Category: Lectures

PinT 2021 – 10th Workshop on Parallel-in-Time Integration

August 2-6, 2021. PinT 2021 will be offered in a virtual-format. 

Register online on the Registration Page.

Computer models and simulations play a central role in the study of complex systems in engineering, life sciences, medicine, chemistry, and physics. Utilizing modern supercomputers to run models and simulations allows for experimentation in virtual laboratories, thus saving both time and resources. Although the next generation of supercomputers will contain an unprecedented number of processors, this will not automatically increase the speed of running simulations. New mathematical algorithms are needed that can fully harness the processing potential of these new systems. Parallel-in-time methods, the subject of this workshop, are timely and necessary, as they extend existing computer models to these next generation machines by adding a new dimension of scalability. Thus, the use of parallel-in-time methods will provide dramatically faster simulations in many important areas, such as biomedical applications (e.g., heart modeling), computational fluid dynamics (e.g., aerodynamics and weather prediction), and machine learning. Computational and applied mathematics plays a foundational role in this projected advancement.

The primary focus of the proposed parallel-in-time workshop is to disseminate cutting-edge research and facilitate scientific discussions on the field of parallel time integration methods. This workshop aligns with the National Strategic Computing Initiative (NSCI) objective: “increase coherence between technology for modeling/simulation and data analytics”. The need for parallel time integration is being driven by microprocessor trends, where future speedups for computational simulations will come through using increasing numbers of cores and not through faster clock speeds. Thus as spatial parallelism techniques saturate, parallelization in the time direction offers the best avenue for leveraging next generation supercomputers with billions of processors. Regarding the mathematical treatment of parallel time integrators, one must use advanced methodologies from the theory of partial differential equations in a functional analytic setting, numerical discretization and integration, convergence analyses of iterative methods, and the development and implementation of new parallel algorithms. Thus, the workshop will bring together an interdisciplinary group of experts spanning these areas.

Conference on Applied Cryptography: Call for Participation


The 2021 EAI International Conference on Applied Cryptography in Computer and Communications (AC3 2021) takes place May 15-16, 2021.

Register for the virtual conference here.

Dr. Bo Chen, Computer Science, founding general chair of the new EAI conference, says the conference has brought together researchers, developers and practitioners from around the world who will focus on, discuss, and explore the area of applied cryptography in computer and communication systems.

Conference Topics

Conference topics include all aspects of applied cryptography, including symmetric cryptography, public-key cryptography, cryptographic protocols, cryptographic implementations, cryptographic standards and practices, as well as using cryptography to solve real-world problems.

Technical Program

The AC3 2021 technical program includes four main conference tracks at which 11 papers will be presented virtually in oral presentations.

  • Track 1 – Blockchain
  • Track 2 – Authentication
  • Track 3 – Secure Computation
  • 4 – Practical Crypto Application. Aside from the high-quality technical paper presentations, the technical program also features two keynote speeches, and one technical workshop.

Keynotes

The two keynote speeches will be delivered by Prof. Kui Ren (ACM Fellow, IEEE Fellow), Zhejiang University, China; and IEEE Fellow Prof. Robert Deng, Singapore Management University.

Workshop

A workshop, the First International Workshop on Security for Internet of Things (IOTS 2021), includes four technical papers which aim to develop cryptographic techniques for ensuring the IoT security. The conference, originally planned to be held in Xiamen China, was moved it online for the health and safety of participants.


Register to participate in the virtual conference here. Use the “Sign up for free access to the livestream” option.


European Alliance for Innovation (EAI) is an international professional community and a nonprofit organization. The goal of EAI is to empower the global ICT research and innovation community, and to promote cooperation between European and International ICT communities.

EAI Conferences span the globe with opportunities to meet, explore, and contribute to the world of ICT research. With 100+ annual events (including MobiQuitous, SecureComm, etc.), EAI is one of the world’s most prolific scientific communities.

EAI Conferences are published via Springer’s LNICST and EAI’s EUDL, and they are indexed in all leading indexing services, including EI, ISI, Scopus, CrossRef, Google Scholar, dblp, MAS, EBSCO, Microsoft Academic Search, CiteSeerX, and more.

Jidong Xiao, Boise State University, to Present Talk May 12


Jidong Xiao, an assistant professor in the computer science department at Boise State University, will present a talk on Wednesday, May 12, at 3:00 p.m.

Dr. Xiao’s research focuses on computer security, especially computer system security and cloud security.

