Letter from the Chair

An aerial drone image of campus in the snow with pink sunlight at sunrise.
Happy Holidays and a Wonderful New Year to All, from the Department of Chemical Engineering at Michigan Tech!

Dear Alumni and Friends,

Michael Mullins standing outside in campus near the Husky Statue
Michael Mullins, Professor and Chair

As you may have heard, with Dr. Agrawal’s retirement in June, I have stepped in to fill the department chair role until a national search for a new chair is completed.  When I was asked to return as chair this summer, I was happy to come back to the department I have spent over 35 years helping to build. I was able to come back up to speed quickly and help get the department ready for fall semester. Many major department changes have happened since then and I’d like to take this opportunity to bring you up to date on a few of those.

I am not exaggerating to say this is a pivotal time in the history of Michigan Tech’s Department of Chemical Engineering. In addition to Pradeep’s retirement, our long-time colleague Tony Rogers decided to retire this summer after leading our nationally recognized senior capstone design course for over 30 year and serving as mentor and advisor for our Consumer Product Manufacturing (CPM) Enterprise for more than 25 years. Professor of Practice Kurt Rickard retired after helping to rebuild our process control course and co-teaching our UO lab over the past 4 years. (He has now taken the job as mayor of Hancock!). In the previous year, Drs. Tom Co, Faith Morrison and Komar Kawatra, who had over 100 years of dedicated service to MTU between them, also retired!  We are now faced with a multi-year faculty rebuilding phase. Professor of Practice Jon Herlevich and Assistant Teaching Professor Kyle Griffin are great new additions to our department, and we’ve begun the search for additional rising stars to join our faculty over the next 2 years.

Our longtime academic advisor, Katie Torrey, has moved to another position in the university. I originally hired Katie when I was chair 18 years ago, and she has been an invaluable resource for a generation of students and our entire department. Katie will be greatly missed, but we have lured Judy Burl out of retirement to serve as academic advisor until we find a permanent replacement.  We are also lucky to have Tyson Kauppinen join our lab manager Stefan Wiesnewski to help keep our chemical engineering laboratories the best in the USA.

There have been many transformational changes to our facilities over the past few months!  Due to the generosity of our alumni, we have a wonderful new Student Learning Center and Department Conference Room, which are heavily used by students and faculty. This summer we finished a complete renovation of all the classrooms and public areas of our building, and the new $53M HSTEM addition to our building will be ready for move-in by late March 2024.

Just today, it was announced that Michigan Tech has received a $5 million grant – with a potential $2 million matching grant – from The Herbert H. and Grace A. Dow Foundation for addition renovations to the Chemical Sciences and Engineering Building. In 2024 we are initiating 2 projects that will have a huge impact on our students: a new Senior Capstone Design Lab and a Maker’s Space for the Enterprise Programs centered in our department, which could be eligible for these matching gifts.

Chem Sci Building on Campus with newly constructed HSTEM addition attached. The new addition hard dark slate and lots of green tinted plate glass windows.
Michigan Tech’s new HSTEM addition is now mostly complete.

As a former (and now current) department chair, I know how important our alumni supporters and friends like you are to the success of our program.  The resources we receive from the state and from tuition dollars are just enough to cover the basic salaries of the chemical engineering program, and little else. It is the generosity of our alumni and industry friends that allows our program to truly excel. If you would like to be a part of this exciting time for our department, be sure to reach out to me anytime to learn more.

Warmest wishes for the new year,

Michael Mullins
Professor and Chair, Department of Chemical Engineering
memullin@mtu.edu

Natalie Nold Awarded at 2023 AIChE Annual Meeting

Natalie Nold is the recipient of the 2023 Separations Division Graduate Student Research Award for her outstanding work in the area of bioseparations. Nold is a Ph.D. student working in Caryn Heldt’s bioseparation lab.

The award was presented at the Separations Division Dinner at the AIChE Annual Meeting. The 2023 AIChE Annual Meeting was held on November 5–10 in Orlando, FL.

The Separations Division Graduate Student Research Award recognizes outstanding graduate students in the following areas:

  • Distillation and Absorption
  • Crystallization and Evaporation
  • Extraction
  • Membrane-Based Separations
  • Adsorption and Ion Exchange
  • Fluid-Particle Separations
  • Bioseparations

Recipients receive a plaque and $200 for each award. For consideration a single paper must be submitted that contributes to separations fundamentals or applications. The paper must report on research, investigation or design, and must be part of the student’s work for a graduate degree.

