Category: News

Tess Ahlborn: Lift Bridge—a Michigan Landmark

Tess Ahlborn shares her knowledge on Husky Bites, a free, interactive webinar this Monday, September 27 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Prof. Tess Ahlborn: Structural durability and safety are her life’s work.

What are you doing for supper this Monday night 9/27 at 6 ET? Grab a bite with Dean Janet Callahan and Tess Ahlborn, Professor of Civil, Environmental, and Geospatial Engineering at Michigan Tech. The Portage Lake Bridge connecting Houghton and Hancock, Michigan, more commonly known as the Lift Bridge, was named as an ASCE National Historic Civil Engineering Landmark in late 2019 following a State Historic Landmark designation in 2018. 

During Husky Bites we’ll hear about the wonders of the Lift Bridge from the very trio who submitted its 300-page application to the American Society of Civil Engineers (ASCE). Prof. Ahlborn will be joined by two of her former students, Michael Prast ’19, now a timber structural engineer at Fire Tower Engineered Timber in Calumet, Michigan; and Emma Beachy ‘19, a design engineer at Corbin Consulting in Portland, Oregon. Both earned both their BS and MS degrees in civil engineering at Michigan Tech.

Emma Beachy wearing patterned knit capstands in front of a waterfall in the wood.
Emma Beachy ’19
Michael leans at a wooden deck looking out over a harbor on Lake Superior with sailboats
Michael Prast ’18

We’ll learn about crossings prior to the current Lift Bridge, the people involved in designing and building the Lift Bridge, and what makes the Lift Bridge so unique to the region and the nation to proudly earn the National Landmark designation. 

“Emma and Michael are two of Michigan Tech’s best students,” says Ahlborn. “I mentioned the topic of National Historic Landmarks during Bridge Design class, and let the class know I would be delighted if someone wanted to work on a nomination application for the Portage Lake Bridge. It didn’t take long for Emma and Michael to speak up, and the rest is history. I can’t thank them enough for taking on this project and seeing it through the application process!”

By the way, Prof. Ahlborn is a Michigan Tech alum, too. She earned her BS and MS at Michigan Tech, then went to University of Minnesota to earn a Doctorate of Philosophy in Civil Engineering in 1998. She’s been a member of the faculty at Michigan Tech for the past 26 years, teaching structural engineering courses focusing on concrete and the design of concrete buildings and bridges. 

She has a passion for bridges, something that began when she was quite small. “Growing up, I once told my mom I loved bridges. After that, she started taking me to look at a different bridge each week. Michigan has such beautiful bridges!” 

“Bridges are structural art! A piece of art fully exposed to the elements. They involve so many people every day.”

Prof. Tess Ahlborn

As the former Director of the Center for Structural Durability within the Michigan Tech Transportation Institute, Ahlborn has worked with the MDOT (Michigan Department of Transportation) and USDOT (US Department of Transportation) to seek solutions to improve the resiliency of our nation’s transportation infrastructure. 

In 2020, Ahlborn was appointed to the American Concrete Institute Committee 318, placing her in the small group of people who establish the ACI structural concrete building code used around the world, a “Supreme Court” of concrete, if you will.

Did you know? Prof. Ahlborn is a world expert in remote sensing applications for bridge condition assessment.

“It also means her peers consider her to be one of the most knowledgeable and trustworthy among them,” says Materials Science and Engineering Professor Larry Sutter, a concrete expert in his own right, as well as associate dean of research and external relations in the College of Engineering.

After water, concrete is the most widely used substance on the planet. As a member of the committee, Ahlborn helps to chart the future of structural concrete—its safety, sustainability, technological advances and environmental impacts.

“We think of concrete almost as rock, but a big part of it is the steel,” Ahlborn said. “It’s a frame of steel bars encased in concrete. People the world over need to know, ‘How do I design with it?’ and ‘How does it behave?’ The code is based on over 100 years of research.”

Ahlborn knows the code inside and out. As a civil engineering student at Michigan Tech, she learned ACI Code 318 from civil engineering professor Bogue Sandberg, now a professor emeritus. “Over the years I have taught at least 1,500 students in the classroom about the 318 code requirements,” she said. 

As for her secrets to good teaching, she insists there aren’t any. “All you have to do is be fair and consistent and crack a joke once in a while,” said Ahlborn. 

She invites alumni to speak to her classes, and she regularly brings in current news articles relating to the course, not to mention chunks of concrete with stories to tell. All together, “it helps the students understand why what they are learning is important.” 

Each of these chunks of concrete has a story to tell, says Professor Ahlborn.

Prof. Ahlborn, how did you first get into engineering? What sparked your interest?

As a young kid, I was always fascinated by bridges.  It wasn’t until my high-school physics teacher asked me about my future plans. I was happy to report that I was applying to cosmetology schools, but I really liked bridges. After a few conversations, it was clear where I was heading: Civil Engineering. Soon enough, I jumped onto the structural engineering route and have loved working with bridges ever since!

Izzy and Charlie!

Hometown?

Growing up in an all-American family in Kawkawlin, Michigan, followed by the real growing up as a student at Michigan Tech, I had the opportunity to watch the Zilwaukee bridge construction and land a dream job in the Minneapolis area designing dams, hydropower facilities, and bridges. When the engineering market slowed down, I jumped at the chance to complete a PhD. My husband, Mark, and I were blessed with twins, Jess and Jake, and chose the Keweenaw as the best place to settle down. I’m happy to share that we are now the proud grandparents of Charlie and Rory!

What do you do for fun?

I truly enjoy the outdoors and living in the Keweenaw, a very special place. Izzy, our Great Pyrenees, brings joy to our lives everyday and I love gardening, especially when she’s not running through the garden!

