, Associate Teaching Professor in Mathematical Sciences and Linear Algebra aficionado, taught our first bridge course: Linear Algebra. Her ten-week, asynchronous online course was aimed at prospective students who needed the LA requirement to enroll in MTU’s Online Master of Science in Applied Statistics program.

Woods’ course covered fundamental linear algebra concepts as used in Applied Statistics. Some of the topics included systems of equations, vectors, matrices, orthogonality, subspaces, and the eigenvalue problem.

To learn more about this course, email Teresa Woods (tmthomps@mtu.edu).

Linear Algebra is once again running for the Fall 2023 semester. And there are still a few seats left. Right now, the proposed start date is Sept. 18, 2023.

Newer Professional Development Opportunities

Fundamental Courses and Bootcamps

Global Campus also had the privilege of working with subject matter experts to promote in-demand professional development courses. Also known as continuing education and career training, these courses allow those in the workforce to hone skills, acquire specialized training, develop leadership abilities, and stay up-to-date on current trends.

Currently, Michigan Tech offers both non-credit and for-credit pd courses.

For example, during the summer of 2023, APS Labs rolled out its short, but rigorous course on Diesel Engine Fundamentals. Despite the turn to EV, this course recognized that diesel engines weren’t going anywhere soon. That is, diesel engines are still in light-duty vehicles, medium and heavy-duty trucks; in commercial vehicles (trains, trucks, buses, barges, and boats); in army vehicles; and in generators.

This course was conveniently available in both online and in-person versions. Its goal was educating those pursuing careers in the automotive industry, commercial vehicles, power generation, or related fields.

A Diesel Engine, which was studied in the APS Labs short course for Global Campus
A Diesel Engine

Also, Kevin Johnson, Assistant Teaching Professor, Manufacturing and Mechanical Engineering, lent his significant expertise to summer students. He taught an an intense 20-hour in-person hydraulics bootcamp. In his course, students learned about several topics crucial to hydraulics, such as valves, pumps, motors, circuits, and closed-loop hydrostatic systems.

Upcoming Professional Development Courses

Python for Modern GIS

A person working on GIS with Python, one of the courses taught though Global Campus
GIS Workshop

Furthermore, recognizing the need for more Python professionals in the GIS world, Parth Bhatt (Assistant Teaching Professor / Researcher from the College of Forest Resources and Environmental Sciences) is offering a 7-week, asynchronous, online course for Fall 2023.

His Python for Modern GIS and Remote Sensing course will help students learn beginning and immediate-level applications of Python for understanding and writing simple scripts, automating workflows, and solving day-to-day, real-world geoprocessing tasks in the ArcGIS ecosystem and open-source platform.

Dr. Bhatt, a dynamic teaching professor who lives and breathes GIS, is also on deck to develop online for-credit certificates for his department. Stay tuned for more developments.

And, yes, you still have time to register for Bhatt’s course.

Civil Asset Management

As well, the Department of Civil, Environmental, and Geospatial Engineering has recently added a 3-credit, synchronous online course in Civil Asset Management. This course is taught by Mark Declercq, who brings three decades of valuable, practical civil asset expertise to the classroom. In fact, as Grand Rapids Engineer, Declercq was one of the first experts with boots on the ground during that city’s massive flood event.

Civil Asset Management (CEE 5390) will help students develop long-term plans, as well as the strategic, critical thinking they need to recognize and maintain the value of our all-important civil assets. Declercq also maintains that to develop resilient and affordable solutions and to tackle upcoming sustainability challenges, engineers definitely need Civil Asset Management skills.

Keep Up With Global Campus as We Learn and Grow

In the future, Global Campus plans to offer additional non-credit and for-credit courses and programs. Our goals are advancing the personal development, career goals, and leadership opportunities that come with education. We also recognize the importance of challenging all learners to grow, to think creatively and critically, and to prepare for tomorrow.

We’ll keep you posted as we assist in developing and supporting new programs. For updates, read this blog or follow us on social media.

