Category Archives: Students

STEM Cell Research Funding for Feng Zhao

Feng Zhao
Feng Zhao

Feng Zhao (Bio Med/LSTI) is the principal investigator on a project that has received a $310,000 research and development grant from the National Science Foundation. This is a three-year project.

Anisotropic Human Mesenchymal Stem Cell Patch with Oriented Vasculature

ABSTRACT

Replacement of diseased tissue requires that the implanted material not only have the proper mechanical strength, but it must also have a functioning blood distribution network (vasculature; veins, capillaries), and these are often difficult to manufacture. This project will seek to understand and mimic the structure and vasculature of three-dimensional (3D) cardiac tissue. The goal is to engineer a mechanically strong and functional cell patch for the regeneration of damaged heart tissue.

The proposed research will also provide opportunities for undergraduate and graduate students, as well as underrepresented community college students, to be involved in interdisciplinary stem cell and tissue engineering research. In addition, a series of seminars will be hosted to increase stem cell and tissue engineering awareness among the health community and public in the UP (Upper Peninsula) of Michigan.

The overall objective of the project is to create aligned nanofibrous natural extracellular matrix (ECM) scaffolds for the biofabrication of a prevascularized anisotropic stem cell patch and elucidate the mechanism of microvessel orientation within the in vivo microenvironment. Human mesenchymal stem cells (hMSCs) are immunoregulatory, regenerative, effective in promoting myocardial regeneration, and function as pericytes to stabilize the microvessels formed by endothelial cells (ECs). These unique properties enable hMSCs to combine with ECM scaffolds and ECs to biofabricate an off-the-shelf or patient-specific prevascularized patch, in which hMSCs will play a dual role of stabilizing vasculature formed by ECs in vitro and orchestrating the regeneration of dead cardiac tissue after implantation. In this project, hMSCs will be co-cultured with ECs in a nanofibrous ECM scaffold to form an aligned capillary-like vasculature, and the effects of aligned nanofibers on the density, orientation and maturation of the microvessels will be investigated. The prevascularized hMSC sheets will be multi-layered and further matured in a perfusion bioreactor, and the role of physiological interstitial flow on the inter-connections, alignment and maturation of the existing microvessels within the 3D biomimetic tissue platform will be evaluated. If successful, this project could lead to the development of personalized or off-the-shelf cardiac tissue patches that could dramatically increase the success rate for the treatment of dead cardiac muscle associated with heart attacks.


BME Senior Design Projects Place First Through Third at Design Expo 2017

Design Expo 2017 took place on Thursday, April 13, on campus in the Memorial Union Building Ballroom.

Hosted by the Pavlis Honors College and the College of Engineering, Design Expo highlights hands-on, discovery-based learning at Michigan Tech.

Undergraduates in Biomedical Engineering excelled at this year’s Design Expo.

Black&Veatch Building a World of Difference® Student Design Awards:

Senior Design Awards (based on poster)

1st place: BME – Enhanced Measurement and Analysis of Gait Disturbances – Aspirus

3rd place: BME – Customizing Transcatheter Nitinol Stents for Treatment of Hypoplastic Left Heart Syndrome in Infants – Spectrum Health

Senior Design Honorable Mention

BME – Blubber-Only Implantable Satellite Tracking Device for Humpback Whales

Pavlis Honors College Innovation Center for Entrepreneurship Innovation Award:

1st place: BME – Customizing Transcatheter Nitinol Stents for Treatment of Hypoplastic Left Heart Syndrome in Infants

2nd place: BME – Instrumentation of Manual Medical Devices

3rd place: BME – Posture Correction Device with Haptic Feedback for Parkinson’s Disease

VIEW THE PHOTOS

Pavlis Third Place
Posture Correction Device with Haptic Feedback for Parkinson’s Disease
Pavlis Second Place
Instrumentation of Manual Medical Devices
Pavlis First Place
Customizing Transcatheter Nitinol Stents for Treatment of Hypoplastic Left Heart Syndrome in Infants

Researchers Attend 40th Annual Meeting of the Adhesion Society

Annual Meeting Adhesion Society

Bruce Lee (Bio Med), Yuan Liu and Weilue He attended the 40th Annual Meeting of the Adhesion Society Feb. 26 through March 1, 2017, in St. Petersburg, Florida.

Lee chaired a session entitled “Bioadhesive Chemistry” and was elected vice chair of the Bioadhesion Division within the Adhesion Society. Lee will serve as the chair of the division in the 42nd Annual Meeting of the Adhesion Society in 2019.

Liu gave an oral presentation entitled “Moldable Nanocomposite PEG Hydrogel Formed by Mussel-Inspired Chemistry as Fit-to-Shape Sealant.”

He gave an oral presentation entitled “Development of a Novel Fibrin-polydopamine Adhesive Hydrogel for Marine Tracking and Wound Healing Applications,” a project directed by Rupak Rajachar (Bio Med).


