Tag: climate change

Designing for Sustainability and Climate Change: Two Challenges Facing Civil Engineers

A flood with vast infrastructure damage: one of the problems civil engineers must face.

Civil engineers, often known as the people’s engineers, leave their mark everywhere. The sidewalks we run on, the roads we drive on, the buildings we work in, the clean water we swim in. These structures and assets have all been made possible by various types of civil engineers. In general, civil engineers focus on the design, construction, and maintenance of infrastructure systems, such as roads, bridges, dams, water supply systems, and buildings

In short, civil engineering is a broad discipline encompassing various sub-fields. These include structural engineering, transportation engineering, environmental engineering, geotechnical engineering, water resources engineering, and more. Because of these connected sub-fields, civil engineers often take a holistic approach to their projects. That is, they must consider factors, such as safety, sustainability, and efficiency when designing, constructing, and maintaining infrastructure systems.

Whatever their specialty, it is clear that civil engineers face both challenges and opportunities in the 21st century. Two of these challenges are designing for sustainability and resilience, especially in the face of climate change.

Designing For Sustainability and Reduced Environmental Impact

Along with contending with aging infrastructure, civil engineers are increasingly required to design and construct projects that minimize environmental impact, reduce carbon footprints, and implement sustainable materials and practices.

What is Sustainability?

The UN World Commission on Environment and Development defines sustainable development as “that which meets the needs of the present without compromising the ability of future generations to meet their own needs.” For the EPA, pursuing sustainability means creating and maintaining the conditions “under which humans and nature can exist in productive harmony.” Sustainability is more than just a buzzword. That is, it is a commitment and a set of practices, a better way forward that balances the environment, human health, equity, and the economy.

Sustainable practices are based on the principle that materials and resources are finite. That is, we should use resources mindfully and conservatively to preserve them for future generations.

Civil Engineers Help to Construct a Pillar of Sustainable Design

Implementing sustainable practices is especially relevant for large (and often intrusive) commercial buildings that expend both a lot of space and energy.

One stellar example of sustainable design and construction is the Bullitt Center in Seattle, WA, which opened on April 22, 2013. Designing and constructing “the greenest commercial building in the world” required a vast, multidisciplinary team of architects and plumbers, as well as mechanical, electrical, and civil engineers.

Side view of the Net-zero Bullitt Center in Seattle, Washington
The Bullitt Center in Seattle, Washington Photo by Joe Mabel under https://creativecommons.org/licenses/by-sa/3.0/

The Bullitt Center is a Net-Zero-Energy certified. Annually, it generates as much energy as it consumes.

How is this rating possible?

Through design (high-performance windows, super-insulated walls, and advanced HVAC systems) and a huge roof-top photovoltaic array, it achieves its energy efficiency.

Engineers also constructed include 26 geothermal wells extending 400 feet (120 m) into the ground. At this depth, the temperature is a constant 55 °F (13 °C). These wells help in temperature regulation: keeping the building warm in the winter and cool in the summer.

The building is also Net-Zero-Water. Composting toilets and low-flow fixtures drastically reduce water consumption. The collection and treatment of rain (a 52,000-gallon tank, to be exact) provides drinking water. And gray water recycling is used for irritation and non-potable uses.

And its indoor environment is just as sustainable and healthy as its impact on the planet. The building is constructed from local non-toxic, low-environmental impact materials, such as timber sourced from sustainably managed forests. Natural ventilation and ample daylighting also add to the healthy workspace. There is even a green roof for managing storm water and reducing heat island effect.

Sustainability at Michigan Tech

In short, the Bullitt Center, made possible by civil engineers and other experts, is a model of sustainable design and construction. It demonstrates the possibility of creating buildings that are environmentally responsible, economically viable, and aesthetically pleasing.

Michigan Tech, too, has made strides in sustainability.

MTU has a long history of engaging in research on sustainability. For instance, most recently, David Shonnard (Chemical Engineering) and Dr. Steve Techtmann (Biological Sciences) have led multidisciplinary teams to attack the problem of plastic waste. One of their solutions is converting plastics to protein powder.

Michigan Tech’s Sustainability Demonstration House allows students to become involved in a sustainable living experiment.The Michigan Tech Alternative Energy Enterprise team transformed the former house into a net-zero home. And the new H-STEM complex was also designed in accordance with LE-ED (Leadership in Energy and Environmental Design) principles.

The university has also recognized the need to transition to more environmentally-friendly construction through using renewable and recyclable materials, such as mass timber. Dr. Mark Rudnicki, for instance, leads a CLT (cross-laminated-timber) project that makes use of local and abundant hardwood species.

Creating Resilient Infrastructure That Withstands Hazardous Events and Climate Change

Civil engineers must design for not only sustainability, but also resilience. That is, they must create infrastructure that can withstand the myriad effects of climate change, such as rising sea levels, increased flooding, extreme weather events, and changing temperature patterns.