And remember, regardless of where you are in your educational journey, whether you want to take a course for fun or for your future, it is never too late to start learning.

Anyone who stops learning is old, whether at twenty or eighty. Anyone who keeps learning stays young.

Henry Ford

Powering the World

an electric power tower against the blue sky

“It’s an unstable system, but we’re bringing stability to it,” so confirmed Glen E. Archer, Teaching Professor of Electrical and Computer Engineering at Michigan Technological University. While making this statement, Archer is standing in EERC 134, or the Smart Grid Operations Center. In this sophisticated classroom, students attack such topics as interoperability, energy management and emergency control, and system protection; as well as monitoring the connections into MTU’s Energy Management System and the regional grid. And so, so much more. It is, from my starry-eyed perspective, a very cool room.

At this point, the Michigan Tech Global Campus team has been touring the Electrical Engineering Resources Center (EERC) and picking Archer’s brain for the last hour. This room is the last stop on our educational tour.

As he speaks, my attention is divided between the brilliant, glowing grid on the wall and the energy and experience of Archer. He clearly has a passion for the important work and research that transpires in MTU’s electrical engineering classrooms and laboratories. And even more of a passion for electrical power engineering itself.

Which brings me, once again, to his earlier comment. He had mentioned that power engineering jobs might not seem particularly trendy, but those employed in this field have very important work to do. And much of this work is done behind the scenes. “Maybe the humble, unsung heroes of the engineering world,” I suggested. He didn’t comment, but smiled.

Power Engineers: Working Wherever the World Needs Them

Electric power engineering, a subfield of electrical engineering, is dedicated to all things electric power: from its generation, transmission, distribution, conversion, utilization, and management. The electrical apparatus and components associated with these systems, both large and small (wiring, cables, circuit breakers, fuses, switches, converters, vehicle drives, and so on), also fall under power engineering. Depending on their specialty and educational pathway, electric power engineers may work with electric power systems, power stations, solar voltaic cells, wind turbines, and electrical grids.

Electric power engineering may also go by other names, such as power engineering, power system engineering, power management, and power systems management. Its engineers are found wherever people and organizations need power, energy storage, renewables, and intermittent power sources.

Some Electric Power Engineering Workplaces

  • Utility companies
  • Manufacturing plants
  • Engineering Firms
  • Infrastructure related to the oil and gas industry
  • Other industries
  • Airports
  • Hospitals
  • Residential complexes
  • Schools
Industrial Power Plant

Filling a Shortage of Electric Power Engineers

Although they may not outwardly seem flashy, careers in electric power engineering have the advantage of being both flexible and mobile. Or to put it another way, the knowledge and competencies that power engineers acquire on one job may be transferred to another. This versatility means significant career choice and mobility, both within and between organizations as well as in workplaces throughout the world.

That is, as more countries transition to renewable energy sources and advanced technologies and invest in more infrastructure, the global demand for electric power engineers will likely increase. Some experts even believe that there is a definite shortage right now.

According to a summary of the Global Energy Talent Index Report, “power companies everywhere are struggling to balance talent shortages with changing skills.” The writers continue to say that there is a “looming skills shortage of engineers in the power, nuclear, and renewables sectors.”

What does this shortage look like? The GETI document confirms that as many as 48% of power professionals are concerned about an upcoming skills crisis whereas 32% believe the crisis has already hit the sector. 28% contend that their company has been affected by a skills shortage.

There are three main causes of this crisis: massive retirements, an aging workforce that requires upskilling, and a need for more workers with training in new power electric technologies. The report states that 13% of power workers are 55 years and older whereas 17% are between 45 and 54.

Confronting Upcoming Challenges

In short, both United States and the world need power engineers to not only fill these gaps but also address present and upcoming challenges.

In this nation, one of the biggest issues facing American engineers is contending with an outdated American grid in need of both repair and replacement. This aging grid can cause reliability problems, power shortages, and other complications. However, electric power engineers face other challenges, which affect the United States and beyond.

Improving Energy Storage

A photovoltaic system, otherwise known as a solar panel array.