Lift Bridge in Winter. Photo credit: Michael Prast

Michael, what first sparked your interest in engineering?

I’m originally from Holly, Michigan. I had a class in high school, Intro to Engineering, that went through some basics of the different engineering disciplines like electrical, computer modeling, and building. My favorite project was designing a balsa wood tower that was then compressed to failure. I really enjoyed it and my structure ended up being the most efficient in the class history comparing self weight to weight held. So I knew I wanted to do something with engineering and leaned towards buildings. I have been correct so far and love engineering a range of structures, mostly in heavy timber. 

How do you like to spend your spare time?

While my favorite is mountain biking, I love to hike, camp, hammock, kayak, and swim. I also have a passion for history. I’m part of the volunteer board for Painesdale Mine and Shaft and give tours of the Champion Mine shaft house, hoist house, and Captain’s office.

Emma, how did you decide upon engineering?

I was born and raised in Madison, Wisconsin. For a long time I thought I wanted to be an architect, but then, during my senior year in high school, I took classes in Physics and Calculus. I absolutely loved them! After that, structural engineering felt like the perfect middle ground between architecture, and math and physics.

Tidepooling on the Oregon Coast. Photo credit: Emma Beachy

Hobbies?

My hobbies mostly revolve around the outdoors. Living in Oregon now, I’m lucky that I can drive a short ways and get to the Pacific coast (I love looking for tide pools) or to the mountains (I also love hiking and backpacking). At home, I really enjoy cooking. Lately I’ve been trying out some vegetarian recipes, trying out some new and interesting ingredients. 


Brine-ing an Impact: Sajjad Bigham Advances in DOE Solar Desalination Prize Competition

Sajjad Bigham, a heat transfer and energy systems specialist, is especially interested in scientific and engineering challenges that lay at the intersection of thermal-fluid, material and energy sciences.

Sajjad Bigham, an assistant professor of Mechanical Engineering-Engineering Mechanics at Michigan Tech, is working to improve the solar desalination process with funding from the Solar Energy Technologies Office (SETO) of the US Department of Energy (DOE). The project is a part of “The American-Made Challenges: Solar Desalination Prize”—a four-stage competition designed to accelerate the development of low-cost desalination systems that use solar-thermal power to produce clean water from salt water.

Bigham’s concept for a portable desalination device advanced from the first stage of competition with 160 teams into the Innovation Stage with 19 teams—winning $50,000. Teams were further winnowed in the next phase, Round 2, down to 8 teams—each securing additional funding of $350,000 from the DOE.

“If teams in the competition are successful, we could not only address some emerging water challenges here in the US, but also contribute to the global fresh water shortage crisis in other countries,” says Bigham. “Water security is a challenge globally.”

Bigham’s portable device is particularly tuned to treat brines with high concentration levels. “Currently, if brine concentrate exceeds a certain level in traditional membrane desalination processes, the membrane fails to operate. Right now we’re working on a small prototype system in a lab environment,” he adds. “We’ll conduct testing with a solar collector, as well, and obtain field test data as we work toward the next phase of the competition.”

Bigham joined Michigan Tech as a faculty member in 2016, and serves as director of the Energy-X Lab (short for “Energy eXploration Laboratory”) at Michigan Tech.

“No matter what research we are doing, I hope it positively impacts my students’ emotional intelligence and personal growth,” he shares. “Students in my lab work incredibly hard under various expectations to overcome technical challenges, meet project timelines, and communicate effectively with our research partners,” he shares. “They know they need to deliver challenging milestones, and in the process they learn how to manage stress when their progress is not smooth.”

“The final goal of our research is to positively impact peoples’ lives. It’s why we work on commercially viable technologies and it’s how our research can deliver a positive impact.”

Sajjad Bigham

Read more:

Research Heats Up with HITEMMP


John Gierke: Drilling Wells in the Keweenaw—Needles in a (Geologic) Haystack

Community water wells in Michigan’s Keweenaw Peninsula tap places ancient glaciers carved and filled. Pictured above: Interpolated bedrock depth map. Warm colors indicate progressively deeper bedrock (red being the deepest). Credit: John Gierke, Michigan Tech

John Gierke shares his knowledge on Husky Bites, a free, interactive webinar this Monday, September 20 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Michigan Tech Professor John Gierke is also alumnus. He earned both a BS and MS in Civil Engineering, and a PhD in Environmental Engineering, all at Michigan Tech.

What are you doing for supper tonight, Monday 9/20 at 6 ET? Grab a bite with Dean Janet Callahan and John Gierke, Professor of Geological and Mining Engineering and Sciences at Michigan Tech. “The water we drink comes from geologically unique places,” he says. As a hydrogeologist, Gierke uses his expertise in teaching and research, and in places around the globe, most recently, El Salvador. Also on his own blueberry farm located about 20 minutes from campus.

“I was attracted to environmental engineering because of my interest in protecting human and environmental health, says Michigan Tech Professor Eric Seagren. “The use of a broad range of sciences within environmental engineering appealed to me, too.”

Joining in will be fellow colleague and friend, Eric Seagren, a professor of Civil, Environmental and Geospatial Engineering who specializes in finding new, sustainable ways to clean up environmental pollution, including contaminated groundwater.

As a hydrogeologist, Gierke studies the “spaces” in rocks and sedimentary deposits where water is present. Although groundwater is everywhere, Keweenaw geology makes accessing it truly challenging.

“Drilling productive wells in the Keweenaw is like finding needles in (geologic) haystack,” he says. “Groundwater supplies for many communities are in ancient bedrock valleys that were carved by glaciers and later backfilled with sands, gravels, and, sometimes, boulders left by the melting glaciers in their retreat. In the Midwest, groundwater exists almost everywhere, but in the Western Upper Peninsula of Michigan, and northern Wisconsin and Minnesota, the close proximity of ancient bedrock makes drilling trickier.”