In his talk, “Identifying New Threats in Cloud Environments,” Dr. Xiao will present two research projects focusing on a concept called virtual machine extrospection and a new type of rootkit, which allows attackers to perform active or passive attacks in a nested virtualization environment.

Join the virtual talk here.

Talk Title

Identifying New Threats in Cloud Environments

Talk Abstract

Cloud computing has become prevalent over the past decade. While individuals and organizations rely on cloud computing more and more, various security problems in cloud platforms are discovered. In this talk, I will present two research projects. In the first project, I will present a concept called virtual machine extrospection, in which attackers or cloud customers collect sensitive information about the physical machine from within a virtual machine. In the second project, I will present a new type of rootkit, which allows attackers to perform active or passive attacks in a nested virtualization environment, and then I will describe our detection approach. At the end of the talk, I will briefly discuss my future research projects and plans.

Biography

Dr. Jidong Xiao is an assistant professor in the computer science department at Boise State University. His research focuses on computer security, especially computer system security and cloud security. He received his PhD degree in computer science from the College of William and Mary. Prior to joining Boise State University, he spent approximately 5 years in industry working at Intel and Symantec.

Dr. Xiao’s research was recognized in different venues, including publications that won the best paper award at the USENIX Large Installation System Administration Conference (LISA) 2015, won the distinguished poster award at the Network and Distributed System Security Symposium (NDSS) 2016, and won the best paper award nomination at the International Conference on Dependable Systems and Networks (DSN) 2020. Dr. Xiao has been awarded several grants by the NSF, NSA, and the Army Research Office (ARO).

Jinging Yao, NJ Inst. of Technology, to Present Talk May 11


Jingjing Yao, a PhD candidate at New Jersey Institute of Technology, will present a talk on Tuesday, May 11, at 3:00 p.m,.

In her talk, “Intelligent and Secure Fog-Aided Internet of Drones,” Yao discusses the utilization of energy harvesting technology to charge drone batteries and investigate wireless power control to adjust the drone wireless transmission power to reduce drone energy consumption.

Yao’s research interests include Internet of Things (IoT), Internet of Drones (IoD), Deep Reinforcement Learning, Federated Learning, Cybersecurity, Mobile Edge Computing/Caching, and Energy Harvesting.

Join the virtual talk here.

Talk Title

Intelligent and Secure Fog-Aided Internet of Drones

Talk Abstract

Internet of drones (IoD), which deploys several drones in the air to collect ground information and send them to the IoD gateway for further processing, can be applied in traffic surveillance and disaster rescue. Fog-aided IoD provisions future events prediction and image classification by machine learning technologies, where massive training data are collected by drones and analyzed in the fog node. However, the performance of IoD is greatly affected by drones’ battery capacities. Also, aggregating all data in the fog node may incur huge network traffic and drone data privacy leakage. The speaker will share her vision and research to address these two challenges.

In this talk, the speaker utilizes energy harvesting technology to charge drone batteries and investigate wireless power control to adjust the drone wireless transmission power to reduce drone energy consumption. The joint optimization of power control and energy harvesting scheduling is investigated in time-varying IoD networks to minimize the long-term average system energy cost constrained by the drone battery capacities and quality of service (QoS) requirements. A modified actor-critic deep reinforcement learning algorithm is designed to address the joint optimization problem in time-varying IoD networks.

To prevent the privacy leakage of IoD, the speaker utilizes federated learning (FL) by performing local training in drones and sharing all training model parameters in the fog node without uploading drone raw data. However, drone privacy can still be divulged to ground eavesdroppers by wiretapping and analyzing uploaded parameters during the FL training process. The power control problem is hence investigated to maximize the FL system security rate constrained by drone battery capacities and the FL training time requirement. An algorithm with low computational complexity is then designed to tackle the security rate maximization problem and its performance is demonstrated by extensive simulations.

Biography

Jingjing Yao is a Ph.D. candidate in Computer Engineering with the Department of Electrical and Computer Engineering at the New Jersey Institute of Technology (NJIT). She will receive her Ph.D. degree from NJIT in May 2021.

She received the M.E. degree in Information and Communication Engineering from the University of Science and Technology of China (USTC), and the B.E. degree in Information and Communication Engineering from the Dalian University of Technology (DUT).

She has published 13 first-author journal articles and 7 first-author conference papers. Her research interests include Internet of Things (IoT), Internet of Drones (IoD), Deep Reinforcement Learning, Federated Learning, Cybersecurity, Mobile Edge Computing/Caching, and Energy Harvesting.

Tara Salman, Washington Univ., to Present Talk April 27

Tara Salman, a final-year PhD candidate at Washington University in St. Louis, will present a talk on Tuesday, April 27, 2021, at 3:00 p.m.