Increasing the capacity and efficiency of energy storage systems is one key concern. To enable the widespread adoption of renewable energy sources, electric power engineers must develop better and more cost-effective energy storage solutions.

There is a need to improve the performance and efficiency of battery technology, which is essential for the large-scale energy storage. The excess electricity generated by renewable sources can then be used to help meet peak demand or provide back-up power during outages.

Increasing Grid Reliability

As electric grids integrate with more renewable sources (such as wind and power), power engineers must ensure grid stability and reliability. They must also develop solutions for reducing grid congestion. And create strategies for maintaining system stability and resilience in the face of climate change, extreme weather events, cyber-attacks, and other potential threats.

In fact, right here at Michigan Tech, Dr. Chee-Wooi Ten (Electrical and Computer Engineering), has spearheaded an impressive, interdisciplinary research team since 2010. This group contains members from the fields of statistics, business, engineering, and computer science. Its goals are advancing power engineering and developing strategies for improving power grid cybersecurity, grid reliability, interdependence, and sustainability.

Integrating Smart Technologies

Smart technologies are helping to make electricity consumption more efficient. For instance, smart meters allow utility companies to track and measure electricity consumption in real-time. They also enable consumers to monitor and adjust their own energy usage. Automated demand response systems can also reduce or increase electricity consumption according to fluctuations in the grid. And then there are advanced distribution management systems for utility companies to monitor and manage their electric grid in real-time. These can detect outages, schedule maintenance, and react to changing electricity demand.

There is a need for power engineers to understand these technologies and develop ways to integrate new smart systems into the existing grid. These strategies might include implementing communication protocols, creating intelligent control systems, and developing cybersecurity policies.

Ensuring Cybersecurity

Cyberattacks on the grid are not just the stuff of movies. For instance, in 2022, Russian cyber-hackers targeted Ukraine’s power grid. And in 2016, hackers chose a Florida power utility as their mark. The result: pumps ran continuously, causing not only waste but also physical damage. And since 2018, the US has been fending off Russian cyber-attacks on critical infrastructure.

Cyberattacks on electrical grids, then, can cause major disruptions and blackouts. It is obvious that one of the responsibilities of power engineers is improving the cybersecurity of the grid. This task is also one of the main objectives of Dr. Chee-Wooi Ten’s CIResilience team.

Addressing Environmental Concerns

Power plants, especially coal-fired ones, generate substantial emissions. And the cooling and operation of these plants require sizeable amounts of water. In fact, the power sector is the largest industrial power user. Therefore, a main engineering challenge is lessening the environmental impact of electric power systems, including reducing emissions and water consumption, improving efficiency, and minimizing waste.

Pursuing Electric Power Engineering at Michigan Tech

In short, as the world’s population continues to grow, the demand for electricity will increase significantly. Additionally, global citizens are requesting more sustainable and environmentally friendly energy infrastructure. Engineers may answer these calls by developing renewable energy sources and technologies as well as reducing electricity consumption and improving power efficiency.

If you’re up for these (and other) challenges, Michigan Tech offers several educational routes in electrical power engineering. For instance, there is a 13-credit undergraduate certificate in Electric Power Engineering and a 15-credit Graduate Certificate in Advanced Electric Power Engineering. Both of these certificates have been designed with consultation from experts from electric utilities and industry. In other words, students receive the knowledge, skills, and aptitudes that working electric power professionals regularly apply in their careers.

And, of course, there is the 30-credit MS in Electrical and Computer Engineering, with a Focus in Power Systems.

Whatever your preferred educational or career path in power engineering, Michigan Tech can help you get started.

Robots in the Workplace

Two large orange robotic arms in a factory setting.

Robots at Work

A robotic guard dog (or robodog) stationed in an abandoned warehouse relentlessly chases intruders across a barren, post-apocalyptic landscape. Armed with tracking weapons, highly sophisticated sensors, and artificial intelligence, this robodog does not give up its hunt easily.

