Category: Uncategorized

Ski – Score – Spike! Student Athletes at Michigan Tech

The 2019-2020 Women’s Basketball team at Michigan Tech. Core Values: Integrity. Passion. Appreciation. Unity.

Three Michigan Tech Head Coaches and Athletic Director Suzanne Sanregret share their knowledge on Husky Bites, a free, interactive webinar today, Monday, January 25 at 6 pm ET. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Ski – Score – Spike! What are you doing for supper tonight 1/25 at 6 ET? Grab a bite with Dean Janet Callahan and three fantastic head coaches for the Michigan Tech Huskies: Tom Monahan Smith (Nordic), Sam Hoyt (women’s basketball) and Matt Jennings (volleyball). Joining in will be Suzanne Sanregret, Michigan Tech’s Director of Athletics. 

Student athletes at Michigan Tech are high academic achievers. How? What’s it like to be both an athlete and a student at Michigan Tech? 

During Husky Bites, they’ll describe a day in the life of a Michigan Tech athlete, talk about recruiting, academic/mental wellness, and more—including how Michigan Tech athletes and (and their coaches) cope with COVID-19 challenges, too. 

Tom Monahan Smith is head coach of the Nordic ski teams and assistant coach with the cross country teams at Michigan Tech.

A native of Bend, Oregon, Monahan Smith came to Houghton after serving as the Head Postgraduate Program Coach of the Sun Valley Ski Education Foundation in Ketchum, Idaho. 

Tom Monahan Smith, Head Coach, Nordic Skiing, Michigan Tech

Monahan Smith was a gold medalist in the freestyle sprint at the U.S. Junior Nationals in 2007 as well as being a six-time Junior All-American. He was also a prolific skier in high school, claiming the Oregon High School Nordic State Champion title three times. And he comes from a skiing family with his parents, brother, sister, and cousins all racing at the collegiate level.

Monahan Smith graduated from the University of Utah in 2013 with a bachelor’s degree in Environmental and Sustainability Studies and also a bachelor’s degree in International Studies.

Read more:

Houghton-Bound: Tom Smith Hired as Michigan Tech Nordic Coach

Matt Jennings became the seventh volleyball coach in Michigan Tech history in 2012.

Jennings is also an instructor for the Department of Kinesiology and Integrated Physiology. He is currently teaching Sports Psychology and has taught various co-curricular courses for the department. He currently represents the GLIAC on the NCAA Regional Advisory Committee (RAC) for the Midwest Region and is a member of the American Volleyball Coaches Association.

Matt Jennings, Head Coach, Volleyball, Michigan Tech

Before making the move to the U.P., Jennings served as an assistant coach and recruiting coordinator at the University of Pittsburgh.

Jennings earned a bachelor’s degree in business administration and political science from Augustana College (Illinois) in 2003 and received his master of business administration (MBA) from St. Ambrose in 2006.

Read more:

Jennings Hired to Lead Volleyball Program

Suzanne Sanregret has been Michigan Tech’s athletic director since 2005.

Her vision within the Huskies’ athletic programs and work on conference and national committees has positioned Michigan Tech as a leader in collegiate athletics.

Suzanne Sanregret, PhD, Athletic Director, Michigan Tech

A veteran of working within Michigan Tech athletics, Sanregret started in 1993 in the equipment room. She moved to business manager, then to compliance coordinator, and finally to assistant athletic director for business and NCAA compliance prior to taking over as athletic director.

Sanregret attended Michigan Tech and graduated in 1993 with a bachelor’s degree in business administration. She finished her master’s degree in business administration at Tech in spring 2006 and was inducted into the Michigan Tech Presidential Council of Alumnae in 2007. In March 2017, she completed her doctorate in higher education administration from the University of Phoenix.

Read More:

Q&A with Diversity Award Winner Suzanne Sanregret

Sam Hoyt became the ninth head coach of the Michigan Tech women’s basketball program in 2018.

Hoyt returned to Michigan Tech from the University of Sioux Falls where she served as an assistant coach. 

