Author: Brittany Buschell

Ian Gannon Receives the Dean’s Award for Outstanding Scholarship

Ian Gannon (GMES) recently received the Dean’s Award for Outstanding Scholarship. The Dean’s Award for Outstanding Scholarship is given to students who excel academically and have demonstrated originality in their research, leadership skills, and professionalism.


Advised by Dr. James DeGraff, Ian successfully defended his MS thesis titled “Integrating LiDAR, Aeromagnetic, and Geological Field Data to Identify Structural-Lithologic Elements Within the Archean Carney Lake Gneiss Complex” on August 3, 2023.


Ian contributed significantly to the U.S. Geological Survey under the Earth Mapping Resources Initiative (Earth MRI) project. He helped the survey to understand the complex geological makeup of a section of the Minnesota River Valley subprovidence.


Gannon’s achievement is an inspiration for all the students who are passionate about research and innovation. Congratulations, Ian!

Ian Gannon

Luke Bowman and Erika Vye Represent Michigan Tech at the GSA Annual Meeting

Assistant Teaching Professor Luke Bowman (GMES, PhD ‘15) and Research Scientist Erika Vye (GLRC/GMES, PhD ‘16) represented Michigan Tech at the Geological Society of America’s annual meeting in Pittsburgh, PA, October 14-18, 2023. They participated in a session titled “Field-Based Geoscience Education: Advances in Research, Program Evaluation, Pedagogy, and Curriculum”.

Bowman shared an oral presentation titled “Community Involvement in Building and Testing A Flash-Flood Model for Simulating Flood Frequency” (with co-authors Natalea Cohen (GMES, MS ‘23), John Gierke, Vanessa Bailey, Hannah Lukasik, Shannon McAvoy, Mario Hugo Mendez, Susan Toivonen, and David Yates).

This research, which involves several MTU researchers and students, is part of a multi-year project that addresses climate change-induced, water-related challenges in the Central American Dry Corridor, focusing on agricultural community adaptations to extreme hydrometeorological events in El Salvador. This project is a collaboration of Michigan Technological University (MTU), CUAHSI, and Lutheran World Relief (LWR) in El Salvador, funded as a National Science Foundation International Research Experience for Students (IRES).

Geological Society of America Abstracts with Programs. Vol. 55, No. 6, 2023
doi: 10.1130/abs/2023AM-394917

Bowman also participated in a workshop on Positive Mental Health in the Geosciences sponsored by GSA and the Science Education Resource Center (SERC). The workshop shed light on the challenges experienced by many geoscientists, explored the common signs that indicate when geoscientists are struggling with their mental health, and showcased best practices to create a safe and supportive working environment.

Vye shared an oral presentation titled “The Keweenaw Geoheritage Summer Internship: Exploring Our Shared Relationships with Land and Water” (with co-author Amanda Gonczi).

Geological Society of America Abstracts with Programs. Vol. 55, No. 6, 2023
doi: 10.1130/abs/2023AM-395861

Vye also supported and co-authored two first-time student presentations in a session titled “The Stories of Geoheritage”: “Connecting Geology, Mining, & Fish Sovereignty in the Keweenaw” by Naomi Smith (Keweenaw Bay Ojibwa Community College),” and “Bridging Knowledges – Using Geospatial Technology to Support Place-Based Geoheritage Learning” by Steph Fones (University of Wisconsin-Milwaukee) with co-authors Daniel Lizzadro-McPherson and Naomi Smith. Fones and Smith participated in an 8-week Keweenaw Geoheritage internship at Michigan Tech in the summer of 2023. This work was supported by NSF Award # 2136139 – EAGER: Geoheritage and Two-Eyed Seeing – Advances in Interdisciplinary Earth Science Research, Learning, and Inclusion through Shared Ways of Knowing (PI Vye).