Chemical Engineering External Advisory Board Poster Session 2023

The poster session took place on the third floor of the ChemSci building on October 20, with prizes for student organization, undergraduate research, and graduate research.

First Place Graduate Research: Hunter Stoddard, Microbial Community Forms Biofilm in Hybrid Chemical-Biological Upcycling Process

Second Place Graduate Research: Grace Dykstra, Low-cost, Stable, and Selective Synthetic biosensors for Lactate Detection

First Place Undergraduate Research: Prajeet Kadam, Quantifying Dielectrophoretic Responses of RAW 264.7 Macrophages: Baseline and LPS Activated Cells

Second Place Undergraduate Research: Morgan Redding, Low-cost, Stable, and Selective Synthetic biosensors for Lactate Detection

First Place Student Organization: Addymae Palecek, The American Institute of Chemical Engineers (AIChE)

Graduate Research

Iman Najafipour by his poster.
Iman Najafipour by his poster.

Poster #1

Optimization of water extraction conditions for removal of yeast inhibitory compounds from switchgrass

Authors: Iman Najafipour, Dr. Rebecca Ong

Abstract: Drought-stressed switchgrass, a potential bioenergy feedstock, often exhibits elevated yeast inhibitor. Effective removal of inhibitory compounds enhances sugar conversion to bioethanol, maximizing energy production, yield, and cost-efficiency. The objective is to optimize Accelerated Solvent Extraction (ASE) for efficient yeast inhibitor extraction, thereby increasing yield while minimizing water consumption. The impact of temperature (A), time (B), and extraction cycles (C) on the extracted mass was investigated using a Box-Behnken model. A, B, C, AB, BC, and CC terms influenced the extraction, aligning well with experimental data. This ongoing project examines how extraction conditions affect yeast inhibition, and fermentation.

Hunter Stoddard by his poster.
Presenter Hunter Stoddard by his poster.

Poster #2: First Place Graduate Research

Microbial Community Forms Biofilm in Hybrid Chemical-Biological Upcycling Process

Authors: Hunter Stoddard, Dr. Rebecca Ong

Abstract: Biofilms can form on process equipment and make harvest of the cell biomass challenging. In this study, a microbial consortium was grown on products from pyrolysis and from depolymerization using ammonium hydroxide. Bioreactor conditions were varied to determine the highest production of biomass and the proportion of biomass as a biofilm. It was determined that the most biomass was produced at 30°C, pH 7, 100 rpm agitation, and 10 sL/h airflow. Reducing temperature and increasing aeration had the largest impact on biofilm formation where the percentage of biomass that was attached as biofilm was 20.8% at 30°C and 27.8% at 10 sL/h airflow.

William Hanson by his poster.
William Hanson by his poster.

Poster #3

Prediction of ex-situ Direct Carbonation of Natural Minerals using Machine Learning Algorithms

Authors: William Hanson, Dr. Lei Pan

Abstract: Mineral carbonation is a carbon fixation method in which the atmospheric CO2 reacts with alkaline oxide/silicate minerals to form carbonate minerals. In this work, mineral carbonation efficiency for the direct carbonation of various natural silicate minerals was investigated. In addition, carbonation efficiency was modeled using machine learning techniques including gradient boost, random forest, artificial neural network, K-nearest neighbor, and self-building neural network. Among models tested, gradient boost had the lowest error while artificial neural networks had the highest error. The present result is to ensure that industrial-scale carbonation operations will be optimally designed.

Idris Tohidian by his poster.
Idris Tohidian by his poster.

Poster #4

Investigating thermal stabilization of porcine parvovirus by sugars and amino acids

Authors: Idris Tohidian, Lynn Manchester, Rohan Chaudhari, Dr. Caryn Heldt

Abstract: Developing thermostable vaccines not only reduces vaccination cost, but also increases their widespread distribution all over the world. To achieve this goal, we focused on unravelling the stabilization ability of four sugars and five amino acids frequently used as additives in biotherapeutic formulations today. Both dry and liquid formulations were explored. The results showed good stabilization effect of sugars in liquid and dry formulations, but the amino acids were able to stabilize porcine parvovirus only in the dry state.

Grace Dykstra by her poster.
Presenter Grace Dykstra by her poster.