Sam Hoyt, Head Coach, Women’s Basketball, Michigan Tech

She earned a BS in Math at Michigan Tech in 2013. As a student, Hoyt was a standout player for the Huskies, helping lead the program to the 2011 NCAA Division II National Championship game as well as garnering multiple individual awards, including All-American Honorable Mention honors

Coach Hoyt, how did you first get into coaching? What first sparked your interest?

I have been a basketball fan ever since I could walk!  My dad was a coach growing up, so I was in the gym all the time.  Our family is really competitive, so I loved that about basketball.  I’ve also always had an inclination to help others learn and grow, and coaching basketball has given me the opportunity to develop a variety of areas in the young ladies lives that I get the pleasure to work with.

Q: What did you want to do when you graduated high school?

A: I was going to be a math teacher so I could coach basketball. All the coaches I knew growing up were teachers. Coach Barnes reached out to me about a graduate assistant position at Youngstown after I graduated from Tech, and I thought that was a great opportunity because all I really wanted to do was coach basketball. All the doors have opened for me, and I’m blessed with how it’s played out.

Hometown, Hobbies, Family?

I was born and raised in Arkansaw, Wisconsin. I went to school at Michigan Tech and have now been coaching here for 3 years.  I live about 5 miles from campus with my golden retriever, Remi.  We love to go on hikes and enjoy the beauty of the UP!

#Believe

Coach Sam Hoyt, Michigan Tech

Read more:

Q&A: Home Court Advantage



Wayne Gersie: New VP for Diversity and Inclusion at Michigan Tech

In November 2020, Michigan Technological University named Wayne M. Gersie as its first Vice President for Diversity and Inclusion.

In his role, Dr. Gersie works to identify and address organizational and systemic issues related to diversity, equity and inclusion on Michigan Tech’s campus. This includes developing policies and best practices in collaboration with operational areas including human resources, finance, student affairs and academic affairs.

Gersie is a member of the University’s senior leadership team, led by Dr. Rick Koubek, president of Michigan Tech.

“My first few months at MTU have been exciting and productive,” shares Gersie. “I have met so many stakeholders, all who have been so welcoming and ready to share their knowledge and experiences with me. We are already forming partnerships and collaborations with students, faculty, and staff across the university that are going to help move us forward in our efforts to be an institution where a world class education is enhanced by our diversity, equity, and inclusion (DEI) and our sense of belonging.”

Gersie was previously Assistant Research Professor and Chief Diversity Officer for the Applied Research Laboratory at Penn State. He is the founder and principal of Oasis Strategic Consulting LLC. He earned his PhD in Workforce Education and Development, with emphasis on Human Resources and a Masters in Counselor Education, both from Penn State. Additionally, Gersie holds certificates from the Harvard University Institute for Management & Leadership Education, Cambridge Massachusetts, and Center for Creative Leadership in Colorado Springs, Colorado.

Gersie has been recognized for his service with multiple awards, including The Pennsylvania State University, College of Engineering Ally recognition award. The Penn State Engineering Alumni Society Equity and Inclusion Award, The Penn State Multicultural and the Resource Center Faculty/Staff Diversity Recognition Award.

He has also served his community, region and nationally as a committee member, panelist, and keynote speaker for many organizations including The Pennsylvania Human Relation Commission Advisory Council for Centre County, The Penn Civilians, Chair and member of The Penn State Council of College Multicultural Leadership, National Association for Multicultural Engineering Program Advocates, American Society of Engineering Education, Black Engineer of the Year Award, Society for Hispanic Professional Engineers, The Tapia Conference and the National GEM Consortium.

“In the words of Helen Keller, ‘Alone, we can do so little. Together we can do so much.’ Campus culture will be enhanced as we work together with respect and openness towards a community where differences are valued, equal access, opportunity, and representation are achieved, and we are able to sustain an inclusive environment where all feel a sense of belonging.”   

Dr. Wayne Gersie, Vice President for Diversity and Inclusion, Michigan Technological University

Michigan Tech Receives State-of-the-Art Software from Petroleum Experts Limited

MOVE, a geologic modeling software, provides a full digital environment for best practice structural modeling to reduce risk and uncertainty in geological models.