During Husky Bites, Prof. Gierke will show us the inside of some especially interesting aquifers and wells—how they are found and developed, and why some rock formations yield water, and others don’t yield very much.

“Community water wells in Michigan’s Keweenaw Peninsula tap places ancient glaciers carved and filled.”

Prof. John Gierke

“Imagine a 400′ deep glacial tunnel scour back, filled with sands, gravels, silts and clays and capable of yielding 400-some gallons per minute,” says Gierke. “Wells located just outside that ‘trough’ are stuck in bedrock, only capable of giving up hardly 20 gpm, only enough for a single household.”

“The replenishment rate of groundwater in the Copper Country, like much of the northern Midwest, is sufficient that groundwater exists almost everywhere,” adds Gierke. “The challenge in terrains like the Keweenaw, where bedrock is often near the surface, is not whether groundwater exists at depth, but rather where the geology is sufficiently porous and/or fractured to allow water wells to produce at rates sufficient for communities.”

This photo from Prof. Seagren’s lab shows the release of a blue dye, simulating the release of an amendment from a well.

For Prof. Seagrean, at Michigan Tech his major research focus is the bioremediation of contaminated groundwater, especially contaminants like petroleum products and chlorinated solvents. He studies the release of remedial amendments, such as oxygen, added to stimulate the biodegradation of contaminants.

“An amendment is added to a well, and then just released into the natural flow of groundwater without pumping,” he explains. Much of this work involves the use of lab-scale model aquifers. Seagren believes it can be very effective, affordable, and safe way to solve the problem. According to the USGS, more than one in five (22 percent) groundwater samples contain at least one contaminant at a concentration of potential concern for human health.

Seagren also develops and tests low-impact, bio-geoengineering practices to stabilize mine tailings and mitigate toxic dust emissions. “These approaches mimic and maximize the benefits of natural processes, with less impact on the environment than conventional technologies,” he says. They may also be less expensive.” 

Seagren and his research team zeroed in on a natural process, microbially-induced calcium carbonate precipitation —an ubiquitous process that plays an important cementation role in natural systems, including soils, sediments, and minerals.

Prof. Gierke, how did you first get into engineering? What sparked your interest?

“Here I am on Bering Glacier in 2007, unfurling a Michigan Tech flag (that’s one of the University’s former logos).” Dr. Gierke is standing next to Dr. Josh Richardson (left), now a Geophysicist at Chevron. Josh earned all his degrees at Michigan Tech: a BS in Geophysics ’07, an MS in Glacier Seismology and Geophysics ’10, and a PhD in Volcano and Glacier Seismology, Geophysics ’13

I began studying engineering at Lake Superior State College (then, now University) in the fall of 1980, in my hometown of Sault Ste. Marie. In those days their engineering program was called: General Engineering Transfer, which was structured well to transfer from the old “Soo Tech” to “Houghton Tech,” terms that some old timers still used back then, nostalgically. I transferred to Michigan Tech for the fall of 1982 to study civil engineering with an emphasis in environmental engineering, which was aligned with my love of water (having grown up on the St. Mary’s River).

Despite my love of lakes, streams, and rivers, my technical interests evolved into an understanding of how groundwater moves in geological formations. I used my environmental engineering background to develop treatment systems to clean up polluted soils and aquifers. That became my area of research for the graduate degrees that followed, and the basis for my faculty position and career at Michigan Tech, in the Department of Geological and Mining Engineering and Sciences (those sciences are Geology and Geophysics). My area of specialty now is Hydrogeology.

Prof. Gierke and his grandson went fishing together on the St. Mary’s River in Sault Ste. Marie.

Hometown?

I grew up in Sault Ste. Marie, Michigan, where I fished weekly, sometimes daily, on the St. Mary’s River. Sault Ste. Marie is bordered by the St. Mary’s River on the north and east. In the spring, summer and fall, I fished from shore or a canoe or small boat. In the winter, I speared fish from a shack just a few minutes from my home or traveled to fish through the ice in some of the bays. I was a fervent bird hunter (grouse and woodcock) in the lowlands of the Eastern UP, waterfowl in the abundant wetlands, and bear and deer (unsuccessfully until later in life). 

What do you like to do in your spare time?

Prof. Gierke designed and built the solar-powered drip irrigation system at the Gierke Blueberry Farm in Chassell, Michigan.
“We had a bumper crop this year,” says Prof. Gierke. “Despite the heat and drought, the irrigation system worked!”

I live on a blueberry farm about 20 minutes from campus in Chassell, Michigan. It’s open to the public in August for U-Pick. For the farm, I used my technical expertise to design, install, and operate a drip irrigation system that draws water from the underlying Jacobsville Sandstone aquifer. 

How do you know your co-host? 

Eric Seagren and I have been disciplinary colleagues for over 2 decades. Our expertise overlaps in terms of how pollutants move through groundwater. 

“Me cooking while camping with my family on Isle Royale two summers ago,” says Prof. Seagren.

Prof. Seagren, how did you first get into engineering? What sparked your interest?

I was attracted to environmental engineering because of my interest in protecting human and environmental health. The use of a broad range of sciences within environmental engineering also appealed to me. Growing up we had a family friend who was a civil engineer, and my Dad had a cousin who was an electrical engineer. My Dad himself had wanted to be an engineer, but he had gone to a one-room country school and a small-town high school, and when he got to college they told him he did not have an adequate background in math and science to pursue engineering, something we would never tell a student today! 

“This microphoto is from my work on the biomodification of the engineering properties of soil. It shows a calcium carbonate crust formed via bacterial activities.” Prof. Seagren will explain more of what can be seen here during Husky Bites.