To avoid spoilers, that is about all I will say about “Metalhead,” the fifth, and arguably, most terrifying episode of season one of the series Black Mirror. Although many have debated the episode’s meaning, one possible interpretation is a gruesome picture of what might happen if evolved, intelligent, unchecked robots ruled the workplace. And if they took their jobs, well, maybe a little too seriously.

The good news is that there are currently no rogue robodogs guarding warehouses and going on killing sprees. However, robots have been in industry for half a century. The effects of this integration, though certainly less sinister, have troubled a few. That is, one of the most popular searches on Google is this question or variations of it: “Will robots take our jobs?”

The answer is complicated: yes, no, and they already have. And the situation might be better or worse than you think.

Making Manufacturing Easier

When many of us contemplate robots in the workplace, we might think of Amazon. This company operates over 100,000 robots on its various factory floors. Autonomous mobile robots (AMRs) pick, sort, and transport orders; robotic arms pack items; and autonomous ground vehicles navigate the huge warehouses.

However, on the global stage, Amazon is somewhat of a bit player. FoxConn, a Chinese electronics manufacturer, currently has over 300,000 robots in use for assembling its products. These robots help create phones, computers, tablets, and gaming consoles for companies such as Amazon, Microsoft, and Samsung.

But the electronics industry was not the first to integrate robots into the workplace: the automotive industry was. It took a chance on and then popularized the first industrial robot: Unimate.

Unimate was the creation of Joseph Engelberger, whom many call the father of robotics. Inspired by Isaac Asimov and his vision of robot helpers, Engelberger strove to create robots that would improve manufacturing while making workers’ lives easier.

In 1959, General Motors installed the first prototype of Unimate #001 in its Trenton, New Jersey plant. Weighing a whopping 2700 pounds, this robot’s primary job was diecasting.

The Original Unimate: an industrial robot.
The Original Unimate.

And only a decade later, GM’s rebuilt factory in Lordstown, Ohio, housed an army of spot-welding robots. These robots could build 110 cars an hour, which was double the manufacturing rate at that time.

Choosing the Right Robots for the Job (or Jobs)

An automated machine that does just one thing is not a robot. It is simply automation. A robot should have the capability of handling a range of jobs at a factory.

Joseph Engelberger

Perhaps Engelberger’s dream is best satisfied by articulated robots, equipped for several jobs. With their flexibility, dexterity, and reach, these robots are adept at assembling, packaging, palletizing, welding, and more. Palletizing robots perhaps perform one of the most annoying and dangerous of tasks in a warehouse environment: stacking stuff. These hefty robotic arms spend all day neatly piling items onto pallets.

Other common robots include SCARA (Selective Compliance Articulated Robot Arm). SCARAs perform actions between two parallel planes or assemble vertical products. Delta (spider robots) excel at high-speed actions involving light loads.

And then there are Cartesian robots, or gantry robots. They “have an overhead structure that controls the motion in the horizontal plane and a robotic arm that actuates motion vertically. They can be designed to move in x-y axes or x-y-z axes. The robotic arm is placed on the scaffolding and can be moved in the horizontal plane.” It also has an effector or machine tool attached to its arm, depending on its function. This article goes into greater detail about the four types of robots that manufacturers should know and use.

The automotive industry (as does much of manufacturing) uses robots to spot-weld, pick, paint, and palletize–boring, yet dangerous jobs. Jeff Moore, Volvo’s vice president of manufacturing in the Americas, says that welding, “with all the heat and sparks and high current and things is a natural spot to be looking at where you can more heavily automate.” However, for intricate work on the assembly line, such as attaching hoods, bumpers, and fenders, “the human touch has a lot of advantages.

Integrating Robots and Automation

But these metal workers do not just assemble cars and create heavy-duty products. Robots and automation also assist in other industries, such as in agriculture and food production.