Petroleum Experts Limited has donated the equivalent of $2,236,604.75 to Michigan Technological University. The donation has come in the form of 10 sets of the MOVE suite of programs to be used for education and academic research at the Department of Geological and Mining Engineering and Sciences (GMES).

Petroleum Experts, established in 1990, develops and commercializes petroleum engineering software for the oil industry. Petroleum Experts offers educational licenses to accredited universities that provide geology and/or petroleum engineering related Master and Ph.D. courses.

Learn more about MOVE

The state-of-the-art software will be installed in a computer laboratory at GMES, where it will be used in the Structural Geology course (GE3050), required for department undergraduate majors, and in graduate-level courses in structural geology. In addition, the MOVE suite will be utilized in academic non-commercial research on tectonics and structural geology, such as the mapping of the Keweenaw Fault and other complex structural systems in Michigan’s Upper Peninsula.

“The researchers and students at GMES greatly appreciate this generous donation from Petroleum Experts,” says Dr. Aleksey Smirnov, chair of the Department of Geological and Mining Engineering and Sciences at Michigan Tech.


Michigan Tech Announces New Online Graduate Certificates in Engineering

Michigan Technological University is a public research university founded in 1885. Our campus in Michigan’s Upper Peninsula overlooks the Keweenaw Waterway and is just a few miles from Lake Superior.

Ready to propel your career forward in 2021? Michigan Technological University’s College of Engineering now offers 16 new online graduate certificate programs. Interested in taking a course soon? Spring 2021 instruction begins on Monday, January 11.

“One of our goals at Michigan Tech has been to expand online learning opportunities for engineers, to help them meet new challenges and opportunities with stronger knowledge and skills,” says Dr. Janet Callahan, Dean of the College of Engineering.

The certificates are offered by four departments within the College of Engineering at Michigan Tech: Civil and Environmental Engineering, Mechanical Engineering-Engineering Mechanics, Biomedical Engineering, and Geological and Mining Engineering and Sciences. Several more engineering departments will join the effort in the near future.

“We have many more certificates in the works,” Callahan says. “We expect to have a total of 30 new online graduate certificates—including more than 90 courses online—by Fall 2021.

Dean Janet Callahan stands in front of the summer gardens on campus at Michigan Tech
Janet Callahan, Dean of the College of Engineering, Michigan Technological University

Students can sign up for a single course without committing to a certificate. “The courses are accessible and flexible to accommodate a busy schedule,” Callahan explains.

“These are the same robust courses taken by our doctorate and masters candidates, taught directly by highly regarded faculty, with outstanding opportunities to create connections,” she adds. “We invite working professionals to join these courses, and bring their own experiences to bear, as well as their challenges as part of the discussion.”

All courses will be taught online—many of them synchronously offered—with regularly-scheduled class meeting times. 

Obtaining certification from Michigan Tech in sought-after industry skills is a great way to accelerate and advance a career in technology, Callahan says. Students take a cluster of three courses to earn a certificate. “It’s a three-step approach for a deeper dive into the subject area that results in a credential.” 

Michigan Tech was founded in 1885. The University is accredited by the Higher Learning Commission and widely respected by fast-paced industries, including automotive development, infrastructure, manufacturing, and aerospace. The College of Engineering fosters excellence in education and research, with 17 undergraduate and 29 graduate engineering programs across nine departments.


Work full time or live far from campus? You can still learn from the world-class engineering faculty at Michigan Tech.

Michigan Tech faculty are accessible, offering an open door learning experience for students.

“We have a strong, collegial learning community, both online and on campus,” notes Callahan. “We’re also known for tenacity. Our faculty and graduates know how to deliver and confidently lean into any challenge.”

Michigan Tech’s reputation is based on those core strengths, Callahan says. “A certificate credential from Michigan Tech will be respected across many industries, particularly in the manufacturing sectors of the Midwest—and around the world. Michigan Tech engineering alumni are working in leadership positions across the United States and in 88 different countries.”

“Remember those ‘aha’ moments you had, back in your undergrad days, your backpack days, when things suddenly came together? It’s exciting, invigorating and fun to learn something new.”