Anyway, that might have influenced me some, but more importantly was my interest in protecting the environment. I had always spent a lot of time outdoors, either at my grandparents’ farm, or hunting and fishing with my Dad and friends and camping in Scouts. I took an environmental studies class in high school and that’s where I first learned about environmental engineering.

Hometown, family?

 I grew up in Lincoln, Nebraska, and earned my undergraduate degree at the University of Nebraska, Lincoln. Currently I live in Hancock, with my family, which includes my wife Jennifer Becker, who is also a faculty member at Michigan Tech, and my two teenage children, Ingrid and Birk. We have a cat named Rudy.

Any mentors in your life who made a difference?

Back when I was in college, most people got an undergraduate degree in civil engineering and then pursued a graduate degree in environmental engineering, and that is the path I took. While I was doing my undergraduate work at the University of Nebraska there was a young professor named Dr. Mohamed Dahab who really influenced me and took an interest in me and my career path to this day. He was a great mentor and example for me, and that’s contributed to how I try to mentor students, too.

Dr. Seagren’s ’53 Chevy.

Any hobbies? 

In my spare time I like to garden, do home repairs, hike, fish, boat, run, and Nordic ski. I’m also fixing up a ‘53 Chevy pick-up from my grandpa’s farm. We used to use the truck to haul grain from the farm to the elevator in town. It’s a nice shade of blue. Next summer we hope to fill the back with blueberries from John’s farm and enter it into a local parade.

Read more:

How the Rocks Connect Us

Keweenaw Geoheritage: Glaciers

Field Trip to Alaska (Bering Glacier)


New for 9th and 10th Graders This Fall: the Husky Bites Challenge

We Challenge You, 9th and 10th graders.
Hey 9th and 10th Graders: Don’t Paws for a Minute! Sign up for the Husky Bites Challenge by Monday, Sept. 20.

Do you know a 9th or 10th grader up for a challenge? Here’s one they can take this fall! Sign up by Monday, Sept. 20.

At Michigan Tech, the College of Engineering and Center for Educational Outreach have teamed up to offer a free, six-week, virtual design challenge for 9th and 10th graders. Students will hear from leaders in the field of sustainability design and engineering via Husky Bites, a free 20 minute(or so) interactive Zoom webinar hosted by College of Engineering Dean Janet Callahan. They’ll be mentored by current Michigan Tech students and work as a team to put forward a design proposal for a U.S. Green Building Council (USGBC) LEED-certified school. Registration for the Husky Bites challenge is free, with great prizes, and students are welcome to register individually or as a team.

LEED is short for Leadership in Energy and Environmental Design, the most widely used green building rating system in the world. LEED provides a framework for healthy, highly efficient, and cost-saving green buildings with some very cool features.

Registration for this virtual challenge is free, and students are welcome to register individually or as a team. The deadline is Monday, September 20, but may be extended.


Joe Shawhan: Hockey in the Copper Country

Coach Joe Shawhan stands with arms folded with ice rink in the background.
Joe Shawhan, Michigan Tech Men’s Hockey Head Coach

Michigan Tech Hockey Coach Joe Shawhan shares his knowledge on Husky Bites, a free, interactive webinar this Monday, September 13 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Head shot of John Scott wearing his gold MTU hockey jersey.
NHL MVP and former Michigan Tech hockey player John Scott ’10 (Mechanical Engineering). If you haven’t already, check out his podcast, Dropping the Gloves.

What are you doing for supper this Monday night 9/13 at 6 ET? Grab a bite with Dean Janet Callahan and Joe Shawhan, Head Coach of Men’s Hockey at Michigan Tech.

Yup, it’s time to talk hockey. Join in while two Michigan Tech hockey legends shoot the breeze. Serving as co-host along with Dean Janet Callahan during this session of Husky Bites is NHL All-Star MVP John Scott, a Michigan Tech alum. Scott graduated with his BS in Mechanical Engineering 2010.

Coach Joe Shawhan grew up in Sault Ste. Marie, Michigan—aka Hockey Town, USA, training site for the Detroit Red Wings. Back then hockey was a neighborhood sport and every kid in Shawhan’s class got in on the game. During Husky Bites, he’ll share stories about how he first arrived in Houghton and his relationship with former Head Coach John MacInnes—and what it was like coaching against John Scott in Junior Hockey as a member of the Chicago Freeze.

Coach Shawhan points with his arm extended over the heads of his hockey players at the sidelines during a hockey game.
“The best chance a team has of success is with individuals who expect it and work hard toward it. Every day. All the time,” says Coach Joe Shawhan.

“John and I have never really spent much personal time together outside of the odd interview or Podcast,” notes Shawhan. “I coached against John while he was in Junior hockey and was intrigued by his presence in college hockey. I have respected his humble nature and greatly appreciate his willingness to remember his alma mater.”

Before coming to Tech, Shawhan spent six seasons at Northern Michigan University. He was a volunteer assistant in 2007-08, the director of hockey operations in 2009-10, and an assistant coach for four seasons.

Coach Shawhan holds a tiny Husky pup in his arms.
It’s fun to follow Coach Shawhan on Twitter. Here’s one: “Found our newest Husky recruit at the FSU Ice Arena.”

As the head coach and general manager of the Soo Indians from 1995-2005, Shawhan compiled a 474-162-43 record to become the winningest coach in the history of the North American Hockey League.

Here at Michigan Tech, for 2020-21 season, Shawhan led the Men’s Hockey team went 17-12-1, ninth in the country in wins. The Huskies ranked fourth in the nation in penalty kill (90 percent) and were seventh in scoring defense (2.1).

What about 2021-22? During Husky Bites, Coach Shawhan plans to share the roster—and his hopes for the coming season.