Poster #5: Second Place Graduate Research

Low-cost, Stable, and Selective Synthetic biosensors for Lactate Detection

Authors: Grace Dykstra, Dr. Yixin Liu

Abstract: High lactate levels can be a sign of lactic acidosis and is attributed to sepsis and septic shock, cardiac arrest, lung disease, and trauma within the body. Electropolymerized Molecularly Imprinted Polymers (eMIPs) can be used to develop biosensors with a molecularly imprinted cavity as their recognition element, with major advantages of low-cost, quick fabrication, inherent selectivity, and stability. We can further enhance eMIPs with Prussian blue (PB) nanoparticles deposited on the electrode surface as a redox-active species to create label-free biosensors for lactate detection with a one-step detection.

Undergraduate Research

Morgan Redding by her poster.
Presenter Morgan Redding by her poster.

Poster #6: Second Place Undergraduate Research

Scaling Down High-Solids Enzymatic Hydrolysis to Increase Sample Throughput

Authors: Morgan Redding, Mikayla Marshalek, Andrea Senyk, Dr. Rebecca Ong

Abstract: One approach toward biofuel production requires lignocellulosic biomass to undergo high-solids enzymatic hydrolysis to convert cell wall carbohydrates into fermentable sugars. However, our current process suffers from bottlenecks in sample throughput, limiting the types of experiments we can perform. To overcome bottlenecks in solids separation, enzymatic hydrolysis will be scaled down from 32 mL hydrolysate volume to ~4–10 mL volume to allow for higher speed processing in microcentrifuge and avoid time consuming vacuum filtration. The new enzymatic hydrolysis procedure will be coupled with a revised pretreatment and microplate fermentation to enable higher throughput processing and analysis of diverse lignocellulosic feedstocks.

Prajeet Kadam by his poster.
Presenter Prajeet Kadam by his poster.

Poster #7: First Place Undergraduate Research

Quantifying Dielectrophoretic Responses of RAW 264.7 Macrophages: Baseline and LPS Activated Cells

Authors: Prajeet Kadam, Juan Cruz-Moreno, Holly Flores, Nick Peterson, Roger Guillory, Zainab Alshoug, Dr. Adrienne R. Minerick

Abstract: Macrophages are critical effector immune cells that eliminate diseased or damaged cells based on their nascent or activation state (induced via lipopolysaccharide, LPS). Dielectrophoretic (DEP) tools induce cellular charges that probe RAW 264.7 macrophages in baseline and LPS-stimulated states by observing changes in cell morphology and quantifying DEP spectra. This provides insights into cell membrane capacitance, conductivity, and polarizability. A custom-designed microfluidic device precisely controls and monitors the cell during DEP experiments, revealing altered cell morphology, stronger DEP responses at higher voltages, and distinctive responses in LPS-activated macrophages at lower frequencies.

Student Organization

AIChE poster.
AIChE poster.

Poster #8: First Place Student Organization, Presenter Addymae Palecek

The American Institute of Chemical Engineers (AIChE)

Authors: Addymae Palecek, Alicia Hinman, Jeffrey Kennedy, Devin Spencer, Brandon Mitchell-Kiss, Jacqui Foreman, Allison Swanson, Danya Salame, Spencer Kaastra, Dr. Jeana Collins

Abstract: The American Institute of Chemical Engineers (AIChE) develops the engineering students at MTU personally and professionally by offering them the opportunity to meet with industry representatives. This connection allows our members to learn about what they do in their role with the company, what their company does, and grow an authentic friendship. AIChE promotes the sharing of knowledge pertaining to the field of chemical engineering and sustainability. This organization has been involved actively in the community, participating in Make a Difference Day and more. AIChE is a Chem-E-Car sponsor; this is a competition where students design a chemical reaction-driven car and compete with other schools at both regional and national levels.

Kobina Akyea Ofori Represents Michigan Tech for the MINER BOOST Research Program

Ph.D. student Kobina Akyea Ofori (chemical engineering) is currently representing Michigan Tech and the Department of Chemical Engineering during a four-day intense training session in Baltimore, Maryland, as part of the MINER BOOST research program and featuring tons of information and socialization opportunities.

MINER BOOST (Mining Innovations for Negative Emissions Resources – Business Orientation and Origination of Spinouts Training) is organized by the U.S. Department of Energy (DOE), specifically ARPA-E (the Advanced Research Projects Agency–Energy), under Douglas Wicks, the program director for waste-to-energy projects.

The program caters to graduate students, stakeholders and investors, and aims to address the absence of a vibrant mining and mineral processing start-up community. It seeks to:

  1. Create a community of mining and mineral processing innovators by bringing together students and postdocs from academic groups within the MINER program.
  2. Teach participants practical skills related to pitching, networking and company building.
  3. Develop case studies evaluating the commercial potential of current projects students and postdocs are working on within the MINER program.