Geological Society of America Abstracts with Programs. Vol. 55, No. 6, 2023
doi: 10.1130/abs/2023AM-395218

Geological Society of America Abstracts with Programs. Vol. 55, No. 6, 2023
doi: 10.1130/abs/2023AM-395408

The Department of GMES also co-sponsored the Michigan Colleges/Universities Joint Alumni Reception at the GSA conference (together with Grand Valley State University, Western Michigan University, Hope College, Wayne State University, Eastern Michigan University, Albion College, and Central Michigan University). It was good to see and chat with our alumni, colleagues, and friends. This gathering was a testament to the enduring camaraderie within our geoscience community.


Pictured from R to L: Frederic Wilson (BS ’71), John Yellich, Luke Bowman (Ph.D. ’15), Erika Vye (Ph.D. ’16), Steph Fones, Naomi Smith, and J. Schneider




EPSSI Seminar: Role of Subsurface Engineering and Geology in the Energy Transition World

Mary Herrmann-Foley, MBA, returns to campus as the EPSSI Seminar guest speaker on Monday, October 23, 2023, from 4 – 5 p.m. in M&M room U113. Mary completed her Bachelor’s Degree in Geological Engineering at Michigan Tech in 1983. She continued her education at the University of Houston, earning her master’s in business administration in international finance in 1985. Currently, she serves as Manager of Central Support PetroSigns SSW application at Shell. Last fall, Mary was inducted into the Academy of Geological and Mining Engineering and Sciences. We are excited to welcome her back to campus once again!

In her talk, Role of Subsurface Engineering and Geology in the Energy Transition World, she will discuss the essential role of subsurface engineering and geology in the changing world of energy transition.

From the abstract: The world is in the midst of the first “truly global energy crisis,” the International Energy Agency (IEA) said in its World Energy Outlook in October 2022. It’s multidimensional and comes with the challenge of global warming and the need to reduce/eliminate CO2 emissions. We are all experiencing the impact of rising CO2 in the atmosphere: ocean levels rising, more intense storms, and increasing temperatures with corresponding implications on us and the environment around us. Conflicting pressures linked to continued high-energy demand, the need for energy security, and the imperative for reducing CO2 emissions are driving unprecedented renewable energy growth. This presentation will touch on the challenges related to these conflicting pressures and how existing and start-up energy companies are addressing some of these challenges through numerous renewable energy and carbon sequestration options, mainly focusing on the crucial role subsurface engineering and geology can play in this journey. Highlights of Michigan’s current situation and related business opportunities will also be discussed.

All are welcome to attend.

Mary Herrmann-Foley

GMES Students Wow Houghton Elementary

We are delighted to recount the recent visit of two Geological and Mining Engineering and Sciences (GMES) students to Houghton Elementary School, where the Rock Your School event sparked geologic wonder. Jhuleyssey Sanchez Aguila, an MS student in geological engineering, and applied geophysics undergrad student Brendan Harville took center stage as they masterfully conducted a captivating presentation on volcanic hazards, capturing the imaginations of the bright minds in the third, fourth, and fifth grades.

It was an immensely gratifying experience for all involved as the students exhibited an insatiable curiosity, inspiring questions that underscored their genuine interest in the particularities of geological science. The eagerness displayed by the young learners further reinforced the value of fostering scientific curiosity at an early age. This collaborative effort between our university and the elementary school enriched the children’s educational experience. It exemplified the profound impact that dedicated mentorship and knowledge-sharing can have on the budding scientists of tomorrow. TV6 gives a nod to Michigan Tech in the concluding comments of their news segment.

A special thank you to Jhuleyssey and Brendan!

Houghton Elementary School Principal Cole Klein introduces Jhuleyssy and Brendan to a group of 3rd, 4th, & 5th graders.
PC: Jennifer D’Luge

Ian Gannon MS in Geological Engineering Final Defense

On August 3, 2023, Ian Gannon successfully defended his geological engineering research for his MS degree.