After Coach Shawhan’s presentation on Husky Bites, attendees can ask take part in the Q&A. In fact, Coach Shawhan and John Scott are both ready to answer your questions.

John, what do you want to ask Coach Shawhan during Husky Bites?

First of all, character. What type of individuals do you look for? Next, how do you recruit players to Michigan Tech? How did Covid change things last year? Why are you excited for this year? What are the challenges? And what’s important in order to have a successful team?

Laura Shawhan up on Michigan Tech’s Mont Ripley.

Coach Shawhan: How did you first get interested in hockey? What sparked your interest?

My interest in hockey developed because of my environment. Growing up in Sault Ste. Marie, all my friends played on my same team.

Hometown, family?

My hometown is Sault Ste. Marie Michigan. I am married to my high school sweetheart Laura and we have 3 children: Mia (AJ) Rosenberg, Jordan and Rachel.

What do you like to do in your spare time?

My hobbies outside of hockey include fishing, spending time with family and friends, playing guitar and tinkering. I also like to build things.

“The strength of Michigan Tech hockey is the character of the players sitting in the stalls.”

Coach Joe Shawhan


Jeremy Bos: Annual First-Year Engineering Lecture at Michigan Tech

ECE ProfessorJeremy Bos (right) and ME-EM Professor Darrell Robinette (left) at the Michigan Tech Rozsa Center in August. Today Bos will be back on stage at the Rozsa with Prometheus Borealis to deliver the annual First-year Engineering Lecture to incoming students.

“We have a tradition at Michigan Tech of having a first-year lecture that helps students see how their technological education can help make a difference in the world,” says Janet Callahan, Dean of the College of Engineering. This year, 1,010 first year engineering students will be in attendance, the largest incoming class since 1982.

Jeremy Bos, assistant professor of electrical and computer engineering will deliver that lecture today, Thursday, September 9 at 6 pm.

Bos is also an alum. He earned a BS in Electrical Engineering at Michigan Tech in 2000, then returned to earn his PhD in Electrical Engineering and Optics in 2012. On campus he teaches a range of robotics courses, and serves as advisor and manager of several student groups. One of those is the Robotics Systems Enterprise (RSE). “Imagine an industry-driven team of students, seeking to seamlessly integrate exceptional knowledge in electronics, robotics, and programming to solve real world engineering problems,” he says.

ECE Assistant Professor Jeremy Bos

RSE’s projects come in many shapes and sizes, from designing a vision system for work with a robotic arm, to an automatic power management system for weather buoys. Clients include Ford Motor Company and Michigan Tech’s Great Lakes Research Center. “We use more than just the skills and talents of computer science, electrical engineering, and mechanical engineering majors in RSE,” adds Bos. “All majors are welcome, just like in any Enterprise.”

Enterprise at Michigan Tech is when students work in teams on real projects, with real clients, in an environment that’s more like a business than a classroom. With coaching and guidance from faculty mentors, 25 Enterprise teams on campus work to invent products, provide services, and pioneer solutions.

Bos also serves as advisor to students taking part in the SAE AutoDrive Challenge. It all started four years ago, back when Michigan Tech was selected along with seven other universities to participate in the collegiate competition hosted by GM. Each was tasked with designing, building and testing a fully autonomous vehicle. 

The Michigan Tech team started with a Chevy Bolt, outfitting it with sensors, control systems and computer processors so that it could successfully navigate an urban driving course in automated driving mode. They named their vehicle “Prometheus Borealis” after Prometheus, the Greek deity responsible for bringing technology to people, and Boreas, the purple-winged god of the north wind.

The entire team is made up of 40 students and two faculty advisors: Bos and co-advisor Darrell Robinette, an assistant professor of mechanical engineering-engineering mechanics. Their impressive expertise in autonomous vehicles and vehicular networks—and industrial automation and controls—combines for exceptional student mentoring.

The four-year challenge wrapped up this summer on June 14, with Michigan Tech earning 3rd place overall and bringing home the second-most trophies. Soon after, SAE International and General Motors (GM) announced the 10 collegiate teams selected to compete in the next competition, AutoDrive Challenge II. Michigan Tech was on the list.

“My own contribution to this effort is called ‘Autonomy at the End of the Earth,’ says Bos. “My research focuses on the operation of autonomous vehicles in hazardous weather. Specifically, the ice and snow we encounter on a daily basis between November and April.”

“I ended up in engineering because I like to build things (even if only on a computer) and I like to solve problems (generally with computers and math).”

Dr. Jeremy Bos

More about Dr. Jeremy Bos, in his own words:

“I was born in Santa Clara, California just as Silicon Valley was starting to be a thing. I grew up in Grand Haven, Michigan where I graduated high school and moved to Michigan Tech for my undergraduate degree. I liked it so much I came back twice. The second time was from Maui, Hawaii, where I worked for the US Air Force Research Lab. I now live in Houghton with my wife, and fellow alumna, Jessica (STC ’00). We have a boisterous dog Rigel, named after a star in the constellation Orion, that bikes or skis with me on the Tech trails nearly every day. When I have time I bike, ski, hike, kayak, and stargaze. I have even tried my hand at astrophotography at Michigan Tech’s AMJOCH Observatory. (A telescope, hopefully, soon to be another robot).”

Advice for First Year Engineering Students, from Dean Janet Callahan:

“You are part of a community. It’s all about connecting, and reconnecting. I’d like to encourage you to join a student organization or club. The friendships you form in college are important. The people you meet end up being part of your lifelong community. So, be hands-on. Be sure to make time to do extra things, besides studying…but also make sure you go to class and do all your homework, because you will learn by doing.”

“This year, due to the pandemic, in-person attendance is limited. Attend via Zoom using this direct link. No registration required. Visit mtu.edu/ef for more information.”