Heat-Resistant and Energy-Efficient Buildings

Some of the innovations of the Bullit Center also work for smaller, non-commercial buildings. Civil engineers can help by designing buildings–big or small–to be energy-efficient by installing cool roofs and using advanced insulation, natural ventilation, and renewable energy sources. These changes can help structures withstand the high temperatures that often come with climate change.

Improved Stormwater Management Systems

Contending with stormwater, so that it doesn’t damage other structures, has become increasingly challenging due to climate change. Civil engineers can help, though, by designing and creating green infrastructure. For instance, green roofs (such as in the Bullitt Center), permeable pavement such as porous asphalt, and rain gardens can all reduce runoff and therefore improve storm water management. Green roofs and bioswales, in fact, are a central component of New York City’s Green Infrastructure Plan.

Flood-Resistant Infrastructure

Flood-resistant infrastructure, though mentioned last here, is probably at the top of the list. To contend with floods, civil engineers must rethink how they design roads, bridges, and transit systems. One solution is building all of these at higher elevations. This height can prevent flooding when there are rising sea levels, storm surges, or intense flood events like that of June 17, 2018.

For those who missed the 2018 Father’s Day Flood, it was terrifying. In under nine hours, at least seven inches of rain fell. A landslide tore through the Ripley neighborhood, throwing down boulders that wiped out peoples’ houses. The rain flooded multiple homes, decimated yards, created 60 sinkholes, and washed out over 150 roads. And all this damage happened in an area that was not categorized as a flood plain.

The torrential rain also destroyed the Swedetown Gorge, the highlight of the Maasto-Hiihto trail system in Hancock, MI. The pounding water transformed its gentle stream into a raging river that uprooted trees and tossed boulders. Bridges collapsed, their wooden structures and concrete slabs jutting unnaturally and precariously out of the river. The trail on which people hike, ski, and bike suddenly became unnavigable, its infrastructure decimated.

“We could not help but be humbled by seeing a two-year-old new bridge with concrete abutments, a bridge that was 16 feet long and 12 feet wide and fabricated from heavy steel girders, being washed down stream 200 feet.”

John Diebel

Swedetown Gorge: A Case Study

When the FEMA money finally came through and engineers got to work planning and rebuilding those bridges, there were certainly challenges. Problems to solve that involved negotiating with nature and recognizing that climate change could bring another extreme flood event.

Adapting Bridge Structure

To prepare for another flood, civil engineers repositioned the bridges and designed them a little differently this time. They were higher and stronger to agree with the science. That is, bridges had to meet the current design criteria enforced by Michigan’s Environment, Great Lakes, Energy team. These criteria are based on stream and watershed flow calculations maintained by the agency.

For instance, along with elevating the bridges, engineers included wing walls in the design of the new concrete bridge abutments. These walls improve the bridges’ ability to survive intense flooding. Side railings, included as a safety feature, also created aesthetic appeal.

And engineers kept sustainability in mind by saving both resources and money. They reused the original 2016 middle bridge, which got its second life further downstream.

Replacing Bridges With a More Resilient Boardwalk

Unfortunately, two of the gorge’s original bridges were built on silty soil, rare for that area. When an old earthen dam (originally used for potato field irrigation) collapsed and pushed a large sediment load towards Portage Lake, it left significant silt deposits at the mouth of Swedetown Creek. The force of the water in the Father’s Day Flood pushed even more silt into the creek while changing and widening the channel.

According to John Diebel, “We were reluctant to follow the original trail route and rebuild the bridge structures similar to the original structures. . . . Given the more erodible nature of the soil in that silty area, we had doubts about that erodible bump surviving another ten to twenty years.” There was also the problem of steep upper terrain to deal with. And the issue of building on a wetland.

The solution was a somewhat risky one requiring a significant trail reroute that avoided the silty soil. In the end, “we decided to take our chances with the wetland” (Diebel) and construct a 550-feet long, 12-foot wide walkway: a structure that is not only beautiful, but also sustainable. Boardwalks, which are used extensively on the North County Trail in the Ottawa National Forest, have little impact on the natural drainage of wetlands. Galvanized steel (swamp) pans with brackets accommodating 4×4 posts helped support the structure.

After the construction came the testing. Using ATVs loaded with fill material, MJO (the project contractor) pre-stressed the boardwalk. Then, after they noted the reaction of the structure to the stress, they deployed a few more swamp pans to reinforce the side beams. In the end, the boardwalk passed the test, maybe with flying colors. That is, it turned out that the sandy soil provided far more support than expected.

Preparing Engineers at Michigan Tech

This blog just touched on a few examples of  the upcoming challenges of designing for sustainability, climate change, extreme weather events, and more. Michigan Tech can help engineers prepare for these and other challenges.

The university has long had a commitment to sustainability in both research and practice. MTU also has several programs that address sustainability topics, such as the online certificate in engineering sustainability and resilience (CEGE). In addition, the CFRES offers both a bachelor’s degree in sustainable bioproducts and one in environmental science and sustainability.

For structural engineering, the Department of Civil, Environmental, and Geospatial Engineering offers a certificate in bridge design as well as others for specific areas. There is also a customizable Online MS in Civil Engineering in which you can focus on either structural engineering or water resources engineering.