Helping With Agriculture and Food Production

In agriculture, for instance, robots may plant, harvest, spray crops, control weeds, analyze soil, and monitor crops. And when it comes to agricultural equipment, some of the biggest players are John Deere, AGCO, CNH Industrial, and Kubota. These companies are also investing in robotics and automation; as well as tractors, drones, and data analytics to improve efficiency and crop yield and to reduce costs. Recently, for instance, Trimble and Horsch collaborated to build an autonomous sprayer.

And in food production, robots might slice, package, and label products at a much more rapid rate than humans. For instance, the global food production and processing company Cargill heavily uses robotic automation. It invented the first robotic cattle herder. Cargill and Tyson Foods, in fact, are also moving heavily into automation and cobots for meat production.

Lucy and Ethel working on an assembly line at a chocolate factory.

In one of the more famous and humorous episodes of I Love Lucy, Lucy and Ethel get employment at a candy factory. Their job: keeping up with increasing production and quickly wrapping candy as it rolls down the belt. They fail miserably as the line picks up, shoving candy in their mouths, their pockets, and even their dresses. Well, thanks to robots, inadequately trained (and slower than ideal) humans will no longer have to keep pace by eating the profits. Their tasks might be made easier by cobots.

Recently, “cobots” or modular, agile, collaborative robots have been the focus of robot manufacturers. Rather than replace workers, cobots work alongside their human employees. Armed with sensors and sophisticated feedback equipment, cobots respond to changes in the workflow and help their human partners perform tasks accurately and safely. Some experts predict that the cobot market (currently valued at $1.1 billion) will expand to $9.2 million by 2028).

Performing Tedious and Dangerous Tasks

Robots can also complete tasks that are too tedious for humans, such as inspecting pipelines or sorting items. Additionally, they can monitor and analyze data in real time, allowing workers to make better informed decisions. In the oil and gas industry, for instance, robots inspect pipelines and inspect wells.

And it is not just repetitive and boring tasks, either. That is, another argument in favor of robots in the workplace is that they can perform hazardous tasks, such as working in extreme temperatures and dangerous environments; and cleaning up harmful materials.

One of of the most recently developed robots who might be fit for these tasks is MARVEL, appropriately named because of its superhero abilities. MARVEL is an acronym for Magnetically Adhesive Robot for Versatile and Expeditious Locomotion.

The brainchild of a research team from the Korea Advanced Institute of Science and Technology (KAIST), this robot is equipped with magnetic foot pads that can be turned on or off.

Researchers and MARVEL at KAIST

With these specialized feet, MARVEL can rapidly climb steel walls and ceilings, at speeds of 50 cm to 70 cm a second. Its design and speed make it appropriate for several tricky tasks requiring nimbleness, such as performing inspections and maintenance on high structures (bridges, buildings, ships, and transmission towers.)

Imagine, for a second, MARVEL safely performing maintenance on the Houghton lift bridge while it is still operational. No need to block off one lane and slow down the flow of traffic. No need to be late for work!

Taking Our Jobs? Maybe.

We are approaching a time when machines will be able to outperform humans at almost any task. I believe that society needs to confront this question before it is upon us: if machines are capable of doing almost any work humans can do, what will humans do?

Moshe Vardi

One of the most obvious downsides to incorporating robots in the workplace is that they will lead to job losses. That is, some experts estimate that as many as 20 million job losses will result as companies continue to rely on automation.

Critiquing Robots and Automation

Futurist and New York Times best-selling author Martin Ford has probably been the most vocal about the negative economic and social impacts of automation and robotics.

He has written Rule of the Robots: How Artificial Intelligence will Transform Everything (2021), Architects of Intelligence: The Truth About AI and the People Building it (2018), and Rise of the Robots: Technology and the Threat of a Jobless Future (2015).

Ford has argued that automation and robotics will result in job losses, wage stagnation, and widening inequality. These effects, which will be felt most acutely by low-skilled and middle-skilled workers, will also weaken worker bargaining power.

Cover of Martin Ford's book "The Rise of the Robots"

Alleviating These Problems

But there are solutions. That is, Ford has advocated that governments should prepare for and then take steps to address the issues posed by robotics and automation. Governing bodies could provide better access to education and new job training, invest in infrastructure, promote job-sharing, and provide more generous unemployment benefits.