In her talk, “A Collaborative Knowledge-Based Security Solution using Blockchains,” she will present her work on redesigning the blockchains and building a collaborative, distributed, intelligent, and hostile solution that can be used for security purposes.

Talk Title

A Collaborative Knowledge-Based Security Solution using Blockchains

Talk Abstract

Artificial intelligence and machine learning have recently gained wide adaptation in building intelligent yet simple and proactive security solutions such as intrusion identification, malware detection, and threat intelligence. With the increased risk and severity of cyber-attacks and the distributed nature of modern threats and vulnerabilities, it becomes critical to pose a distributed intelligent solution that evaluates the systems’ and networks’ security collaboratively. Blockchain, as a decade-old successful distributed ledger technology, has the potential to build such collaborative solutions. However, to be used for such solutions, the technology needs to be extended so that it can intelligently process the stored information and achieve a collective decision about security risks or threats that might target a system.

In this talk, I will present our work on redesigning the blockchains and build a collaborative, distributed, intelligent, and hostile solution that can be used for security purposes. In particular, we will discuss our work on (1) extending blockchains for general collaborative decision-making applications, where knowledge should be made out of decisions, risks, or any information stored on the blockchain; (2) applying the proposed extensions to security applications such as malware detection and threat intelligence.

Biography

Tara Salman is a final year Ph.D. candidate at Washington University in St. Louis, where she is advised by Raj Jain. She previously received her MS and BSc degrees from Qatar University in 2015 and 2012, respectively. Her research aims to integrate state-of-the-art technologies to provide scalable, collaborative, and intelligent cybersecurity solutions.

Her recent work focuses on the intersection of artificial intelligence, blockchains, and security applications. The work spans several fields, including blockchain technology, security, machine learning, and deep learning applications, cloud computing, and the Internet of Things. She has been selected for the EECS Rising Star in UC Berkeley 2020. Her research has been published in more than twenty internationally recognized conferences and journals and supported by national and international funds.

Xinyu Lei, Michigan State, to Present Talk April 29

Xinyu Lei, a Ph.D. candidate in the Department of Computer Science and Engineering at Michigan State University, will present a talk on Thursday, April 29, 2021, at 3:00 p.m.

In his talk, “Secure and Efficient Queries Processing in Cloud Computing,” Lei will discuss his work developing new techniques to support secure and efficient queries processing in cloud storage.

Title

Secure and Efficient Queries Processing in Cloud Computing

Abstract

With the advent of cloud computing, data owners are motivated to outsource their databases to the commercial public cloud for storage. The public cloud with database-as-a-service (DBaaS) model has many benefits (including lower cost, better performance, and higher flexibility). However, hosting the datasets on the commercial public cloud deprives the data owners’ direct control over their databases, which brings in security concerns. For example, the corrupted cloud employees may spy the data owner’s commercial valuable databases and sell them for money. To protect data privacy, the sensitive database must be encrypted before outsourcing to the cloud. However, it becomes hard to perform efficient queries (e.g., keyword query) processing over the encrypted database.

In this talk, I focus on developing new techniques to support secure and efficient queries processing in cloud storage. An index-aid approach is proposed to address the problem. In my approach, the data items are formally encrypted, and a secure index is generated for efficient queries processing. The cloud can perform queries directly over the secure index rather than the encrypted data items. The secure index is constructed based on a new data structure named random Bloom filter. Then, multiple random Bloom filters are organized into a binary tree structure to support fast query processing. The proposed approach can achieve data privacy, index privacy, search token privacy, and fast query processing simultaneously.

Biography

Xinyu Lei is a Ph.D. candidate in the Department of Computer science and Engineering at Michigan State University. He once worked as a research assistant in Texas A&M University at Qatar and Ford Motor Company. He has research interests in cybersecurity problems in different computer systems (including IoT, blockchain, cloud computing). He has published 20+ papers with 600+ citations. His work has been published on top-tier conferences and journals such as ACM MobiSys, ACM CodaSpy, IEEE ICDE, IEEE ICDCS, etc.

Spend 1010 with Dr. Brian Yuan, April 29


You are invited to spend one-zero-one-zero—that is, ten—minutes with Dr. Brian Yuan on Thursday, April 29, at 4:30 p.m. EST.

Dr. Yuan is an assistant professor in both the Applied Computing and Computer Science departments. His areas of expertise include machine learning, security and privacy, and cloud computing.

Yuan will discuss his research, the Applied Computing and Computer Science departments, and answer questions.