Whatever your interest, these programs can help you think, design, and create to solve the problems of both today and tomorrow.

GIScience for Natural Resources: New Online Grad Cert. From CFRES

Dr. Parth Bhattin the field doing GIScience work.

Dr. Parth Bhatt at work.

Coming in Fall 2024, the College of Forest Resources and Environmental Science (CFRES) will be offering a new online graduate certificate: Foundations in Geographic Information Science (GIScience) for Natural Resources. Taught by Dr. Parth Bhatt, Associate Teaching Professor / Researcher at CFRES, this certificate consists of three foundational courses. They are GIS for Natural Resource Management (4 credits), Map Design With GIS (3 credits), and GPS Field Techniques (2 credits).

This certificate is the first of three that will form CFRES’s new online master’s degree in GIScience (currently under development). The others will be Advanced Geographic Information Science for Natural Resources and Remote Sensing for Natural Resources. These two will comprise rigorous courses in Python, Applied Spatial Statistics, GIS Project Management, Advanced Terrestrial Remote Sensing, Photogrammetry, and more. In other words, this online MS degree will equip graduates with a rich, varied skill set in GIScience. They will also acquire a holistic, deep understanding of the spatial dimensions of the world.

For a decade, CFRES has offered a respected, in-person MGIS. Like its predecessor, this interdisciplinary online master’s degree will emphasize practical skills in spatial visualization and analysis. Students will use real-world datasets and state-of-the-art GIS software and techniques to take on challenges in forestry, natural resources, and other disciplines.

The reputation of CFRES, the program’s emphasis on natural resources, and its robust curriculum promise to make this program a highly esteemed online GIS master’s degree. Global Campus is thrilled to be involved with it!

Applying GIScience in Forestry and Natural Resources

If you’re not familiar with Geographic Information Science, it is an exciting, growing, multidisciplinary field. It focuses on the study of geographic information, spatial data, as well as their applications. Combining principles from geography, computer science, mathematics, and other disciplines, GIScience has the ambitious goal of understanding, analyzing, and modelling the spatial aspects of the world.

GIS, or Geographical Information Systems, focuses on the what: the hardware and software that capture geographic information. In contrast, GIScience, focuses on the why: finding practical ways to improve GIS data, software, and professional practice.

This certificate and upcoming MGIS will provide fundamental GIScience expertise to foresters and natural resource experts. In Natural Resource Management, for example, professionals use GIScience for several purposes:

  • resource inventory and mapping
  • environmental impact assessment
  • habitat modeling and conservation planning
  • natural disaster management
  • sustainable land use planning
A forest, which is often managed by natural resource experts with GIScience experience.
GIScience is often used in forest management.

Take resource inventory and mapping. Natural resource managers turn to GIScience to create detailed inventories and maps of natural resources. This data then allows them to analyze the distribution and abundance of resources within an area: forest stands, wetlands, mineral deposits, endangered species habitats, and other important ecological features.

Alternatively, in habitat modeling and conservation planning, experts use GIScience tools to analyze the suitability of habitats for different species. This suitability is based on environmental variables such as temperature, precipitation, elevation, and vegetation cover. GIScience, in short, is crucial to conservation planning. It can help identify critical habitats, corridors for wildlife movement, and areas for habitat restoration or protection.

Solving Multiple Problems With GIScience

First and foremost, GIScience offers practical skills and tools for professionals in several natural resource fields. These include GIS Analysts/Technicians, foresters, civil and environmental engineers, spatial/transportation planners, wildlife ecologists, forest analysts, surveyors, geospatial specialists, water resources analysts, environmental scientists, geologists, community forest specialists, and urban forestry technicians.

Several, in fact, turn to this toolkit regularly. One previous alum from the in-person MGIS now works as a Senior GIS Analyst. In this role for Pine Gate Renewables, he uses GIS and Remote Sensing daily. These tools help him to identify risks for setting up solar farms, creating hydrology models, and locating wetlands.

Another alum with broad responsibilities also confirmed the daily use of GIScience. He oversees the creation of maps, spatial data analysis, surveying projects, data checks on road segments, and storm water analysis “to create pervious and impervious classification.” This person also admits to “diligently maintaining maps detailing water infrastructure” and managing and reviewing “various city assets, ensuring their accuracy and reliability through spatial data analysis.”

In other words, these alumni regularly manage several responsibilities with GIScience and Remote Sensing.

Contending With Climate Change

Regardless of their discipline, GIScience can also equip professionals with the tools and the strategies to predict and combat the effects of climate change.

This skillset is especially relevant now: 2023 was the warmest year on record. (The temperature was 1.18°C [2.12°F] above the 20th-century average of 13.9°C [57.0°F]. In fact, the last ten warmest years in the 174-year record have all occurred between 2014 and 2023. And with a heating planet come more impactful environmental events: floods, extreme weather, drought, and forest fires.

According to NOAA, 2023 also set another record–for natural disasters. During this year, there were 28 devastating weather and climate disasters. The price tag for these events was almost 93 billon dollars.