Ofori expressed his enthusiasm about the journey thus far, stating, “The experience has been incredibly exciting!”

My Story: Katherine Baker, MTUengineer

Katherine Baker ‘26, chemical engineering

Katherine holds a helmet and stands in front of the Billerud company entrance sign.
Katherine Baker ‘26, chemical engineering

I’m originally from Austin, Texas and grew up in that area, then eventually moved up to McAlester, Oklahoma. I decided on Michigan Tech because of its strong engineering program. I also wanted to experience living in a new area and see some snow, which I’ve definitely been able to do. I started out in the general engineering program and settled on chemical engineering towards the end of my first year because I enjoy math and chemistry and really like learning how different processes work.

“My time at Tech has shaped my life in incredible ways.”

Katherine Baker

I attended the fall career fair last month and had a great experience, both personally and professionally. I learned about companies I am interested in and connected with recruiters, and many are Tech alumni. I ended up accepting a hybrid co-op offer from Kimberly-Clark. I’ll work onsite at their facility in Neenah, Wisconsin over the summer, then part-time remotely from campus next year.

In August I completed an eight-month co-op with Billerud at their paper mill in nearby Iron Mountain, Michigan. Most of my projects revolved around chemical savings and energy optimization. I worked in a process engineering role on their pulp mill team, and was able to learn from both engineers and operators. I learned a ton about trial planning, technical communication, and the paper industry.

Huskies Pep band members holding flutes and wearing funny hats
Katherine plays flute in the Huskies Pep Band, with a Shrek hat.

I have a few other jobs on campus. I work as an RA in the dorms at Michigan Tech. I also work as a peer mentor in the Department of Chemical Engineering. Both roles give me opportunities to connect with new students and help them navigate their first few years at Tech, which is really fulfilling for me. I also serve as the treasurer of the Chemical Engineering Student Advisory Board, and flute section leader in the Huskies Pep Band.

I’m an active member of the Society of Women Engineers (SWE). It’s given me so many opportunities to connect with other women on campus and figure out my career path. I recently completed the SWE 2022-2023 Collegiate Leadership Institute, a professional development program. I attended seminars put on by successful women in industry, met with a professional mentor, and grew in my leadership skills.

Lauren stands at the shore of Lake Superior at night with Northern Lights in the background.
Katherine came to Michigan Tech all the way from Austin, Texas. She wanted to see some snow, and also got to see the Northern Lights!

This month I will be attending the national SWE conference, WE23, in Los Angeles with other members of the Michigan Tech SWE section. I’m super excited for all the opportunities at WE23—to hear from more women in engineering and broaden my professional network.

My time at Tech has shaped my life in incredible ways. I’m so grateful for the strong, tight-knit community up here and feel super supported in my goals by both faculty and other students. As an RA and peer mentor, I try to give back to the community by supporting incoming students, just like I was supported my first few years. Being in the engineering program has given me so many opportunities to grow professionally.

After college, I plan to work as a process engineer, hopefully at a plant where I can really get hands-on with my projects. I’m not yet sure which industry I want to be in long-term, but I’ve learned about so many different ones through my co-op and networking with company recruiters. I’m excited to continue learning and choose one that turns out to be the best fit for me.

“Be confident in yourself and learn as much as you can.”

Advice to incoming students, from Lauren Spahn

My advice to incoming students? Chemical engineering classes can be challenging and there might be points when you think you’re not cut out for it and should choose an easier major (I know I’ve had those moments). Be confident in yourself and learn as much as you can. Keep your head up and try to develop a support system early on with fellow students.

Director Caryn Heldt Gives Us a Peek at the H-STEM

Caryn Heldt (ChE/HRI) was quoted in a WZMQ 19 News story featuring a sneak peek at the new H-STEM Engineering and Health Technologies Complex, which is scheduled for partial opening in the spring 2024 semester.

“Not only can the students see what’s going on but they can kind of get more involved cause they see it. The other really exciting part from a faculty point of view is to have a place where research is being done from a subject basis.”

Director of MTU’s Health Research Insitute Caryn Heldt.

Read more and watch the video at WZMQ 19 News, by Mitchell Rife.