Rapid Design of 3D Printed Casts

Subject Specific Wrist CastMaterialise, a corporate blog, published an article about 3-D printed orthopaedic casts designed by a team from Michigan Tech to conform to the individual needs of each patient’s fracture.

From Tech Today.

Could 3D Printing Provide an Alternative to Plaster Casts?

Anyone who has ever had a broken arm, sprained ankle or anything that requires wearing a cast undoubtedly remembers how uncomfortable it was. Sure, it was fun to get everyone’s signature on your arm or leg, but that didn’t make up for the itchiness, the rash and the difficulties involved when taking a shower. A bright team of engineers at Michigan Technological University thought there had to be a better solution, and came up with a lightweight, porous, 3D-printed alternative instead.

Dr. Jingfeng Jiang, leader of the project, commented: “The Lightweight Structures Module enabled us to rapidly design and create prototypes of these orthopaedic casts given any patient-specific wrist geometry. Furthermore, the software allowed us to export the virtual design directly to ANSYS for FEA analysis, so that we could make sure the model was strong enough to withstand different loading conditions.”

Read more at Materialise, by Stephanie Benoit.


BME Students Win Awards in Design Expo

The International Business Ventures took first place in the Enterprise program and the

First Place Award Enterprise IBV (International Business Ventures)
Team Leaders: Leslie LaLonde and Andrew Clark, Biomedical Engineering
Advisors: Robert Warrington, Pavlis Honors College
Sponsor: Pavlis Honors College

Project Overview: The Infant Heart Annunciator is a small, BandAid-shaped device that detects an infant’s electrocardiogram, producing a visible flash and audible tone. Often in developing countries, those present at birth do not have the training or equipment needed to determine if an unresponsive infant is alive. Our goal is to eliminate this unnecessary loss of life. Our team is also designing a simple, yet reliable, ventilator that can be stockpiled by hospitals. Typically, hospitals maintain sufficient numbers of ventilators; however, an increase of patients resulting from a pandemic could create a shortage of ventilators. The current high cost of most ICU ventilators prevents hospitals from stockpiling these machines.

Part of the First Place team  that won the Enterprise Award  IBV (International Business Ventures)
Part of the First Place team that won the Enterprise Award IBV (International Business Ventures)

BME Team won Honorable Mention – Compliance Keweenaw: Aspirus Keweenaw Hand-washing Compliance System
Team Members: Anna Waller, Jannah Brandt, Drew Markel, Creighton Bradley, and Rebecca Manshaem, Biomedical Engineering
Advisor: Bruce Lee, Biomedical Engineering
Sponsor: Aspirus Keweenaw

Project Overview: Hand hygiene is of importance to hospitals not only for the safety and health of employees but also to reduce the spread of hospital-acquired infections and protect patients. Aspirus Keweenaw recruited our team to create an automated system to track hand-washing compliance among employees to assist them in their goal of 100 percent compliance. We created a system using a microcontroller and RFID readers to detect when a healthcare worker enters a patient’s room and reaches compliance using the sanitizing foam dispenser. This system will be placed near the doorway and communicate with a wristband that identifies the healthcare worker and vibrates as a reminder if compliance is not reached.

 BME Team won Honorable Mention  – Compliance Keweenaw: Aspirus Keweenaw Hand-washing Compliance SystemTeam Members: Anna Waller, Jannah Brandt, Drew Markel, Creighton Bradley, and Rebecca Manshaem, Biomedical Engineering
BME Team won Honorable Mention – Compliance Keweenaw: Aspirus Keweenaw Hand-washing Compliance System
Team Members: Anna Waller, Jannah Brandt, Drew Markel, Creighton Bradley, and Rebecca Manshaem, Biomedical Engineering

BME Teams were featured in the Michigan Tech news article: Design Expo 2015 Success: Winners, Senior Design and Enterprise Projects

See the Design Expo Summary


Biomedical Engineering Announces the 2014 Kenneth L. Stevenson Research Fellows

The Department of Biomedical Engineering announces the recipients of the 2014 Kenneth L. Stevenson Research Fellows. Two undergraduate and two graduate students are selected annually to receive these competitive research fellowships. The Stevenson Fellows program provides an opportunity for upper-level undergraduate and early-stage graduate students to spend the summer in a total immersion research experience in a biomedical engineering research laboratory. The annual competition is open to students from all academic departments who wish to explore biomedical engineering research and provides a generous research stipend. Continue reading


Yates to Attend NSF Research Program for Undergraduates

Keegan Yates, a third-year biomedical engineering major, has been selected to participate in the National Science Foundation Research Experience for Undergraduates, to be held this summer at Virginia Tech.

He is among 10 students selected nationwide to participate in the program, which will focus on multiscale approaches to biomechanics.

Yates has been working on research projects in Assistant Professor Feng Zhao’s (Biomedical Engineering) Stem Cell and Tissue Engineering Laboratory since his freshman year. His major focus has been on the development and characterization of naturally derived biomaterials for tissue engineering. Dr. Zhao said “Keegan is a very smart, reliable, highly motivated and independent student who has good sense of science. Keegan has great potential to become an outstanding scientist.”