For contending with climate change’s effects, then, GIScience can aid with hazard mapping, risk assessment, and emergency response planning. For instance, by analyzing spatial data related to factors such as terrain, vegetation, hydrology, and population density, professionals can identify areas prone to natural hazards. Whether these are floods, wildfires, and landslides, experts can develop strategies to mitigate risks and respond effectively during emergencies.

The Pakistan Flood Events

Dr. Parth Bhatt, himself, used GI Science to document the effects of Pakistan’s historic floods, which lasted from June 15 to October 2022.

A map of the Pakistan floods made with GIScience.
Map of the area affected by the floods in Pakistan.
A flooded street in a Pakistani province.
Citizens traverse a flooded street in Pakistan.

In these devastating flood events, waters inundated more than one million homes. The flood hit all four of the country’s provinces, resulting in at least two million houses destroyed.

In total, 33 million people were directly affected with 20.6 million requiring urgent humanitarian assistance. (Unfortunately, nine months later, the monsoons brought more flooding, further exacerbating the crisis.)

Looking Ahead to the Future of GIScience

GIScience, in short, can help professionals in many fields manage the world’s resources, plan infrastructure, mitigate and plan for natural hazards, and combat (or prepare for) the effects of climate change, and more.

However, its tools are also becoming increasingly integral in fields beyond traditional domains like urban planning and environmental science.

As GIScience “continues to evolve and adapt to new demands, its impact on industries and disciplines worldwide is set to expand. As such, it will drive “transformative change and unlocking new possibilities for spatial analysis and decision-making” (GIS Analyst II). For instance, some of the newer industries hiring GIS experts are construction, engineering, insurance, real estate, and oil and gas.

One Senior GIS Specialist (Pine Gate Renewables) further confirmed that in the solar industry, there are more people being hired with a GIScience background than there were before. More professionals use “GIS and remote sensing to help identify issues, notice change over time, help drive decisions, and keep projects moving forward.”

Another expert stated that proficiencies in ArcGIS, QGIS, Python, R, and Javscript are becoming increasingly essential in GIS specialist roles.

From agriculture to healthcare, smart cities to disaster management, GIS and Remote Sensing are revolutionizing how we analyze spatial data, make informed decisions, and address complex challenges. Integration with emerging technologies like AI, along with a focus on environmental monitoring, public health, and conservation, underscores their pivotal role in shaping a more sustainable and interconnected world.

GIS Analyst II, Metro Consulting Associates

Learning From a Passionate Teacher

And it’s not just what you will learn in these programs but who you will learn it from. That is, Foundations in GI Science for Natural Resources (and the online MGIS) are both helmed and taught by Dr. Parth Bhatt, whose passion for the subject was covered in a previous blog.

Bhatt’s portfolio of GIScience skills is also diverse: he has expertise in Geographical Information Systems, remote sensing, digital image processing (Multispectral, LiDAR, UAV, Hyperspectral), land use/cover mapping, invasive species mapping, forest health and natural resource management, spatial data analysis, and Web GIS/ArcGIS Online.

Most recently, he has received a grant to put these skills to work: acting as a PI on research projects for The Nature Conservancy in Michigan.

Dr. Parth Bhatt in the classroom, teaching GI Science.
Dr. Parth Bhatt in the classroom

Bhatt has also been instructing the very popular, noncredit, professional development course, Python for Modern GIS and Remote Sensing. This course, which runs several times a year, has had rave reviews.

Taking the Next Steps

If you’d like to learn more about GIScience or you require more information about the Online GIS Certificate from CFRES, please contact Program Director Parth Bhatt (ppbhatt@mtu.edu).

Alternatively, reach out to Program Assistant Marjorie Banovetz (marjorie@mtu.edu).

There is still plenty of time to get started for Fall 2024 and develop your versatile GIS toolkit! And accelerated options are also available.

MAHLE and MTU: Moving Forward Together

Leaders from MAHLE and Michigan Tech gather at the signing ceremony.
Leaders from MAHLE and Michigan Technological University gather at the signing ceremony.

MAHLE is excited to partner with Michigan Tech on the Corporate Education Fellowship. This partnership not only allows employees to steer their professional development and open new pathways for internal career mobility, but also allows MAHLE to proactively support the development of our employees to meet the evolving demand for new skills and competencies.

This fellowship, when coupled with MAHLE’s Educational Reimbursement, provides employees with the ability to access affordable education through Michigan Tech’s online programs, offering flexibility to learn at their own pace, while balancing their personal life and work. We look forward to a successful partnership that will help to further prepare MAHLE and our employees as our industry transforms toward a decarbonized future.

President of MAHLE Peter Lynch

On Tuesday, Oct. 24, 2023, Michigan Technological University signed a Corporate Education Partnership Agreement with MAHLE Industries Inc. MAHLE is a leading international development partner and supplier to the automotive industry.