Dean Janet Callahan, Michigan Tech


“Registration doesn’t take long,” she adds. “We have simplified the graduate application process for working professionals. You can apply online for free.”

Interested in taking a course soon? Spring 2021 instruction begins on Monday, January 11.

Need more time to plan? Consider Fall 2021. Instruction begins on Monday, August 30, 2021.

New! Michigan Tech online graduate engineering certificates and courses, with more to come!

  • Aerodynamics
  • Computational Fluid Dynamics
  • Dynamic Systems
  • Geoinformatics
  • Medical Devices and Technologies
  • Natural Hazards and Disaster Risk Reduction
  • Quality Engineering
  • Resilient Water Infrastructure
  • Structural Engineering: Advanced Analysis
  • Structural Engineering: Bridge Analysis and Design
  • Structural Engineering: Building Design
  • Structural Engineering: Hazard Analysis
  • Structural Engineering: Timber Building Design
  • Pavement Design & Construction
  • Vehicle Dynamics
  • Water Resources Modeling

Learn about all graduate programs at Michigan Tech, both online and on campus, at mtu.edu/gradschool.


Marty Lagina: Say YES to the Quest: Reflections, Energy and Adventure!

“Something interesting and different happened on that island, and we still aren’t sure what,” says Marty Lagina. Pictured above: Oak Island, Nova Scotia, Canada, August 1931. Format: glass plate negative.

Marty Lagina shares his knowledge on Husky Bites, a free, interactive webinar this Monday, November 23  at 6 pm ET. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

“Engineering school teaches you how things work, and also to know what you don’t know,” says Marty Lagina.

What are you doing for supper this Monday night 11/23 at 6 ET? Grab a bite with Dean Janet Callahan and Marty Lagina, CEO of Heritage Sustainable Energy, winemaker, and creator and star of the long-running reality TV show, Curse of Oak Island.

Joining in as Dean Callahan’s co-host will be Bill Predebon, the JS Endowed Department Chair of the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech.

Lagina is one of Dr. Predebon’s former students—as an undergraduate student in mechanical engineering, Lagina worked as his research assistant.

“If there’s ever been a human being, who if you cut him he bleeds Michigan Tech, that’s Bill Predebon,” says Lagina. 

Throughout his life, Lagina says his engineering education has given him the confidence to try new things.

“I was thinking of going to law school, and my father told me: ‘You would make a better lawyer if you knew how things worked.’ So I went to Michigan Tech to study engineering and I liked it. And it prepared me very well for what turned out to be a very multifaceted career.”

“When something interesting comes along, and it looks like fun, and it’s legal and ethical (even better if it’s good for society) and you might make some money—do it!”

Marty Lagina

Lagina graduated from Michigan Tech with his mechanical engineering degree in 1977, then took a job as a petroleum engineer for Amoco. A few years later, while attending law school at the University of Michigan, he worked as an independent petroleum engineer consultant, hired by various Michigan corporations to explore wells. “I was a law student, putting together oil deals, working out of a tiny room the size of a small walk-in closet,” he recalls.

“Our first 14 lost money, then we finally hit a decent well. It put us in business.” His partner in that first energy consulting business: Craig Tester, another Michigan Tech mechanical engineering graduate. They were college roommates.

A photo of Marty Lagina, from the Michigan Tech archives.

Once Lagina earned his JD, the two founded Terra Energy to pioneer the exploration and development of the Antrim shale natural gas resources of Michigan, which they did—successfully developing over $3 billion of oil and natural gas resources.

When he turned 40, Lagina decided to change course. He formed Heritage Sustainable Energy, a renewable energy provider. Heritage has successfully developed a series of wind and solar projects in Michigan, installing enough capacity to power the equivalent of 57,000 average Michigan homes every year.

Heritage operates a total of 139.2 megawatts (MW) of installed renewable energy capacity, with hundreds of MW in its project pipeline, along with a commitment to help reduce Michigan’s dependence on conventional energy sources.

Heritage Sustainable Energy’s Garden Solar Project is the first utility scale solar project in Michigan’s Upper Peninsula. The Garden Wind Farm, above, located north of the Village of Garden, will have 34 wind turbines by the end of this year.

