by Chris Clonts, College of Sciences and Arts
David Hemmer, dean of the College of Sciences and Arts, has announced that Kelly Steelman has accepted the position as chair of the Cognitive and Learning Sciences department.
Steelman, an associate professor of psychology and an affiliated associate professor of mechanical engineering-engineering mechanics, had been working as the interim chair.
Hemmer cited Steelman’s work developing Michigan Tech’s new bachelor’s degree in human factors as one reason he’s happy to see her in the role. “Kelly has done a great job as interim chair, including shepherding the department’s new human factors BS degree through to approval,” he said.
Here’s what Steelman said about the new undergraduate major in human factors:
“Our new human factors major will be great for students that are interested in designing the future and building new technologies, but also really care about people and want to understand why people do the things that we do and why we make the mistakes that we do,” she said.
“A human factors program is a particularly good fit for Michigan Tech, as it blends foundational coursework in psychology with courses in systems engineering, human-computer interaction, usability, business, and design,” she continued. “Designing the major was a true multidisciplinary effort, with faculty from numerous departments and colleges providing input and feedback.”
Find out more about Steelman, from her (really) long journey to Houghton to her roller derby involvement.
by Cognitive and Learning Sciences
Department of Cognitive and Learning Sciences (CLS) chair candidate Kelly Steelman will give a talk from 3 to 4 p.m. Monday (April 12).
In the talk, she will share her administrative philosophy and goals for the department.
One Michigan Tech graduate student found a silver lining of the pandemic-driven shift to remote study: the ability to gain experiences previously prevented by distance. And “gained experience” is an understatement, as Brooke Poyhonen recently was on the winning team in the Texas Health Care Challenge, an online hackathon that sought solutions to problems in health care.
The winning project, from Team WatsonCares, focused on women’s postpartum health and proposed a suite of services for new mothers:
- A natural-language chatbot, powered by IBM Watson’s AI, to answer patient questions about both mental and physical health
- A community feature allowing postpartum women to support one another
- Deep informational and support resources
Poyhonen said the team came together because after hearing initial “problem pitches,” in which existing teams outline the projects they want to tackle, some were uninterested in the originally pitched ideas. So they created their own team. “Ideally, we want the chatbot to be personalized to the patient’s history,” she said. “And we wanted to create a safe space for women to talk to each other.”
Poyhonen will complete her accelerated M.S. in applied cognitive science and human factors this spring. She earned a B.S. in psychology from Michigan Tech in 2020. Both degrees are offered by the Cognitive and Learning Sciences department in the University’s College of Sciences and Arts.
The Texas challenge is normally on-site only, and she appreciated the chance to participate and urges other students to seek out similar opportunities. “It was great to meet people from around the country and work with a team on a real-world goal,” Poyhonen said. “It’s a great networking opportunity and gives me a concrete project to discuss in interviews. It was just so rewarding.”
The team’s prize included $120,000 in credits toward IBM products and services, a smaller cash award, and temporary office space with a Dallas venture capital firm. Poyhonen is working with team members on the project as a start-up while also pursuing other opportunities.
She got her first taste of hackathons over the winter in the Work Related Musculoskeletal Disorders Grand Challenge, run by the American Registry for Diagnostic Medical Sonography. The challenge was to help the up to 90% of sonographers who develop disorders such as occupational overuse syndrome. Her team, which included a sonography mentor, an engineering student and two sonography students, created the Air Buddy, a device to help sonographers apply pressure to a probe with reduced physical stress. Poyhonen’s team won first place after judges deliberated for an entire week after the month-long window for teams to work on the problem.
Kelly Steelman, interim chair of the Cognitive and Learning Sciences Department, said hackathons are great supplements to classroom experiences. “I commend Brooke for taking the initiative to seek out design challenges as a way to build her portfolio of experiences and hone the skills she’s learned in our program,” Steelman said. “Brooke took advantage of opportunities through outside organizations, but we also offer hack-a-thons right here on campus.”
She said Husky Innovate is currently planning their inaugural hack-a-thon as part of an initiative to grow the human-centered design community at Michigan Tech. For more information on this, contact Lisa Casper.
Dr. Steelman is a member of the Human-Centered Computing research group of the Institute of Computing and Cybersystems (ICC).
Michigan Tech’s graduate program in Applied Cognitive Science and Human Factors teaches students how to apply principles of psychology to the design and evaluation of human-technological systems. Steelman said Beth Veinott, director of the Center for Human-Centered Computing, frequently reinforces for students that, “If you get the psychology right first, you design the right system, it is easier to train, and people are more likely to adopt it.”
Kelly Steelman, interim department chair and associate professor, Cognitive and Learning Sciences, presented her paper, “Work in Progress: Student Perception of Computer Programming Within Engineering Education: An Investigation of Attitudes, Beliefs, and Behaviors” at the 2020 ASEE Virtual Conference, June 22-26, 2020.
Co-authors of the paper are Michelle Jarvie-Eggart (EF), Kay Tislar (CLS), Charles Wallace (CC), Nathan Naser (GMES), Briana Bettin (CS) and Leo Ureel (CS), all from Michigan Tech.
Abstract
Although most engineering faculty and professionals view computer programming as an essential part of an undergraduate engineering curriculum, engineering students do not always share this viewpoint. In fact, engineering students—especially those outside of computer and electrical engineering—may not realize the value of computer programming skills until after they have graduated and advanced in their career (Sterian, Dunne, & Blauch, 2005). Failure to find value in computer programming may have negative consequences for learning. Indeed, engineering students who do not view programming as interesting or useful show poorer performance on tests of programming concepts than students who do (Lingar, Williams, and McCord, 2017). This finding is consistent with theories of technology acceptance (e.g., Davis, 1989, Venkatesh, et al., 2003) that emphasize perceived usefulness as a key determinant of attitudes toward a technology and subsequent use or disuse of it. Accordingly, to better support student learning, engineering coursework should include specific interventions that emphasize the utility of programming skills for a career in engineering. Intervention effectiveness, however, may depend in part on the characteristics of the individual learners, including their prior programming experience, their openness to new experiences, and their beliefs about the nature of intelligence. The purpose of the current work is to understand engineering students’ attitudes toward and experiences with computer programming as well as to assess the relationship between their attitudes and experiences and their mindset toward their own intelligence. 101 engineering students participated in the study as part of a general education psychology course. Participants completed a computer language inventory and three surveys. The first survey inquired about students’ computer programming experiences and attitudes (Hoegh and Moskal, 2009). The second survey posed questions related to different aspects of openness to experience (Woo et al., 2014): intellectual efficiency, ingenuity, curiosity, aesthetics, tolerance, and depth. Finally, the third survey probed participants’ beliefs about the nature of intelligence and whether it is fixed or can be developed (Dweck, 1999). This paper will present the results of these surveys and explore the correlations among the various scales. The implications for engineering education interventions will be discussed.
Download the paper here.
Citation
Steelman, K. S., & Jarvie-Eggart, M. E., & Tislar, K. L., & Wallace, C., & Manser, N. D., & Bettin, B. C., & Ureel, L. C. (2020, June), Work in Progress: Student Perception of Computer Programming within Engineering Education: An Investigation of Attitudes, Beliefs, and Behaviors Paper presented at 2020 ASEE Virtual Annual Conference Content Access, Virtual On line . https://peer.asee.org/35683