The partnership agreement was signed at MAHLE’s North American headquarters in Farmington Hills, Michigan. President Richard Koubek and David Lawrence (vice president for Global Campus and continuing education) were present for Michigan Tech. Peter Lynch (president of MAHLE) and Tiffiney Woznak, (director of Talent Management, MAHLE North America) represented MAHLE. Other leaders from both organizations also attended.

Richard Koubek and Peter Lynch sign the fellowship agreement.
President Koubek and MAHLE President Peter Lynch sign the fellowship agreement.
Jacque Smith, director of Graduate Enrollment Services; and Peter Lynch  chat.
Jacque Smith, director of Graduate Enrollment Services, and Peter Lynch, president of MAHLE chat.

Growing With Their Organizations

The Corporate Education Fellowship supports MAHLE employees in their pursuit of graduate education through Michigan Tech’s Global Campus. Eligible employees will receive fellowships to enroll in one of Michigan Tech’s online graduate certificates or master’s degree programs.

A hard copy of the MAHLE Corporate Education Fellowship Agreement that people sign.
The signing documents for the corporate fellowship agreement.

With this fellowship, employees can acquire industry-needed skills, follow areas of professional interest, and meet the diverse challenges of the ever-evolving automotive industry.

And they can achieve these benefits while studying online through Global Campus. As many of us understand, earning a credential while staying on the job is very convenient for working professionals.

These fellowships are available for up to four years. Recipients must meet the eligibility requirements of both the fellowship program and the scholastic standards of Michigan Tech’s Graduate School.

This program is part of the connected missions of Global Campus: building relationships between academia and industry, making quality online education more accessible to a diverse population of adult learners, and helping professionals advance and grow with their workplaces.

So far, several MAHLE associates have expressed a deep interest in this program.

Tiffiney Woznak stands in front of a picture of American NASCAR legend Richard Petty and the car Petty’s Garage helped design for MAHLE. Using MAHLE components, Petty’s Garage builds supercharged high-horsepower engines for one-of-a-kind-vehicles.

Tiffiney Woznak shows President Koubek the MAHLE car that Petty helped design.
Tiffiney Woznak (head of Talent Management for MAHLE North America) talks to President Koubek.

Partnering With MAHLE

If you haven’t heard of MAHLE, it is a global powerhouse. It has approximately 72,000 employees working in more than 30 countries. The company also boasts 152 production locations and 12 major research and development centers. As a global leader in technology, MAHLE has been proudly shaping the future of mobility and transforming the automotive industry for more than 100 years. It is known for being a leading international development partner and supplier to the automotive industry with customers in both passenger car and commercial vehicle sectors.

And you’ve probably been in the presence of a MAHLE part or two, as well. That is, this company’s components reside in about 50% of all the passenger and commercial vehicles on the road.

MAHLE’s portfolio is also wide. The company is also involved with industrial applications, as well as both small and large engine components. One of the company’s newest technological ventures is investing in e-bikes and smart bike accessories. E-bikes tend to be remarkably heavy, but MAHLE is changing the game with its ultra-light drive systems.

Collaborating With Companies Making a Difference

MAHLE has a rich past, but like Michigan Tech, it also has ambitious future-changing initiatives.

That is, one of the company’s main and ambitious goals is working towards climate-neutral mobility. To that end, it is focusing “on the strategic areas of electrification and thermal management as well as further technology fields to reduce CO2 emissions, such as fuel cells or highly efficient combustion engines that also run on hydrogen or synthetic fuels” (MAHLE). The company is also striving to improve “the triad of sustainable drives”: the electric motor, the fuel cell, and the non-fossil-fuel-powered intelligent internal combustion engine.

In other words, MAHLE, is both a presence in the vehicular industries and a crucial driver in the global move towards electrification and environmental sustainability. Its leadership in both of these areas make it a natural fit for Michigan Tech.

That is, MTU has a long history of working with the automotive industry and collaborating with other future-forward companies. For instance, in Nov. 2022, MTU signed a fellowship agreement with Nexteer Automotive. Nexteer is respected for delivering high-quality, next-level electric power and steer-by-wire systems, steering columns, driveline systems, and driver-assistance systems. And in August, ITC, a company committed to solving next-generation electricity infrastructure challenges, also partnered with MTU.

Pursuing Advanced Education: An Ongoing Journey

President Koubek confirmed the need for employees to earn advanced degres. From his experience, he knows well that all employees and leaders must continuously improve their skills to not only help their organizations succeed, but also meet upcoming technological challenges. He stressed that education, rather than an endpoint, is an ongoing process.

“I think we’re at a point in time where change is happening so fast . . . . It’s almost an expectation in the world now, especially in the technological fields, that you’re continuing your advanced education, that you’re never really done, and that there is always room to grow.”

Richard Koubek

Michigan Tech looks forward to working with MAHLE and to helping grow its success.

Parth Bhatt Powers Through With Python

 A high-resolution, drone-captured image of seagulls gathering on the beach in St. Ignace, Michigan.

Above: A high-resolution, drone-captured image of seagulls gathering on the beach in St. Ignace, Michigan.