In 2006, Lagina started doing some unnatural exploring to solve a 200–500 year old mystery. Featured on the History Channel, Lagina, his family and friends attempt to solve the “Curse of Oak Island,” based on the legend of a Nova Scotia island. 

“I’m the skeptic,” says Lagina. “My brother, Rick, is the optimist, but I’m the engineer who needs more proof.”

Part National Treasure, part Indiana Jones, the five-segment series follows their exploits as they attempt to—literally—get to the bottom of the ‘money pit’ on the island that has given up some clues, booby traps, bizarre hints and puzzle pieces. Theories of what is buried range from treasures from Solomon’s temple, the Holy Grail, the Knights Templar, or pirates.

First, they had to spend millions to purchase a controlling interest in the North Atlantic island. “And everything is difficult,” Lagina says. “It’s been dug at for 200-plus years, so you need to figure out if you are discovering something from the original works or not.”

Tester, an expert on drilling, resistivity, and more, also appears on The Curse of Oak Island.

Born in Kingsford on Michigan’s Upper Peninsula, Marty has spent nearly all his life living in Michigan. His background is in engineering and the energy business, but with family ties to one of Italy’s premier winegrowing areas, a passion for wine is in his blood.

He founded Mari Vineyards in 1999 (the same year he was inducted into Michigan Tech’s ME-EM Academy). His goal: to make world-class red wines in northern Michigan but with a nod to the Italian style of his ancestors. The winery’s namesake is Lagina’s Grandma Mari, an Italian immigrant who settled in the Iron Mountain area of Michigan’s Upper Peninsula. Lagina is said to have fond memories of her creating wine in the basement of her home.

Marty’s Italian grandma, Teresa Mari, made wine her own wine at home. Her still—and her photo, above—are both on display at Mari Vineyards winery.

Mari Vineyards is situated on 60 acres in Traverse City. The winery is 100 percent carbon neutral and built from UP dolomite stone, dug from the bases of wind turbines. Lagina has unique growing methods, too—something he plans to share during his session of Husky Bites. As for the wine? “It’s good!” he says.

Mari Vineyards

“Winemaking is an art, but it’s also highly technical,” he adds. “My education at Michigan Tech is what gives me the confidence for innovation.”

Dr. Predebon, what do you do in your spare time?

“I’ve been at Michigan Tech since 1975. That’s 45 years this fall. I just finished 22 years as department chair. My work has absorbed my life, by choice. I have a real passion for our program. We do a good job of preparing engineers, with a heavy emphasis on hands-on education. 

Dr. Bill Predebon

“I have always enjoyed teaching, so the way I look at my role is to nurture the growth of my faculty and staff, right along with our students. I want to help them all reach their potential.

“That said, exercise is a big part of my life, too. I try to exercise every day. I mainly run on a treadmill and lift weights. My wife is an artist and a potter, and together we organically garden. Turns out you can grow anything here in the UP. My wife is very good; I just help. We have a peach tree, we have grown watermelon, we’ve grown cantaloupes, we’ve grown potatoes, her passion is pumpkins so we grow these large pumpkins—150 pounds.”

Dr. Predebon joined the faculty at Michigan Tech in 1975. He earned the Michigan Tech Distinguished Teaching Award in 1984, and became chair of the university’s largest department, Mechanical Engineering-Engineering Mechanics, six years later.

Erik Herbert: Holy Grail! Energy Storage on the Nanoscale

Ever wondered what a materials science engineer sees on their computer screen on any given day? Here’s what Dr. Erik Herbert and his team are focused on.

Erik Herbert shares his knowledge on Husky Bites, a free, interactive webinar tonight, Monday, October 12 at 6 pm ET. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Tonight’s Husky Bites delves directly into our phones, laptops and tablets, on how to make them cleaner, safer, faster, and more environmentally friendly. It’s about materials, and how engineers focus on understanding, improving inventing materials to solve big problems.

MSE Assistant Professor Erik Herbert

Materials Science and Engineering Assistant Prof. Erik Herbert is focused on the lithium metal inside the batteries that power our devices. Lithium is an extremely reactive metal, which makes it prone to misbehavior. But it is also very good at storing energy. 