He has coauthored three papers and presented at the Biomedical Engineering Society national meeting in 2013, as well as twice at the Biotech Research Center’s student research forum, where he won a merit award in 2013 and a grand prize for best poster in 2014.

Yates will investigate mechanical properties of structures ranging from cellular component to the whole body and determine how this knowledge can help create devices to prevent, diagnose and treat injuries and disease.

The award includes a $4,000 stipend, lodging and transportation to Virginia Tech.

Keegan Yates, a third-year biomedical engineering major, has been selected to participate in the National Science Foundation Research Experience for Undergraduates

Kenneth L. Stevenson Biomedical Engineering Fellowship Program

Kenneth L. Stevenson Biomedical Engineering Fellowship Program

The Department of Biomedical Engineering at Michigan Technological University is now accepting applications for the Kenneth L. Stevenson Biomedical Engineering Summer Research Fellowship Program. The primary goal of the program is to provide deserving undergraduate and beginning graduate students the opportunity to participate in meaningful Biomedical Engineering research at Michigan Technological University. Specifically:

a)      Undergraduate students (2 awards): Undergraduates will receive undergraduate-to-graduate transitional research fellowships of $4000 each. Students entering their junior and senior years will be considered. The award is intended to introduce students to the rigors associated with graduate level research in Biomedical Engineering.

b)      Graduate students (2 awards): Students who have completed an undergraduate degree prior to the fellowship period and are beginning studies in Michigan Technological University’s Biomedical Engineering graduate program (PhD or MS) will receive fellowships of $5000 each in support of intensive summer research. These awards will allow students to establish their research in the initial phase of their graduate studies.

The application process is now open!  Program requests for applications will be announced in Tech Today beginning in mid-March, with applications for these annual awards due March 31, 2014 by noon (EST). Fellowship recipients will conduct a research project under the guidance of a Michigan Tech Department of Biomedical Engineering faculty mentor, during the summer semester. Fellowship recipients will be required to:

  • Submit a final progress report of their work and/or evidence clearly showing the work has contributed significantly to a work being prepared for peer-reviewed publication.
  • Present their research in poster or oral form, preferably at a nationally recognized research meeting or the University BRC research forum, or the Biomedical Engineering Graduate Research Forum.

Application process:

Each applicant should submit the following (Incomplete applications at the deadline will not be considered):

  1. Application Coversheet (pick up in Biomed main office MM309, or email malabeau@mtu for a copy)
  2. Project Description (2-page limit, 12-pt font- Arial, ¾-inch margins)
  3. Faculty mentor letter of support
  1. Application Coversheet. Completed coversheet should be included with each application.
  1. Project Description. Project description should be prepared with (not by) a faculty mentor, and at a minimum address the following regarding the proposed project:
    1. Motivation and Significance
    2. Specific objectives, hypotheses, and aims
    3. Brief description of the work that will be done to specifically address aims
    4. Time-line for work to be completed

The Project Description is limited to 2 pages (12-pt font, Arial, ¾-inch margins minimum) and is to be submitted as a PDF file. You may include graphs, images and tables as needed. A separate page may be used for references as needed. All references however must be cited in the text of the project description.

  1. Faculty mentor Letter of support. Letters of support should at the minimum address the following:
    1. How long have you known the student and in what capacity?
    2. Why do you think the student is likely to succeed in the project?
    3. Where does the student’s project fit into your overall research program?

To submit application, email a PDF file that includes both the Application Coversheet and Project Description to Judy Schaefer (jlschaef@mtu.edu). Ask your faculty mentor to email the letter of support to the same address.


BME Welcomes Newest Faculty Member: Assistant Professor Dr. Xuan Liu

The research of Dr. Xuan Liu’s laboratory focuses on developing novel optical imaging and sensing techniques for biomedical applications. One major area of our study is optical coherence tomography (OCT) which provides high resolution cross-sectional images of biological specimen in real-time. OCT has been used to help the diagnosis of various diseases in ophthalmology, cardiology and oncology. Currently, we are developing a manually scanned OCT system with a miniature probe. Moreover, we are also interested in extraction functional information from OCT images to characterize chemical and mechanical properties of biomedical specimens or synthetic biomedical materials.

Dr. Liu received her B.S. and M.S. degrees from Tsinghua University, Beijing, China. She started to study in the Johns Hopkins University since 2007 and received her Ph.D degree in 2011. Before joining the faculty of Michigan Tech, Dr. Liu worked as post-doctoral fellow in the Johns Hopkins University.


Research Experience for Undergraduates Summer 2013

Students in the Research Experience for Undergraduates REU summer 2013 programpresented posters on research projects they have worked on over the summer. The project topics include: measurement of diesel emission particulate matter, experimental hybrid vehicle fuel system, lithium ion battery characterization and SOC measurement, hybrid vehicle dynamometer test stand development, heavy duty truck driving simulation, and measuring temperature variations in combustion vessels. Continue reading