To alleviate inequities caused by increasing automation, Ford has urged governments to create tax incentives that encourage employers to hire people and train them in the use of robots; or for companies to invest in robots designed to complement rather than replace human workers (such as cobots). He has also supported a basic monthly income for citizens so that everyone has a decent standard of living. How will this monthly income be funded? By taxing companies that use robots, or taxing the robots themselves to generate this income.

MIT professors Erik Brynjolfsson and Andrew McAfee, who wrote The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, also summarized the second machine age and evaluated in terms of its positive benefits (“bounty”) and increasing inequality (“spread”). After stating that the spread of technology is causing greater inequality, they proposed some similar policy interventions.

Defending Robots in the Workplace

Critics of Ford, McAfee, and Brynjolfsson, such as economists Lawrence Summers and Robert Gordon, and industry expert Jeff Bezos, take a contradictory perspective. They argue that robots and automation will create more jobs than they destroy. These technologies, they contend, will also lead to advanced productivity and efficiency, improved demands for goods and services, and, therefore, increased employment. Robots can also help reduce costs, which could lead to increased profits for companies and more jobs overall.

Summers takes a slightly different stand, affirming that robots could increase production and therefore benefit the economy and improve employment. However, governments should still invest in education and job training to ensure that workers have the skills needed to take advantage of the opportunities created by both automation and robotics.

Futurists at the Information Technology and Innovation Foundation (ITIF) have sung the praises of robots and automation for years. Their experts content that robots and automation will enhance productivity and reshape global supply chains. New production systems, they claim, will bring more (not less) manufacturing work to the United States.

And then there are the numbers, which currently don’t look that fearful. According to the International Federation of Robotics, in the United States, there were only 255 robotic units per 10,000 employees. Although 47% of CEOs are investing in robots (according to a poll by Forbes, Xometry, and Zogby), robots still only have a 2% presence in industry.

Whatever the industry, it is obvious that robots can increase both efficiency and safety. They can work 24/7. They won’t tire during a 16-hour shift, get repetitive stress injuries, or have fatigue-related workplace accidents. Robots can also increase output capacity by helping American manufacturers save on utilities and worker resources, so that they can compete more effectively with offshore companies.

Preparing for an Automated and Robotic Future

Robotic arm in a lab at Michigan Tech.

This blog has just scratched the surface of robots in the workplace. That is, it didn’t discuss robotic doctors, such as the impressive Davinci Surgical System. Also, I don’t pretend to be an expert here, just an ex Sci-Fi teacher fascinated with the robotic present and future.

Those who want to prepare for a future in robotics and automation can learn more by taking several educational paths at Michigan Tech. MTU offers major and minor degrees in computer engineering, data acquisition and industrial control, electrical and computer engineering, mechanical engineering, and robotics engineering.

More specifically, there is mechatronics: a field of engineering that combines mechanical, electrical, and computer engineering to create systems that can interact with the physical world. Mechatronic systems consist of sensors, actuators, and control systems. These systems are fundamental to creating robots and other automated systems. Students in this program can also join the Robotics Systems Enterprise “to solve real-world engineering problems.”

Through Global Campus, Michigan Tech also offers several related online graduate certificates in artificial intelligence in healthcare, manufacturing engineering, the safety and security of autonomous cyber-physical systems, and security and privacy in healthcare. And if you’re interesting in earning an online master’s degree, please check out our MS in Electrical and Computer Engineering or our online Mechanical Engineering programs, both MS and PhD.

Electric Vehicles: Moving Beyond Tesla

Parking lot spot with an icon for electric vehicles.

Increasing Demand for Electric Vehicles

In a previous blog, I discussed some of the challenges and constraints regarding the future of electric vehicles. But despite certain challenges, such as a need for more charging stations, the demands for electric and hybrid vehicle sales are, respectively, either climbing or staying steady.