Related

Gilchrist’s U.P. visit spotlights innovation

Sustainable Foam: Coming Soon to a Cushion Near You

Chemical engineering major Lauren Spahn presented her research at the Michigan Tech Undergraduate Research Symposium. Her lignin project was supported by Portage Health Foundation, the DeVlieg Foundation, and Michigan Tech’s Pavlis Honors College.

Most polyurethane foam, found in cushions, couches, mattress, insulation, shoes, and more, is made from petroleum. What if it could be environmentally-friendly, sustainable, and made from renewable biomass? It’s entirely possible, thanks to the work of chemical engineer Lauren Spahn ’22 (now an alumna) and her fellow researchers at Michigan Tech. It all happens in the Biofuels & Bio-based Products Lab at Michigan Tech, where researchers put plants—and their lignin—to good use. The lab is directed by Dr. Rebecca Ong, an associate professor of chemical engineering.

Q&A with Lauren Spahn

Please tell us a little about your work in the lab.

Our goal in working with Dr. Ong is to develop sustainable industries using renewable lignocellulosic biomass⁠—the material derived from plant cell walls. There are five of us working on Dr. Ong’s team. We develop novel co-products from the side streams of biofuel production, and pulp and paper production. We’re trying to make good use of the leftover materials.

 

Lignocellulose, aka biomass, is the dry matter of plants. Energy crops like this Elephant Grass, are grown as a raw material for the production of biofuels.

What kind of research are you doing?

My particular research project involves plant-based polyurethane foams. Unlike conventional poly foams, bio-based foams are generated from lignin, a renewable material. Lignin is like a glue that holds wood fibers together. It has the potential to replace petroleum-derived polymers in many applications. In the lab, we purify the lignin from something called “black liquor”⁠. It’s not what sounds like. Black liquor is a by-product from the kraft process when pulpwood is made into paper. Lignin is collected by forcing dissolved lignin to precipitate or fall out of the solution (this is the opposite of the process of dissolving, which brings a solid into solution). By adjusting the functional properties of lignin during the precipitation process, we hope to be able to tailor the characteristics of resulting foams. It’s called functionalization.

Typically in the lab process, functionalization occurs on lignin that has already been purified. What we hope to do is integrate functionalization into the purification process, to reduce energy and raw material inputs, and improve the economics and sustainability of the process, too.

Purified lignin, used to make bio-foam. The resulting foam will likely be light or dark brown in color because of the color of the lignin. It would probably be used in applications where color does not matter (such as the interior of cushions/equipment).

How did you get started in undergraduate research?

I came to Michigan Tech knowing I wanted to get involved in research. As a first-year student, I was accepted into the Undergraduate Research Internship Program (URSIP), through the Pavlis Honors College here at Tech. Through this program I received funding, mentorship, and guidance as I looked to identify a research mentor. 

How did you find Dr. Ong, or how did she find you?

I wanted to work with Dr. Ong because I found the work in her lab to be very interesting and relevant to the world we live in, in terms of sustainability. She was more than willing to welcome me into the lab and assist me in my research when I needed it. I am very thankful for all her help and guidance. 

What is the most challenging and difficult part of the work and the experience?

Not everything always goes according to plan. Achieving the desired result often takes many iterations, adjustments, and even restructuring the experiment itself. After a while, it can even become discouraging.

What do you do when you get discouraged? How do you persevere?

I start thinking about my goals. I enjoy my research—it’s fun! Once I remind myself why I like it, I am able to get back to work. 


Lignin at the nanoscale, imaged with transmission electron microscopy (TEM). Raisa Carmen Andeme Ela, a PhD candidate working in Dr. Ong’s lab, generated this image to examine the fundamental mechanisms driving lignin precipitation.

What do you enjoy most about research?

I enjoy being able to run experiments in the lab that directly lead to new designs, processes, or products in the world around me. It’s wonderful to have the opportunity to think up new product ideas, then go through the steps needed to implement them in the real world. 

What are your career goals and plans?

I plan to work in R&D for industry. I am very passionate about research—I want to continue participating in research in my professional career.

Why did you choose engineering as your major?

The field is so large. Chemical engineers can work in industry in numerous areas. I liked the wide variety of work that I could enter into as a career. 

Editor’s note: Lauren graduated with a BS in Chemical Engineering in April 2022, and started work at Hemlock Semiconductor in Saginaw, Michigan soon after.

Did you know?

  • Michigan Tech has more than 35 research centers and institutes
  • 20 percent of all Michigan Tech patent applications involve undergraduate students
  • Students in any engineering discipline are welcome to give research a try
  • Research expenditures at Michigan Tech—over $44 million-—have increased by 33% over the last decade, despite increased competition for research funding. 
  • Michigan Tech research leads to more invention disclosures—the first notification that an invention has been created—than any other research institution in Michigan.