Dr. Parth Bhatt is definitely making his mark at Michigan Tech’s College of Forest Resources and Environmental Science. Arriving in only 2016, he quickly earned both his master’s degree and then his doctorate from the CFRES. And on important projects, too. That is, during his PhD, he worked with the Nature Conservancy and the U.S. Forest Service to map the Hiawatha National Forest according to its natural habitat communities. To do so, he used both sensing and machine learning techniques.

Parth Bhatt in the classroom teaching a Python with GIS class.
Dr. Parth Bhatt in the classroom.

But this was not his first use of machine learning to depict and analyze complex natural phenomenon. Before coming to Tech, Parth Bhatt worked with the Indian Space Research Organization (ISRO).

Currently, Parth (which he prefers to be called) is a Teaching Assistant Professor / Researcher in the CFRES, who has a passion for Python, remote sensing, and more.

Recently, I’ve collaborated with him to help promote his courses and to grow with Global Campus.

Discovering Python’s Capabilities

But let’s take a step back for a second. Despite his current expertise in and enthusiasm for Python , it was at Michigan Tech that Parth first developed his passion for this programming tool.

As an MS student, he took the class Python Programming for ArcGIS. Here, he learned more about Python and applying some of its techniques to automate repetitive tasks. Impressed with this tool, Parth then attended a GIS conference in which he saw people using Python in almost every field. At this event, he thought to himself, “I need to get better at this.” So he buckled down on his studying, taking in several NASA sponsored online webinars.

And get better he did. And quickly!

He ended up teaching several courses at the undergraduate and graduate level. He was enthusiastically in the classroom for Introduction to GIS, Introduction to GIS for Natural Resources Management, GIS Project Management, and Seminar in GIS.

It is obvious that Parth is a very busy and motivated professional. That is, he is currently instructing a non-credit, 7-week course (Python for Modern GIS and Remote Sensing). And while doing so, he is also developing a for-credit graduate certificate for Spring 2024.

Because this programming language is his passion, I asked him to explain it to me.

Q. Summarize Python for a layperson.

A. Python is a popular programming language for making a person’s day to day work/research life easier and efficient. It has gained widespread popularity in the past decade. Overall, it is extremely useful in the field of GIS and Remote Sensing (or any field for that matter) due to its dynamic nature, ease of use, and versatile, large open community support.

Q. What distinguishes Python from other programming languages when it comes to being used in GIS environments?

A. Well, as I said before, Python is easy to use and implement. It is also very efficient and powerful for data visualization and processing.

Due to Python’s open-source nature, it can be combined with all the major GIS softwares like ArcGIS Pro, ArcGIS Online, QGIS etc. Therefore, it offers a great amount of working flexibility. And from a developer’s perspective, all the major advances are occurring within Python, as compared to other languages such as R. Over the last decade, Python has emerged as a winner in terms of the most liked and used programming languages by the GIS community.

Q: What excites you about applying Python in GIS environments? What is this tool best used for? How have you used it?

A. The possibilities are endless. Python can be used in anything from opening a simple excel sheet filled with various GIS data to visualizing, manipulating, and handling big data. It also has hundreds of useful libraries that are applicable for various geospatial analysis. To me, any modern GIS and Remote Sensing curriculum is incomplete without this language and tool.

In my work, I have used Python to automate various GIS tasks: updating a dataset attribute table with hundreds of rows and columns (basically data cleaning); classifying complex forest ecosystems using machine learning; as well as analyzing data, making charts, conducting accuracy assessments, and performing various geospatial analysis tasks. Furthermore, I have assessed change in terms of urbanization, detected algal blooms, and calculated fire burn ratios.

Q. You’re teaching a non-credit course “Python for Modern GIS and Remote Sensing.” Please briefly explain what this course is about and who should take it.

A: I’m excited about this course, which is new to Michigan Tech. No one has taught Python for GIS in either an online or non-credit format before.

In a nutshell, this course teaches beginning and intermediate-level Python skills as they are applied in the GIS environment. It is suitable for anyone who deals with (or is planning to deal with) GIS and Remote Sensing on a daily basis. Of course, anyone who wants to add to their skill set and make their work more efficient should take it.

As you know, Coding/Programming is an essential skill set to have in our current times, especially for fields such as GIS, Forestry, Ecology, Geology, Civil and Environmental Engineering, and Data Science.

For example, right now in my course, I have students from diverse backgrounds, as well as professionals working in the GIS Industry. They are enjoying the asynchronous class format and the assignments. I am looking forward to incorporating their feedback in the next edition of the course, which will be in Spring 2024.

On a broader scale, Python is basically used in every application that’s related to the the five earth elements (Air, Water, Land, Fire, and Space). For example, it’s playing a big part in NASA’s first ever Mars drone application

Dr. Parth Bhatt
Dr. Parth Bhatt in the field, doing GIS work with Python.
Dr. Parth Bhatt in the field, doing GIS work.

Q. How can professionals use Python to manage or solve prevailing environmental and sustainability challenges, such as land use, forest fires, and the effects of climate change?

A. Python offers hundreds of unique libraries, which can be implemented to any/all kind of GIS and Remote Sensing datasets. Developers can make useful tools according to their needs and applications. As a result, they can enhance their decision making processes.

