Day: September 12, 2023

Cloud Appreciation Day!

Cloud Appreciation Day 2023 is happening on Friday, September 15th! This is an internationally recognized day when people worldwide are encouraged to spend a few moments appreciating the beauty of the sky.

“On Cloud Appreciation Day, anyone anywhere will be able to upload their photograph of the sky to the Atlas for free. They can also leave some words about how the sky makes them feel. It will be an opportunity for us to encourage everyone to lift their attention, lift their spirits, and spend a few moments appreciating the simple beauty of the sky. The Memory Cloud Atlas was launched in 2022 as a place where anyone on Cloud Appreciation Day can share an image of their sky and write or record some words on how it makes them feel. The Memory Cloud Atlas will serve as a snapshot on a single day of our collective views on the most dynamic, evocative, and accessible part of nature: the sky. The Atlas will remain online as a record of a world looking up on Cloud Appreciation Day to the most dynamic, evocative, and poetic of nature’s displays.”

Check out all the details here: https://cloudappreciationsociety.org/cloud-appreciation-day-2023/

Doctoral Finishing Fellowship – Fall 2023 Recipient – Chen Zhao

I started my Ph.D. journey at Michigan Tech in the fall of 2019 by joining the CS&E Ph.D. program at the Department of Applied Computing. Throughout my time at Michigan Tech, I have had the privilege of working at the Laboratory of Medical Imaging and Informatics under the guidance and supervision of Dr. Weihua Zhou. My Ph.D. research has been dedicated to the development of medical imaging analysis algorithms using deep learning techniques. Specifically, my research has focused on areas such as medical image segmentation utilizing prior knowledge, multiscale information fusion, and topology-based image semantic segmentation through graph neural networks. These algorithms and models that I have developed have been successfully applied to the analysis of coronary artery angiograms, contributing to computer-aided diagnosis and treatment of coronary artery disease.

I would like to express my sincere gratitude to the Department of Applied Computing for providing me with an exceptional research environment and the resources necessary for my research. I am especially grateful to the Graduate School and the Graduate Dean Awards Advisory Panel for recognizing my research efforts and granting me the Finishing Fellowship award. This award allows me to dedicate my time and efforts to the completion of my final research projects and the writing of my dissertation.

Doctoral Finishing Fellowship – Fall 2023 Recipient – Ponkrshnan Thiagarajan

Growing up in a township full of scientists and engineers, I have always been curious about how things work. This led me to pursue a bachelor’s in engineering from Nehru Institute of Engineering and Technology affiliated with Anna University, Chennai. I then pursued a master’s from the esteemed Indian Institute of Technology, Madras where I delved into diverse research projects that captivated my interest. Fueled by this newfound interest, I started my journey as a Ph.D. student eager to tackle intriguing and fundamental challenges within the field of engineering.

I started working on my Ph.D. in the Fall of 2019 at the Computational Mechanics and Machine Learning Lab led by Dr. Susanta Ghosh at Michigan Tech. The focus of my research is on understanding the uncertainties associated with the predictions of computational and machine-learning models. Any model, computational or data-driven, is a representation of a physical phenomenon. We develop such models to understand the world around us better. However, predictions of such models are not always reliable due to the uncertainties associated with them. These uncertainties could arise for various reasons such as natural variability in the systems we study, assumptions in developing these models, numerical approximations, lack of data, etc. In order to use these models in real-life scenarios, quantifying these uncertainties is crucial. My research involves developing novel techniques to quantify the uncertainties, use these uncertainties to improve the model’s performance, and explain the reasoning behind the uncertainties. In my first project, we developed a Bayesian neural network-based machine-learning model that can reliably classify breast histopathology images into benign and malignant images. In addition, the model can quantify uncertainties associated with the predictions. We further developed techniques to explain the uncertainties and use them to further improve the model’s performance. In my second project, we developed novel loss functions for Bayesian neural networks and showed their advantages over the state-of-the-art in image classification problems. I am currently working on quantifying uncertainties in computational models that are used to characterize material behavior and extending the first two projects for several other applications.

I would like to thank my advisor Dr. Susanta Ghosh for giving me the opportunity to carry out this exciting research as well as for his immense help and guidance throughout the process. I thank the Graduate Dean Awards Advisory Panel and the dean for recommending me for this award. It is an honor. I thank the graduate school and the Department of Mechanical Engineering-Engineering Mechanics for their constant support.