Advised by James DeGraff, with Chad Deering and Aleksey Smirnov as committee members.

Title: Integrating LiDAR, Aeromagnetic, and Geological Field Data to Identify Structural-Lithologic Elements Within the Archean Carney Lake Gneiss Complex
Abstract: The Archean Carney Lake Gneiss Complex (CLGC) is a suite of rocks on the southern margin of the Superior Province and within the Minnesota River Valley subprovince. It is one of many gneissic domes in Michigan, Wisconsin, and Minnesota whose complex geology is poorly understood due to a previous lack of economic interest in gneissic terranes and significant challenges to their investigation. As a consequence, the CLGC and other gneissic domes in the region are represented on geologic maps as undifferentiated masses surrounded by better-defined and understood Paleoproterozoic supracrustal rocks and igneous intrusions. Within the last ten years, however, the United States has identified an urgent need to find new sources of critical minerals to sustain and grow the nation’s technology and defense industries, which has renewed interest in these very old and complex rocks. Under the Earth Mapping Resources Initiative (Earth MRI) of the U.S. Geological Survey, the CLGC and surrounding Paleoproterozoic rocks have been remapped to update geologic interpretations and to assist in identifying potential mineral systems in the region. Mapping of the CLGC was accomplished using traditional techniques combined with satellite-based phone applications and differential GPS devices to navigate in dense vegetative cover, to obtain accurate coordinates of field sites, and to collect geologic data at outcrops. As a further aid to ground mapping, high-resolution LiDAR and aeromagnetic data were analyzed to determine topographic and magnetic patterns and textures that potentially reflect structural-lithologic domains within the CLGC.

Integration of the new geologic field data with features and patterns identified on LiDAR and aeromagnetic maps allows definition of three domains within the CLGC: (1) a poly-deformed, mostly felsic gneiss with folded and sheared banding; (2) a meta-igneous, plagioclase-dominated gneiss with poorly expressed banding; and (3) a meta-sedimentary gneiss with thin well-developed banding and local relict sedimentary textures. Outcrop mapping also reveals the widespread occurrence and great variety of younger felsic and mafic intrusions that were not fully appreciated by earlier mappers. Data integration has allowed better definition of geologic unit contacts around the margins of the CLGC and within some Paleoproterozoic metasedimentary units, which updates knowledge about the Sturgeon Quartzite to the northeast and the Vulcan Iron Formation to the south. Although some analytical work is ongoing, such as radiometric age dating, the integrated mapping effort has identified between five to eight tectonomagmatic events that have affected the region, plus a number of sedimentary cycles. The abundance of processes that have affected the area provides multiple opportunities for concentration of mineral deposits that could be attractive for future exploration efforts. The data integration approach developed for this thesis project should be useful in identifying structural-lithologic domains within enigmatic Precambrian gneiss domes elsewhere in the region and globally.

Jordan Ewing Computational Science and Engineering Ph.D. Defense

On Friday, July 21, Jordan Ewing successfully defended the research for his doctoral degree in computational science and engineering.

Advised by Thomas Oommen, with Laura Brown, Stanley Vitton, and Paramsothy Jayakumar as committee members.

Title: Remote Sensing Approach for Terramechanics Applications Utilizing Machine and Deep Learning

Abstract: Terrain traversability is critical for developing Go/No Go maps, significantly impacting a mission’s success. To predict the mobility of a vehicle over a terrain, one must understand the soil characteristics. In situ measurements performed by soldiers in the field are the current method of collecting this information, which is time-consuming, are only point measurements, and can put soldiers in harm’s way. Therefore, this study investigates using remote sensing as an alternative approach to characterize terrain properties.

This approach will explore the relationships between electromagnetic radiation and soil types with varying properties. Optical, thermal, and hyperspectral sensors will be used to collect remote data and compare it against ground truth measurements for validation. Machine learning (linear, ridge, lasso, partial least squares, support vector machines, and k nearest neighbors) and deep learning (multi-layer perceptron and convolutional neural network) algorithms will be used to build prediction models.