In fact, in the third quarter of 2022, US sales of electric vehicles and hybrid-plug-in electric vehicles hit an all-time high. According to a Kelley Blue Book report, the total number of electric vehicles and fuel-cell electric vehicles (fcevs) sold was 578,402. That number marks a 69% increase from 2021 (339, 671). Also, the total number of hybrid and plug-in vehicles sold was 686,271, which is actually strong but slightly down from 2021 numbers (728, 507). Based on these figures, Kelley Blue Book estimates that there will be over 1,000,000 EVs sold in 2023.

What these numbers mean is that although the demand for hybrids is still strong, the popularity of electric vehicles is accelerating, despite the fact that these latter vehicles aren’t cheap. That is, the average cost of an electric vehicle remains over $65k.

Tesla continues to be the leader with its models 3, S, X, & Y all having dramatically increased sales, despite their hefty price tags.

Producing Electric Vehicles for Different Users

“While EV prices currently align more closely with luxury versus mainstream, the market continues to grow and evolve with more choices hitting the scene all the time. It’s no longer just ‘which Tesla is available,’ but rather an industry-wide boom with more EVs on the horizon from Ford, GM, Hyundai, and other manufacturers.”

Brian Moody, Kelley Bluebook

In other words, it is not just Tesla winning at the electric vehicle game. Based on year-to-date sales numbers, some of the other solid contenders for improved sales were the following:

  • Mini Cooper: 2,615 (2022) vs. 1,226 (2021) = +113%
  • Ford Mustang Mach-E: 28,089 (2022) vs. 18,855 (2021) = +49%
  • Audi e-tron: 10,828 (2022) vs. 7.7939 (2021) = +38.9%
  • Mini Cooper: 1,099 (2022) vs. 488 (2021) = +125%

On the hybrid and plug-in hybrid front, overall sales remained relatively steady. But some companies experienced huge gains: Acura, BMW, Honda, Toyota, and Volvo. The big winner in the hybrid market, however, was moderately priced Lincoln Corsair, which had 7X as many sales as those of the previous year.

Meeting the EV Challenge with Trucks

Beyond SUVs like the Lincoln Corsair, the next trend on the horizon is electric trucks. The F-150, currently the best selling vehicle in the US, now has an electric version. The F-150’s more climate-conscious cousin, the Lightning, was rolled out in May 2022 after tens of thousands of Americans had already reserved one. (The F-150 also comes in a hybrid model.)

What’s even cooler: The F-150 Lightning can act as its own power source. With its vehicle-to-grid (V2G) capabilities, it has the ability to charge another electric vehicle. And its massive battery can also power your home, yes your home, during an outage. Ford claims, in fact, that a fully charged Lightning can keep a household going for three days.

Chevrolet followed quickly with its Silverado, built on the same electric platform as the Hummer EV. With the EV Silverado, you can also purchase an ultium charging accessory to power your home in emergencies. Both of these innovative products support GM’s goals of creating a more resilient grid. The company is also investing 750M in charging infrastructure, so that everyone can take advantage of what electric vehicles have to offer.

With site hosts and our dealers, we are installing up to 40,000 chargers in local dealers’ communities through GM’s Dealer Community Charging Program—focusing on underserved rural and urban areas. Participating dealers will get level 2 chargers to install in their communities.

GM Newsroom

Pursuing Electric Vehicle Education at Tech

I’ll stop geeking out here about the plethora of new electric vehicles on the horizon. And I’ve obviously just scratched the surface of the automotive future. (In fact, as I was editing this post, one of my former students excitedly chimed in about the 2024 GM E-ray, a snazzy, sleek, powerful electric Corvette!)

The main point is that several automotive companies, beyond Tesla, are thinking greener and rolling out electric and hybrid models to meet the different needs, lifestyles, and, especially, price points of consumers. In other words, what many thought was a trend–vehicle electrification–is now both a business strategy and an environmental mission for several automotive companies. And it is a strategy and a mission that Michigan Tech can help prepare you for.

Michigan Tech offers several online graduate certificates and programs so that you keep up with the mobility revolution.