Snehamoy Chatterjee Named Witte Family Endowed Faculty Fellow in Mining Engineering

Associate Professor Snehamoy Chatterjee, Witte Family Endowed Faculty Fellow in Mining Engineering

Associate Professor Snehamoy Chatterjee has been named the Witte Family Endowed Faculty Fellow in Mining Engineering

“Dr. Chatterjee has been instrumental in developing Michigan Tech’s new interdisciplinary Mining Engineering program,” said Aleksey Smirnov, Chair of the Department of Geological and Mining Engineering and Sciences (GMES). “He teaches courses in the program, and very skillfully incorporates research into his instruction.”

Chatterjee’s position as Fellow is made possible through the generous support provided by Nancy Witte and her family, in memory of her late husband Richard C. Witte, who received a BS in Metallurgical Engineering from Michigan College of Mining and Technology (now Michigan Tech) in 1950. After graduating from Michigan Tech, Witte went on to earn a Juris Doctorate from Indiana University School of Law in 1956, then worked for Proctor and Gamble as a patent attorney. Witte was admitted to the bars of Indiana and Ohio, US Court of Appeals, Federal Circuit, and the US Supreme Court, and filed more than 1400 patents before he retired in 1992 as vice president and chief patent counsel for Proctor and Gamble Worldwide. 

“The future of the mining industry is transforming in the digital age,” says Chatterjee. “Our students need to understand the traditional mining engineering techniques that have dominated the industry for generations, but also be technically savvy enough to see how the newest digital innovations might fit into a better decision making or engineering design process. I am grateful to Nancy Witte and the Witte family for this endowment and the tremendous support it provides toward this important endeavor.”

Decision-making under uncertainty, a research focus for Chatterjee, is one example, says Smirnov. “Students in one of Dr. Chatterjee’s courses, called Resource and Reserve Estimation, first learn how to quantify uncertainty based on spatial and temporal data. In his next course, Mine Planning and Design, they learn how to integrate that uncertainty into their mine plan using stochastic optimization methods.” 

“Dr. Chatterjee’s outstanding achievements and contributions to our newly reinstated mining engineering program make him an ideal candidate for this faculty fellow position.”

Janet Callahan, Dean of the College of Engineering

In addition, Chatterjee works with undergraduate student researchers in his lab, and encourages them to present their findings at national or international conferences. Several have published their studies in peer-reviewed journals, as well.

“While at Michigan Tech working with Dr. Chatterjee, Alex Miltenberger ’17, a geophysics major, presented his SURF research work at Geostat, an international conference in geostatistics,” notes Smirnov. Miltenberger is now postdoctoral researcher at Lawrence Berkeley National Laboratory & Stanford University.

“Another student working with Dr. Chatterjee, Katie Kring, published her SURF research in the International Journal of Rock Mechanics and Mining Sciences,” he adds. Before graduating from Michigan Tech with both a BS and MS in Geological Engineering, Kring interned at Freeport-McMoRan’s Chico Mine. She now works as a Civil Engineer at US Army Corps of Engineers.

Chatterjee also encourages his undergraduate research students to submit proposals for external funding. Current geophysics student Grace Ojala recently received a Michigan Space Grant Consortium (MSGC) grant to research mining slope movement using synthetic aperture radar data. 

Chatterjee has been recognized nationally and internationally through several professional and editorial awards, and invited presentations and seminar talks. Recently, Governor Gretchen Whitmer appointed him to the Michigan’s Future Mining Committee. Chatterjee was chosen to represent current or former research faculty members who hold a master’s or doctorate degree in mining or geology at a university in Michigan.

Richard Witte, throughout his career and even after his retirement, served on numerous federal, state and local commissions, delegations and boards, addressing a variety of international diplomatic and intellectual property policies.

“Dr. Chatterjee’s appointment as Witte Fellow aligns perfectly with the objectives formulated by the Witte family and Michigan Tech,” said Janet Callahan, Dean of the College of Engineering at Michigan Tech. “Our shared goal is to retain and attract high quality faculty who are at the top of their profession, inspire students to think beyond the classroom material, and integrate their research into the classroom.”


Michigan Tech Part of $15M Great Lakes Innovation Hub

In an effort to nurture a regional innovation ecosystem and move more discoveries from the research lab to the real world, the National Science Foundation (NSF) has established a Great Lakes Innovation Corps Hub and Michigan Technological University plays a key role.
 
The 11-university Hub is led by the University of Michigan (U-M), and it’s one of five Hubs across the country announced Aug. 26 as NSF continues to evolve the I-Corps program. Launched in 2011, the NSF Innovation Corps, or I-Corps, trains scientists and engineers to carry their promising ideas and technologies beyond the university and into the marketplace to benefit society.
 
In addition to Michigan Tech and U-M, the Great Lakes Hub includes Purdue University, the University of Illinois Urbana-Champaign, the University of Toledo, the University of Minnesota, Iowa State University, Missouri University of Science and Technology, the University of Akron, the University of Chicago, and the University of Wisconsin-Milwaukee.

The Impact of I-Corps

Each university in the Great Lakes Hub already has a successful I-Corps program. Michigan Tech has been part of the NSF I-Corps Site program since 2015. Over the past five years, Michigan Tech’s I-Corps Site has helped introduce the entrepreneurial mindset to over 300 researchers, faculty, staff and students, and helped teams assess the commercial potential of nearly 150 technologies.

Mary Raber is Chair of the Department of Engineering Fundamentals at Michigan Tech

The Great Lakes I-Corps Hub aims to connect people at a large scale to increase the “effective density” of the Midwest’s innovation ecosystem. Mary Raber, Michigan Tech I-Corps principal investigator and chair of the Department of Engineering Fundamentals, said Michigan Tech researchers will be able to engage with the other members of the Hub and benefit from the extensive resources available throughout the Great Lakes region.
 