For example, professionals at the multidisciplinary Michigan Tech Research Institute (MTRI) use Python programming to address complex ecological problems, make wildfire prediction models, analyze efficient road networks, asses infrastructure, and map and monitor land use/cover and pristine wetlands.

Overall, this is an exciting time to teach this course. We are living in a world where climate change is happening rapidly and things surrounding us are constantly changing (whether they are environmental, economical, or political).

Q. I agree that we need all hands on deck when it comes to solving climate change and sustainability issues. But what is a personal example of your use of Python to contend with pressing environmental problems?

This image, which shows the extent of the damage after the flood, was created with a change detection algorithm and Python.
This image, which shows the extent of the damage after the flood, was created using a change detection algorithm.

In my own work, I have used this tool to document the effects of the historic flood in Pakistan. The flood, which was in mid-June ’22, affected more than 33 million people and destroyed or damaged more than one million houses.

In fact, the floods affected all four of the country’s provinces or about 15% of the country’s population.

Floodwaters inundated tens of thousands of square kilometers of the country, causing at least 1,100 deaths. Because of the 2023 monsoon season, Pakistan is still struggling to recover from this event.

Q. What motivates you? And what is next on your journey at Michigan Tech?

A. I love teaching, doing research, and solving complex problems. These drives require me stay current with, if not slightly ahead of, my field. Furthermore, I believe that if I am not up to date with my knowledge, I won’t be able to offer anything new and beneficial to students.

As Gandhi so eloquently said, “You must be the change you wish to see in the world.” In other words, I have to keep updating and offering advanced skills, not only for my personal growth, but also for students so they can succeed in their careers.

And for the College of Forest Resources and Environmental Sciences, I’m glad to help grow its online offerings. My non-credit course marks the beginning of our online education program. That is, we are designing other useful and applied courses, such as ArcGIS Online. Also, starting in 2024, we plan to be offering the first ever Master’s of Geographical Information Science online degree certification. Look out for it on Michigan Tech’s Global Campus.

One more thing: I’m holding an information session on Oct. 20 at 10:30 AM for Carthage College in Kenosha, Wisconsin. The session will introduce the Online GIS programs from the CFRES. However, the Michigan Tech community is also welcome to attend. You will be asked to sign in with your MTU email (or the email associated with your Zoom account) to join the session. If you have any questions about this session or anything else, email me at ppbhatt@mtu.edu.

Q. Any final thoughts?

As excited as I am about learning new materials and tools, the biggest reward of teaching occurs when you run into or hear from a student and they say, “Thank you for teaching me that GIS thing, it’s helping me big time in my job or research.”

Powering the World

an electric power tower against the blue sky

“It’s an unstable system, but we’re bringing stability to it,” so confirmed Glen E. Archer, Teaching Professor of Electrical and Computer Engineering at Michigan Technological University. While making this statement, Archer is standing in EERC 134, or the Smart Grid Operations Center. In this sophisticated classroom, students attack such topics as interoperability, energy management and emergency control, and system protection; as well as monitoring the connections into MTU’s Energy Management System and the regional grid. And so, so much more. It is, from my starry-eyed perspective, a very cool room.

At this point, the Michigan Tech Global Campus team has been touring the Electrical Engineering Resources Center (EERC) and picking Archer’s brain for the last hour. This room is the last stop on our educational tour.

As he speaks, my attention is divided between the brilliant, glowing grid on the wall and the energy and experience of Archer. He clearly has a passion for the important work and research that transpires in MTU’s electrical engineering classrooms and laboratories. And even more of a passion for electrical power engineering itself.

Which brings me, once again, to his earlier comment. He had mentioned that power engineering jobs might not seem particularly trendy, but those employed in this field have very important work to do. And much of this work is done behind the scenes. “Maybe the humble, unsung heroes of the engineering world,” I suggested. He didn’t comment, but smiled.

Power Engineers: Working Wherever the World Needs Them

Electric power engineering, a subfield of electrical engineering, is dedicated to all things electric power: from its generation, transmission, distribution, conversion, utilization, and management. The electrical apparatus and components associated with these systems, both large and small (wiring, cables, circuit breakers, fuses, switches, converters, vehicle drives, and so on), also fall under power engineering. Depending on their specialty and educational pathway, electric power engineers may work with electric power systems, power stations, solar voltaic cells, wind turbines, and electrical grids.

Electric power engineering may also go by other names, such as power engineering, power system engineering, power management, and power systems management. Its engineers are found wherever people and organizations need power, energy storage, renewables, and intermittent power sources.

Some Electric Power Engineering Workplaces

  • Utility companies
  • Manufacturing plants
  • Engineering Firms
  • Infrastructure related to the oil and gas industry
  • Other industries
  • Airports
  • Hospitals
  • Residential complexes
  • Schools
Industrial Power Plant

Filling a Shortage of Electric Power Engineers

Although they may not outwardly seem flashy, careers in electric power engineering have the advantage of being both flexible and mobile. Or to put it another way, the knowledge and competencies that power engineers acquire on one job may be transferred to another. This versatility means significant career choice and mobility, both within and between organizations as well as in workplaces throughout the world.