Optical microscope image showing residual hardness impressions in a high purity, vapor deposited, polycrystalline lithium thin film. The indents are approximately 1 micron deep and spaced by 35 microns in the plane of the surface (1 micron is a millionth of a meter). Among the key takeaways are the straight edges connecting the 3 corners of each impression and the lack of any discernible slip steps or terraces surrounding the periphery of the contact. Now, if you’re wondering what this means, be sure to catch Dr. Herbert’s session on Husky Bites.

“We want our devices to charge as quickly as possible, and so battery manufacturers face twin pressures: Make batteries that charge very quickly, passing a charge between the cathode and anode as fast as possible, and make the batteries reliable despite being charged repeatedly,” he says. 

On campus at Michigan Tech, Dr. Herbert and his research team explore how lithium reacts to pressure by drilling down into lithium’s smallest and arguably most befuddling attributes. Using a diamond-tipped probe, they deform thin film lithium samples under the microscope to study the behavior on the nanoscale.

“Lithium doesn’t behave as expected during battery operation,” says Herbert.  Mounting pressure occurs during the charging and discharging of a battery, resulting in microscopic fingers of lithium called dendrites. These dendrites fill pre-existing microscopic flaws—grooves, pores and scratches—at the interface between the lithium anode and the solid electrolyte separator.

During continued cycling, these dendrites can force their way into, and eventually through, the solid electrolyte layer that physically separates the anode and cathode. Once a dendrite reaches the cathode, the device short circuits and fails, sometimes catastrophically, with heat, fire and explosions.

Pictured: High-purity indium, which is a mechanical surrogate to lithium. It can be used to make electrical components and low melting alloys. “Note the scale marker,” says Herbert. “That distance is 5 millionths of a meter. The image was taken in a scanning electron microscope and shows the residual hardness impression from a 550 nm deep indent. The key noteworthy feature is the extensive pile-up around the edges of the contact, which suggests a deformation mechanism that conserves volume.”

Improving our understanding of this fundamental issue will directly enable the development of a stable interface that promotes safe, long-term and high-rate cycling performance.

“Everybody is just looking at the energy storage components of the battery,” says Herbert. “Very few research groups are interested in understanding the mechanical elements. But low and behold, we’re discovering that the mechanical properties of lithium itself may be the key piece of the puzzle.”

Dr. Iver Anderson is a senior metallurgist at Ames Lab, an inventor, and a Michigan Tech alumnus.

Iver Anderson, PhD will be Dean Callahan’s co-host during the session. Dr. Anderson is a Michigan Tech alum and senior metallurgical engineer at Ames Lab, a US Department of Energy National Lab. A few years ago, he was inducted into the National Inventors Hall of Fame, for inventing a successful lead-free solder alloy, a revolutionary alternative to traditional tin/lead solder used for joining less fusible metals such as electric wires or other metal parts, and in circuit boards.

As a result, nearly 20,000 tons of lead are no longer released into the environment worldwide. Low-wage recyclers in third-world countries are no longer exposed to large concentrations of this toxic material, and much less lead leaches from landfills into drinking water supplies. 

“There is no safe lead level,” says Anderson. “Science exists to solve problems, but I believe the questions have to be relevant. The motivation is especially strong to solve a problem when somebody says it is not possible to solve it,” he adds. “It makes me feel warm inside to have solved one problem that will help us going on into the future.”

Anderson earned his BS in Metallurgical Engineering in 1975 from Michigan Tech. “It laid the foundation of my network of classmates and professors, which I have continued to expand,” he said.

Anderson went on to earn his MS and PhD in Metallurgical Engineering from University of Wisconsin-Madison. After completing his studies in 1982, he joined the Metallurgy Branch of the US Naval Research Laboratory in Washington, DC.

With a desire to return to the Midwest, he took a position at Ames Lab in 1987 and has spent the balance of his research career there and at Iowa State.

“I hope our work has a significant impact on the direction people take trying to develop next-gen storage devices.”

Erik Herbert

Professor Herbert, when did you first get into engineering? What sparked your interest?

