December 3, 2012: Integrating Ecosystem Modeling and Remote Sensing to Understand the Effects of Hypoxia on the Food Web in the Northern Gulf of Mexico. Andrea Vander Woude. Cooperative Institute for Limnology and Ecosystems Research;
4 pm, M&M Room U113
Dr. Andrea Vander Woude will be next week’s EPSSI seminar speaker. She is currently a Postdoctoral Researcher at the Cooperative Institute for Limnology and Ecosystem Research (CILER) and NOAA’s Great Lakes Environmental Research Labratory (GLERL). Andrea works in the fields of remote sensing and ecosystem modeling of the Great Lakes and coastal ocean. Her seminar is titled, “Integrating ecosystem modeling and remote sensing to understand effects of hypoxia on the food web in the Northern Gulf of Mexico.”
Abstract: The Northern Gulf of Mexico (NGOMEX) experiences extensive seasonal hypoxia that is predicted to cause declines in the production of commercially and recreationally valuable fish and shellfish. In order to understand the direct and indirect effects of hypoxia on food web dynamics and ecological and economically important species, we developed an Atlantis ecosystem model and compared the model results to the available satellite remote sensing data. The Atlantis framework is a three-dimensional biogeochemical and biophysical modeling system that uses hydrodynamic model output as a forcing function and simulates biochemical cycles and food web interactions. Nutrient and field observations from 2003-2008, and from Southeast Area Monitoring and Assessment Program (SeaMap) were used to initialize the Atlantis ecosystem-based model and the in situ data were also compared to salinity, temperature and chlorophyll values from the available satellite imagery. This included coincident satellite data from the Aquarius satellite (salinity) the Moderate-resolution Imaging Spectroradiometer (MODIS) and the MEdium Resolution Imaging Spectrometer (MERIS). The output of the NGOMEX Atlantis model helped define the extent and seasonal timing of hypoxia on predator-prey interactions and directional change in the food web components. Our overall goal is to use these results to forecast the effects of hypoxia on NGOMEX living resources by uniquely combining both satellite and ecosystem based model results.