Natalie Nold Makes an Appearance in the Heldt Lab

Natalie Nold in the Heldt Bioseparations Lab.
Natalie Nold in the Heldt Bioseparations Lab.

Caryn Heldt (ChE/HRI) was quoted and Ph.D. student Natalie Nold (chemical engineering) was pictured by Chemical & Engineering News Magazine in a photo essay featuring images of the laboratories where C&EN readers work and what makes those spaces special to them.

A version of the essay appeared in Volume 101, Issue 32 of the magazine.

Read more and view the gallery in “Scenes from Where Chemists Work” in Chemical & Engineering News Magazine.

Alberto Mejía: New Faculty Spotlight

Portrait photo of Alberto Mejia
Bienvenido, Dr. Alberto Mejía!

Luis Alberto Mejía Manzano comes to Michigan Tech from Monterrey, Mexico, where he earned his MS and PhD in Biotechnology at the Instituto Tecnologico y de Estudios Superiores de Monterrey (ITESM). He earned his undergraduate degree in Biotechnology Engineering, Universidad Politécnica de Pachuca. Welcome, Dr. Mejía!

What drew you to Michigan Tech?

I am here at Michigan Tech for a research stay in bioprocessing and virus purification. I will also be contributing my own expertise in the field.

What is your primary area of research and what led you to it?

I am focused on the design of green bioprocessing for the recovery of high value biomolecules and bioparticles.

Can you share a little more about your research and what you like about it?

I have worked in the purification of PEG-modified proteins/enzymes (PEGylated). They are used as biopharmaceuticals in the treatment of several diseases. They’re also of interest in the recovery and purification of anticancer, low-molecular weight compounds such as flavonoids. The purpose is to design more adequate, efficient and sustainable bioprocesses.

What do you consider an important long-term goal for your research?

I want to generate new knowledge and new practical applications of our research. These offer solutions to current and future human needs in food safety, as well as health care and treatment.

“Realize your dreams, contribute in your profession to humanity in a positive way.”

Advice for incoming students from Dr. Alberto Mejía, Chemical Engineering Adjunct Assistant Professor and Research Assistant Professor

What do you hope to accomplish, as an educator and as a researcher, over the next few years?

One goal is to discover a novel bioprocess for obtaining these bioproducts, all the while teaching through my experience in research. I hope to inspire a new generation of professionals.

What do you like to do in your spare time?

I like to spend time with my family, friends, reading thriller/science fiction novels and hiking.

What’s your favorite book, movie, or piece of art?

In general, I like suspense books and movies.

Dr. Mejía, Michigan Tech’s Mont Ripley is a great place to hike and enjoy the fall colors!

Any favorite sports on campus, in Houghton, or in the UP?

Hiking is also considered for me a sport.

Any advice for incoming students?

Realize your dreams, contribute in your profession to humanity in a positive way. Be sure to enjoy the diverse options you have available right here on the MTU campus.

Tyson Kauppinen: New Staff Spotlight

Tyson Kauppinen

In his role as Laboratory Technician, Tyson Kauppinen assists with construction, installation and repair of lab equipment. This is no small feat, considering the number and size of labs in the Department of Chemical Engineering at Michigan Tech.

Kauppinen comes to Michigan Tech from Carey Design Build in Iron Mountain. He earned an Associate’s degree in Mechanical Engineering Technology from Gogebic Community College.

What drew you to Michigan Tech?

I grew up in Calumet, Michigan. Being local to the area, of course I love the beautiful views the Upper Peninsula has to offer. But mainly I came to Michigan Tech in order to be able to put everything I’ve learned at school together with my work experience, in order to help others with their various projects and research.

“Be involved in something.”

Tyson Kauppinen’s advice for incoming students.

What do you like to do in your spare time?

I like to spend time outdoors, as well as doing some woodworking, making furniture.

What’s your favorite book, movie, or piece of art?

My favorite movie is Miracle.

Houghton, Michigan is the birthplace of professional hockey.

Any favorite spots on campus, in Houghton, or in the UP?

My favorite sport is hockey. It’s a great sport to be interested in when you get to work and live in the city where professional hockey was born.

Any advice for incoming students?

Be involved in something. That is my piece of advice. To be involved with a group or organization builds connections and friendships, and makes coming to school/work every day much more enjoyable.