Results showed that soil properties such as soil gradation, moisture content, and soil strength measured by a geogauge and averaged cone penetrometer for 0–6” and 0–12” (CP06 and CP12) can be estimated remotely. Deep learning provides the best models for estimating terrain characteristics compared to machine learning. It is shown that this method can produce much finer spatial resolution coverage than traditional geospatial point-based interpolation approaches and yield a higher prediction accuracy. Predictions maps can be used to generate threshold-based Go / No Go maps using a vehicle cone index or as a cost map for vehicle performance. A Polaris MRZR vehicle was used to test the application of these prediction maps for mobility purposes, and correlations were observed between the CP06 and rear wheel slip and CP12 and vehicle speed.

This study demonstrates the potential of using remote sensing data for more rapid and finer spatial resolution predictions of terrain properties with higher accuracies compared to traditional in situ mapping methods implementing machine and deep learning algorithms. The remote sensing approach allows the generation of Go/No Go and vehicle cost maps and, most importantly, provides a safe alternative to keep soldiers out of harm’s way.


Beth Bartel Geology Ph.D. Defense

On Friday, July 7, 2023, Beth Bartel achieved resounding success as she skillfully defended her research for her doctoral degree in geology.


Co-Advised by Greg Waite and Rüdiger Escobar Wolf, with Angie Carter, Kari Henquinet, and Luke Bowman as committee members.

Title: Information Use and Decision-Making for Evacuation at Fuego Volcano, Guatemala Information Use and Decision-Making for Evacuation at Fuego Volcano, Guatemala

Abstract: Active volcanoes are complex, multi-hazard systems. Early warning systems (EWS) may enable populations to live sustainably with volcanic hazards, but developing an effective EWS is far from straightforward, as is measuring its efficacy. At Fuego volcano, Guatemala, pyroclastic density currents (PDCs)—fast-moving flows and surges of hot volcanic gas, ash, and rock–killed more than 400 people during a paroxysmal eruption in June 2018 and continue to threaten the ~60,000 people living within the identified hazard zones. In this dissertation, I use mixed ethnographic methods to investigate evacuations at Fuego during and since the tragedia through three projects. I first investigate information availability and its use in decision-making on 3 June 2018. Next, I examine current practices for evacuation decision-making four and five years after the disaster, focusing on a partial evacuation on 7–8 March 2022. Finally, I use that same event to study how cultural gender expectations impact evacuation strategies and how women’s experiences in evacuation can inform future risk reduction strategies. With this dissertation, I aim to contribute a better understanding of the complex factors challenging the efficacy of EWS in order to improve existing approaches in and beyond Guatemala. In this way, this work aims to serve the population around Fuego volcano and others like it in various cultural, geographic, and economic settings.

Caleb Kaminski MS in Geophysics Final Defense

On April 21, 2023, Caleb Kaminski demonstrated resounding success in defending his research for his Geophysics Master of Science degree.

Advised by Aleksey Smirnov, with Paul van Susante and Jeremy Shannon as committee members.

Title: Exploring Ground-Penetrating Radar Responses to Basaltic Terrain for Upcoming Lunar Expeditions

Abstract: In preparation for upcoming lunar expeditions, a comprehensive understanding of the Moon’s geophysical properties is imperative, particularly in the context of resource identification and extraction. This study focuses on the experimental characterization of electromagnetic (EM) behavior in the radio spectrum for ground-penetrating radar applications, utilizing basaltic Keweenawan stamp sand and highland lunar simulant soil test materials with varying particle grades. Under controlled laboratory conditions, we systematically analyzed and compared the differences in EM wave velocity and signal amplitude as a function of particle size and mineralogy, as represented in radargrams. Our findings demonstrate that the highland lunar simulant exhibits a significantly higher EM reflection coefficient than the stamp sand, which can be attributed to its lower conductivity arising from compositional differences. These results hold important implications for the development of remote sensing techniques and optimization of ground-penetrating radar systems for future lunar missions, ultimately enabling the efficient detection and extraction of valuable resources such as water ice on the lunar surface.