That is, as more countries transition to renewable energy sources and advanced technologies and invest in more infrastructure, the global demand for electric power engineers will likely increase. Some experts even believe that there is a definite shortage right now.

According to a summary of the Global Energy Talent Index Report, “power companies everywhere are struggling to balance talent shortages with changing skills.” The writers continue to say that there is a “looming skills shortage of engineers in the power, nuclear, and renewables sectors.”

What does this shortage look like? The GETI document confirms that as many as 48% of power professionals are concerned about an upcoming skills crisis whereas 32% believe the crisis has already hit the sector. 28% contend that their company has been affected by a skills shortage.

There are three main causes of this crisis: massive retirements, an aging workforce that requires upskilling, and a need for more workers with training in new power electric technologies. The report states that 13% of power workers are 55 years and older whereas 17% are between 45 and 54.

Confronting Upcoming Challenges

In short, both United States and the world need power engineers to not only fill these gaps but also address present and upcoming challenges.

In this nation, one of the biggest issues facing American engineers is contending with an outdated American grid in need of both repair and replacement. This aging grid can cause reliability problems, power shortages, and other complications. However, electric power engineers face other challenges, which affect the United States and beyond.

Improving Energy Storage

A photovoltaic system, otherwise known as a solar panel array.

Increasing the capacity and efficiency of energy storage systems is one key concern. To enable the widespread adoption of renewable energy sources, electric power engineers must develop better and more cost-effective energy storage solutions.

There is a need to improve the performance and efficiency of battery technology, which is essential for the large-scale energy storage. The excess electricity generated by renewable sources can then be used to help meet peak demand or provide back-up power during outages.

Increasing Grid Reliability

As electric grids integrate with more renewable sources (such as wind and power), power engineers must ensure grid stability and reliability. They must also develop solutions for reducing grid congestion. And create strategies for maintaining system stability and resilience in the face of climate change, extreme weather events, cyber-attacks, and other potential threats.

In fact, right here at Michigan Tech, Dr. Chee-Wooi Ten (Electrical and Computer Engineering), has spearheaded an impressive, interdisciplinary research team since 2010. This group contains members from the fields of statistics, business, engineering, and computer science. Its goals are advancing power engineering and developing strategies for improving power grid cybersecurity, grid reliability, interdependence, and sustainability.

Integrating Smart Technologies

Smart technologies are helping to make electricity consumption more efficient. For instance, smart meters allow utility companies to track and measure electricity consumption in real-time. They also enable consumers to monitor and adjust their own energy usage. Automated demand response systems can also reduce or increase electricity consumption according to fluctuations in the grid. And then there are advanced distribution management systems for utility companies to monitor and manage their electric grid in real-time. These can detect outages, schedule maintenance, and react to changing electricity demand.

There is a need for power engineers to understand these technologies and develop ways to integrate new smart systems into the existing grid. These strategies might include implementing communication protocols, creating intelligent control systems, and developing cybersecurity policies.

Ensuring Cybersecurity

Cyberattacks on the grid are not just the stuff of movies. For instance, in 2022, Russian cyber-hackers targeted Ukraine’s power grid. And in 2016, hackers chose a Florida power utility as their mark. The result: pumps ran continuously, causing not only waste but also physical damage. And since 2018, the US has been fending off Russian cyber-attacks on critical infrastructure.

Cyberattacks on electrical grids, then, can cause major disruptions and blackouts. It is obvious that one of the responsibilities of power engineers is improving the cybersecurity of the grid. This task is also one of the main objectives of Dr. Chee-Wooi Ten’s CIResilience team.

Addressing Environmental Concerns

Power plants, especially coal-fired ones, generate substantial emissions. And the cooling and operation of these plants require sizeable amounts of water. In fact, the power sector is the largest industrial power user. Therefore, a main engineering challenge is lessening the environmental impact of electric power systems, including reducing emissions and water consumption, improving efficiency, and minimizing waste.

Pursuing Electric Power Engineering at Michigan Tech

In short, as the world’s population continues to grow, the demand for electricity will increase significantly. Additionally, global citizens are requesting more sustainable and environmentally friendly energy infrastructure. Engineers may answer these calls by developing renewable energy sources and technologies as well as reducing electricity consumption and improving power efficiency.

If you’re up for these (and other) challenges, Michigan Tech offers several educational routes in electrical power engineering. For instance, there is a 13-credit undergraduate certificate in Electric Power Engineering and a 15-credit Graduate Certificate in Advanced Electric Power Engineering. Both of these certificates have been designed with consultation from experts from electric utilities and industry. In other words, students receive the knowledge, skills, and aptitudes that working electric power professionals regularly apply in their careers.

And, of course, there is the 30-credit MS in Electrical and Computer Engineering, with a Focus in Power Systems.

Whatever your preferred educational or career path in power engineering, Michigan Tech can help you get started.