“Being invited to join the Great Lakes Hub is reflective of the success of Michigan Tech’s I-Corps Site program and the number of teams that have been selected to attend the National I-Corps program,” said Raber.
 
Other members of the Michigan Tech I-Corps team include Lisa Casper (Pavlis Honors College), Jim Baker (Office of the Vice President for Research), Michael Morley and Nate Yenor (Office of Innovation and Commercialization), and Jonathan Leinonen (College of Business).
 

“Michigan Tech is an integral part of the Great Lakes I-Corps Hub.”

Dr. Mary Raber


“The Great Lakes region is home to many of the world’s leading research institutions, and many of our nation’s critical industries. Our goal with this I-Corps Hub is to leverage this intellectual depth to create a lasting economic impact on the region,” said Alec D. Gallimore, the U-M Robert J. Vlasic Dean of Engineering, the Richard F. and Eleanor A. Towner Professor, an Arthur F. Thurnau Professor, and a professor of aerospace engineering.
 
“We’ll do this by creating new businesses, by keeping our existing companies globally competitive and on the leading edge of technology, and by developing talent that not only has technical and cultural expertise, but also an entrepreneurial mindset,” he said.
 
The new Great Lakes Hub has set a goal of training 2,350 teams in the next five years and sending an additional 220 teams to a more in-depth National NSF I-Corps program.
 
In this way, I-Corps is helping to fill what Jonathan Fay, executive director of the U-M Center for Entrepreneurship, calls the “widening gap” between the cutting-edge research being done at universities and the development work of industry to turn research into societal benefit and economic gain.

Read the full story on Michigan Tech News.


Jeremy Shannon Named Carl G. Schwenk Endowed Faculty Fellow in Applied Geophysics

Michigan Tech Principal Lecturer Jeremy Shannon is the Carl G. Schwenk Endowed Faculty Fellow in Applied Geophysics

Jeremy Shannon was recently named the Carl G. Schwenk Endowed Faculty Fellow in Applied Geophysics

“For more than a decade Dr. Jeremy Shannon has been a key faculty in field geophysics at Michigan Tech,” said Aleksey Smirnov, chair of the Department of Geological and Mining Engineering and Sciences. 

“Dr. Shannon provides vital contributions to GMES instruction and advising, especially through the summer Field Geophysics course and specialized courses in the application of near-surface geophysics methods,” added Janet Callahan, Dean of the College of Engineering. 

The endowment was established by Carl G. Schwenk, who obtained a BS in both Geological and Geophysical Engineering from Michigan Tech in 1962 and 1965, respectively. He worked as a Field Geophysicist with Kennecott Copper Corporation and was instrumental in the discovery of the Flambeau copper-gold Mine in Wisconsin. Later, he worked with the  large iron company Vale do Rio Doce exploring for base metals in Brazil. After his return to the US he was hired as Great Lakes District Manager for Noranda Exploration where he led a successful State Supreme Court challenge to Wisconsin’s Geologic Disclosure Law. 

“Carl lives in Colorado and remains closely involved with our department, providing tremendous support to our students,” said Smirnov.

Shannon is also a Michigan Tech alumnus, and took the Field Geophysics class as an undergraduate in the summer of 1992. He was honored to take over the class in 2007 and has continued and built upon the legacy of applied geophysics education at GMES created by professors Lloyal Bacon, Jimmy Diehl, and Charles Young to deliver a unique field experience for students.

“I am humbled to receive this appointment and am extremely grateful to Mr. Schwenk and others who have made this possible,” said Shannon. “I look forward to using this gift to improve and advance educational opportunities in geophysics at Michigan Tech.”

“Shannon’s contribution to the department of Geological and Mining Engineering and Sciences perfectly aligns with the purpose of the fellowship, which is to provide leadership in mentoring and teaching students at Michigan Tech in the practical use of geophysics for characterization and discovery of subsurface resources,” added Callahan.

In addition to instruction in the field of applied geophysics, which includes specialized courses in the application of near-surface geophysics methods, Shannon serves as the academic advisor for undergraduate students majoring in Geology and Applied Geophysics.

Shannon generously lends his expertise to students working on senior design projects, as well as graduate students whose research involves field work, notes Smirnov. “Dr. Shannon helps students develop both practical knowledge and intuition. As a result, they are able to find their own best academic and professional pathways, leading to impactful and rewarding careers.” 

In recognition of his contributions to teaching, Shannon was also recently honored in the Michigan Tech Deans’ Teaching Showcase


Auris Wins! Michigan Tech is Launching Into Space—with Ears

The team’s spacecraft, Auris, is a small satellite, a 12U cubesat. Its size in centimeters is just 20 x 20 x 30; its mass is 20 kg (about 44 pounds). Image credit: Michigan Tech Aerospace Enterprise

With Auris, the student-run Aerospace Enterprise at Michigan Tech has done it again.

Earlier this month, 10 Michigan Tech Aerospace Enterprise team members, all undergraduates, traveled to Albuquerque, New Mexico August 13-15 for the culminating event of the University Nanosatellite Program, a three-year design competition funded by the Air Force Research Laboratory – AFRL.

The Michigan Tech team won, along with teams from the University of Minnesota and Texas A&M. The three will now move to Phase B of the program, where they have AFRL funding for a multi-year development program to bring the spacecraft to flight maturity—and a guaranteed launch opportunity from the US Department of Defense. No launch date is set yet, but could happen as soon as 2024.

With Auris, the student-run Aerospace Enterprise at Michigan Technological University will have three working satellites. One of the team’s satellites (Oculus) is now in orbit; their second small satellite (Stratus) is due to launch in March 2023. Now, Auris will be the third to launch.