The factors that got me interesting engineering revolved around my hobbies. First it was through BMX bikes and the changes I noticed in riding frames made from aluminum rather than steel. Next it was rock climbing, and realizing that the hardware had to be tailor made and selected to accommodate the type of rock or the type or feature within the rock. Here’s a few examples: Brass is the optimal choice for crack systems with small quartz crystals. Steel is the better choice for smoothly tapered constrictions. Steel pins need sufficient ductility to take on the physical shape of a seam or crack. Aluminum cam lobes need to be sufficiently soft to “bite” the rock, but robust enough to survive repeated impact loads. Then of course there is the rope—what an interesting marvel—the rope has to be capable of dissipating the energy of a fall so the shock isn’t transferred to the climber. Clearly, there is a lot of interesting materials science and engineering going on here.

Hometown, hobbies?

I am originally from Boston, but was raised primarily in East Tennessee. Since 2015, my wife Martha and I have lived in Houghton with our three youngest children. Since then, all but one have taken off on their own. When I’m not working, we enjoy visiting family, riding mountain bikes, learning to snowboard, and watching a good movie.

Dr. Iver Anderson’s invention of lead free solder was 15 years (at least) in the making.

Dr. Anderson, when did you first get into engineering? What sparked your interest?

I grew up in Hancock, Michigan, in the Upper Peninsula. Right out my back door was a 40 acre wood that all the kids played in. The world is a beautiful place, especially nature. That was the kind of impression I grew up with. My father was observant and very particular, for instance, about furniture and cabinetry. He taught me how to look for quality, the mark of a craftsman, how to sense a thousandth of an inch. I carry that with me today.


Michigan Tech Engineer Captures the Northern Lights

North Canal Park, April 2019. Credit: Michigan Tech Alumnus Venkata Rajesh Chundru

Some of us have waited a decade or more to see the Northern Lights since moving to Houghton, in Michigan’s Upper Peninsula. Then there’s Venkata Rajesh Chundru, now a research engineer at Southwest Research Institute in San Antonio, Texas. While earning his PhD in Mechanical Engineering-Engineering Mechanics at Michigan Tech from 2014 to 2019, Chundru managed to see—and artfully capture—Aurora Borealis time after time. And he has generously offered to share some of his favorite photographs with us here.

Calumet Waterworks Park, September 2017. Credit: Venkata Rajesh Chundru

Eagle Harbor, September 2016. Credit: Venkata Rajesh Chundru

Calumet Waterworks Park, September 2017. Credit: Venkata Rajesh Chundru

McLain State Park, February 2017. Credit: Venkata Rajesh Chundru

Eagle Harbor, May 2016. Credit: Venkata Rajesh Chundru

Copper Harbor, March 2016. Credit: Venkata Rajesh Chundru

Calumet Waterworks Park, May 2019. Credit: Venkata Rajesh Chundru

Michigan Tech Campus, Canal Side, February 2016. Credit: Venkata Rajesh Chundru

The photographer at Copper Peak, September 2018. Thank you, Venkata! We wish you the very best of luck in your new home!

“Since moving to Texas I have been capturing cityscapes and doing some professional portrait sessions for events, while soaking in the Texan culture. These photographs bring back a lot of good memories from all those years in the U.P. I do intend to be back during summer for a week to capture some landscapes,” says Chundru. “Life in San Antonio has more of an urban feel. I miss the wide-open landscapes and warm people back in the U.P, and of course the snow.

“In my new job at Southwest Research Institute, I’m focused on developing control systems for automotive applications—specifically to control emissions from heavy-duty diesel engines, which is in line with my Ph.D. work at Michigan Tech. I also get to work on new research areas, such as connected vehicles and electric vehicle controls.”

As for COVID-19? “Stay safe out there,” he says. “Hope this passes soon.”

Want to see more beautiful photography? Be sure to visit Chundru’s photography page on Facebook, or his Instagram account.

Have some of your own Aurora Borealis images to share? Please reach out to Kimberly Geiger, kmgeiger@mtu.edu. If you like, we’d be glad to post them here on our blog.