Dr. Yuan earned his PhD in Computer Science at University of Florida.

We look forward to spending 1010 minutes with you!

Visit the 1010 with … webpage here.

Dr. Ali Yekkehkhany to Present Talk May 6


Dr. Ali Yekkehkhany, a postdoctoral scholar at the University of California, Berkeley, will present a talk on Thursday, May 6, 2021, at 3:00 p.m.

He will discuss adversarial attacks on the computation of reinforcement learning and risk-aversion in games and online learning.

Dr. Yekkehkhany’s research interests include machine/reinforcement learning, queueing theory, applied probability theory and stochastic processes.

Join the virtual talk here.

Talk Title

Adversarial Reinforcement Learning, Risk-Averse Game Theory and Online Learning with Applications to Autonomous Vehicles and Financial Investments

Talk Abstract

In this talk, we discuss:

  • a) Adversarial attacks on the computation of reinforcement learning: The emergence of cloud, edge, and fog computing has incentivized agents to offload the large-scale computation of reinforcement learning models to distributed servers, giving rise to edge reinforcement learning (RL). By the inherently distributed nature of edge RL, the swift shift to this technology brings a host of new adversarial attack challenges that can be catastrophic in safety-critical applications. A natural malevolent attack could be to contaminate the RL computation such that the contraction property of the Bellman operator is undermined in the value/policy iteration methods. This can result in luring the agent to search among suboptimal policies without improving the true values of policies. We prove that under certain conditions, the attacked value/policy iteration methods converge to the vicinity of the optimal policy with high probability if the number of value/policy evaluation iterations is larger than a threshold that is logarithmic in the inverse of a desired precision.
  • b) Risk-aversion in games and online learning: The fast-growing market of autonomous vehicles, unmanned aerial vehicles, and fleets in general necessitates the design of smart and automatic navigation systems considering the stochastic latency along different paths in a traffic network. To our knowledge, the existing navigation systems including Google Maps, Waze, MapQuest, Scout GPS, Apple Maps, and others are based on minimizing the expected travel time, ignoring the path delay uncertainty. To put the travel time uncertainty into perspective, we model the decision making of risk-averse travelers in a traffic network by an atomic stochastic congestion game and propose three classes of risk-averse equilibria. We show that the Braess paradox may not occur to the extent presented originally and the price of anarchy can be improved, benefiting the society, when players travel according to risk-averse equilibria rather than the Wardrop/Nash equilibrium. Furthermore, we extend the idea of risk-aversion to online learning; in particular, risk-averse explore-then-commit multi-armed-bandits. We use data from the New York Stock Exchange (NYSE) to show that the classical mean-variance and conditional value at risk approaches can come short in addressing risk-aversion for financial investments. We introduce new venues to study risk-aversion by taking the probability distributions into account rather than the summarized statistics of distributions.

Biography

Ali Yekkehkhany is a postdoctoral scholar with the Department of Industrial Engineering and Operations Research, University of California, Berkeley. He received his PhD and MSc degrees in Electrical and Computer Engineering from the University of Illinois, Urbana-Champaign (UIUC) in 2020 and 2017, respectively, and BSc degree in Electrical Engineering from Sharif University of Technology in 2014.

He is the recipient of the “best poster award in recognition of high-quality research, professional poster, and outstanding presentation” in the 15th CSL Student Conference, 2020, and the “Harold L. Olesen award for excellence in undergraduate teaching by graduate students” in the 2019-2020 academic year at UIUC. He was chosen as “teachers ranked as excellent” twice and “teachers ranked as excellent and outstanding” twice at UIUC.

His research interests include machine/reinforcement learning, queueing theory, applied probability theory and stochastic processes.

Students Place in ICPC Programming Championships


A team of Michigan Tech students competed last week in the International Collegiate Programming Contest (ICPC) North America Division Championships, placing 28th out of 42 teams in the Central Division.

To qualify for the Championships, a Michigan Tech student team placed 14th out of more than 80 teams in the regional ICPC contest this February. Students on that team were Alex Gougeon (Software Engineering), Ben Wireman (Mathematics), and Dominika Bobik.

Students interested in the programming competitions are encouraged to contact Dr. Laura Brown, Computer Science. Additional programming contests and events take place throughout the year.

The International Collegiate Programming Contest is the premier world-wide, algorithmic programming contest for college students.

In ICPC competitions, teams of three students work to solve the most real-world problems efficiently and correctly. Teams represent their university in multiple levels of competition: regionals, divisionals, championships, and world finals.

Top