Nolan Gamet MS in Geology Final Defense

On June 22, 2023, Nolan Gamet achieved success in defending his research for his Master of Science in Geology.

Title: Structural Analysis and Interpretation of the Deformation Along the Keweenaw Fault System from Lake Linden to Mohawk, Michigan

Abstract: The Keweenaw fault is likely the most significant fault associated with the Midcontinent Rift System, with an estimated reverse slip of ~10 km that places Portage Lake Volcanics (~1.1 Ga) over much younger Jacobsville Sandstone (~1.0 Ga). Published bedrock geology maps with cross sections from the 1950s show the fault as a single continuous trace that is locally associated with smaller cross faults and splays. This M.S. thesis presents a structural analysis and interpretation of the Keweenaw fault system between Lake Linden and Mohawk, MI, which includes data collected from well-known localities such as Houghton-Douglass Falls, the St. Louis ravine, the Natural Wall ravine, and the anomalous rhyolite body near Copper City. These data were used to revise existing bedrock geology maps, construct new cross-sections, and analyze fold geometry and fault slip behavior to infer aspects of the tectonic regime that caused the deformation.

New field mapping has refined the trace geometry of the Keweenaw fault (KF) and smaller associated faults by shifting the main fault’s position laterally as much as 150m, revising intersections between several splay faults and the main fault, and suggesting the existence of several footwall splays not previously recognized. Orientation analysis of Jacobsville Sandstone strata in the footwall of the fault system defines fold axes with plunge directions changing from southwest in the south to northeast in the north. The style of folding also changes along the fault from broad syncline-anticline pairs in the southwest to tightly folded anticlines with overturned bedding to the northeast. Fault-slip analyses reveal a bimodal distribution strike-slip and reverse slip along the fault system that collectively define a 1:1 ratio and a nearly north-south maximum tectonic shortening direction of 2°–182°. The NS-trending shortening direction computed from fault-slip analysis creates a paradox yet to be explained. However, fold axis trends in the current area indicate shortening along an ESE-trending line, which is consistent with recent results for the fault system northeast of this study area and with Grenville orogenic compression being the primary cause of slip along the Keweenaw fault system.

Advised by James DeGraff, with Chad Deering, William Rose, and Jeremy Shannon as committee members.

Paola Rivera-González MS in Geology Final Defense

On April 5, 2023, Paola Rivera-González successfully defended her Geology Master of Science degree.

Title: Climate Changes in El Salvador: Impacts of ‘La Canícula’ (“Dog Days of Summer”) on Agricultural Practices and Decision-Making in Rural Communities

Abstract: The Central American Dry Corridor (CADC), a tropical dry forest region, is characterized by distinct rainy and dry seasons that influence the local agricultural calendar and decision-making in rural communities. ‘La canícula’ is a period of decreased precipitation during the rainy season, which typically occurs in July during the corn growing season in El Salvador. The ‘canícula’ is expected to change in intensity and duration in the next decades, which would impact small-scale farmers and their livelihoods. Climate variability and uncertainty has led to crop loss, water scarcity, and food insecurity in rural communities dependent on subsistence farming. Farmers’ experiences with a changing climate led to reformed decision-making and agricultural processes (eg. agricultural calendar, seed type usage, crop rotation) to optimize their harvest and adapt to a variable climate. Studying the local perceptions and adaptation practices of farmers showed how natural hazards related to global climate change impact society, community dynamics in how farmers identify their main challenges, and revealed the ways farmers improve resilience to a changing climate.

Advised by Luke Bowman with committee members Kari Henquinet, John Gierke

Paola Laguna Algeria