“It’s hard to say, but a conservative estimate is that at least 250 students have worked on the Auris mission since its inception, says Michigan Tech electrical and computer engineering student Matthew Sietsema, the team’s chief engineer and student lead.

These undergraduate students in Michigan Tech’s Aerospace Enterprise traveled to New Mexico for the AFRL University Nanosatellite Program Flight Selection Review. Back Row (Left to Right): Jonathan Joseph, Thomas Ziegler, Nolan Pickett, Matthew Carey, Kyle Bruursema. Front Row (Left to Right): Emi Colman, Samantha Zerbel, Zoe Knoper, Rachel Mellin, Matthew Sietsema

Lyon (Brad) King is the Richard and Elizabeth Henes Professor of Space Systems in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech. As the founder and faculty advisor of the University’s Aerospace Enterprise, King empowers undergraduate students to design, build, and fly spacecraft. 

Professor Lyon Brad King

“Michigan Tech’s winning spacecraft is called Auris, which is Latin for ‘the ear,’ King explains. “Auris will fly in low-Earth orbit and will point its antenna ‘up’ to higher geostationary Earth orbit.” (Geostationary satellites are located 22,237 miles above the earth’s surface.)

“The spacecraft will listen to the signals broadcast from communications satellites as it flies through their transmission beams, and be able to map the spatial extent and shape of the transmission beams,” adds King. “Auris will also determine the location of the transmitting satellite.”

Auris signal trace. Image credit: Michigan Tech Aerospace Enterprise

This is the second time the Michigan Tech Aerospace Enterprise student team has won the AFRL University Nanosatellite Program competition. The first time, in 2011, Michigan Tech was the sole winner with Oculus-ASR, which was launched from Cape Canaveral on a Space-X Falcon Heavy in June 2019. Oculus-ASR now serves as an imaging calibration target for ground-based observatories tasked with characterizing spacecraft. 

In 2020 NASA slated Michigan Tech’’s second student-built satellite, Stratus, for a deployment from the International Space Station (ISS). That launch is expected in 2023. Stratus is a pathfinder mission funded by NASA’s Undergraduate Student Instrument Program and the CubeSat Launch Initiative. The Stratus vehicle is a three-axis-stabilized thermal infrared telescope that will be used to image atmospheric clouds.

“I am so incredibly proud of our Aerospace Enterprise team.” 

Janet Callahan, Dean, College of Engineering

At the University Satellite Program’s recent Flight Selection Review event in Albuquerque, a total of ten university student teams competed for the chance to advance their satellite design project to the next phase and launch: Missouri S&T, Minnesota, SUNY Buffalo, Texas A&M, Saint Louis, Western Michigan, Alaska Fairbanks, Michigan Tech, Auburn, and UT Austin.

Judges from Air Force Research Lab (AFRL), United States Space Force (USSF), Space and Missile Systems Center (SMC), Space Dynamics Lab, Missile Defense Agency, and NASA were present to evaluate the missions.

The MTU students staffed a booth, briefed their mission to the judges and other schools, and performed technical demonstrations for the judges.

“Michigan Tech will soon have no less than 3 student-designed and built satellites in outer space—it’s amazing.”

Bill Predebon, Chair, Department of Mechanical Engineering-Engineering Mechanics

Michigan Tech’s award-winning Enterprise Program, with more than 25 teams working on projects and products with researchers and companies, provided the overarching framework for the Aerospace Enterprise. 

Like all Enterprise teams at Michigan Tech, Aerospace Enterprise is open to students in any major. “It’s important for students to learn how to work in an interdisciplinary group,” says King. “In the workplace, they will never be on a team where every member has the same expertise. To design, build, manage and operate a satellite requires mechanical, electrical, computer science, physics, materials, everything— it really crosses a lot of boundaries and prepares them for a career.”

Last, but not least: “Aerospace Enterprise has a leadership and management hierarchy that is self-sustaining,” says King. “Current leaders are constantly working to mentor their successors so we have continuity from year-to-year.”

Matthew Sietsema ’22

Q&A with Matthew Sietsema, Chief Engineer and Student Lead, Michigan Tech Aerospace Enterprise Team

Matthew Sietsema is an aspiring Space Systems Engineer working toward a Michigan Tech double major in Electrical Engineering and Computer Engineering. He’ll be graduating next December 2022. As Chief Engineer of the Aerospace Enterprise team’s two spacecraft programs, Auris and Stratus, Sietsema serves as the technical lead of 100+ undergraduate students. He’s head of all assembly, integration, and testing activities, requirements management and verification for the two satellites. “The dual purpose of the Auris mission,” he explains, “is both Space Domain Awareness (SDA), and Space Visualization.”

Q: How does it feel for Auris to win the AFRL University Nanosatellite Program along with the University of Minnesota and Texas A&M?

A: It feels incredibly gratifying and I’m extremely proud of our team and our mission! Auris has been in the works for more than five years at this point, and to be able to finally close the loop and push forward to the next phase is an electrifying prospect. My congratulations also go out to both UMinn and Texas A&M—the motivations behind each of our missions are very similar, so it’s validating to see the fundamental concepts of our mission being lauded all around.

Q: It sounds like Phase B is about building the actual Auris satellite. What all goes into that?

A: In part, yes. Phase A was about designing and building the prototype version of the spacecraft, known as the Engineering Model (EM). One of the primary focuses of Phase B, among many other things, is to construct the final spacecraft meant to go to space⁠—the Flight Model (FM). We must first finish our build-up of the prototype, taking care to ensure that all of the individual components are working together properly and that the design itself is sound. From there, we move into building the FM spacecraft. This involves four distinct phases of build-up, or ‘integration stages’. The first is Component-Level Testing, where we ensure that each of the individual parts and circuit boards function as intended. Second is Subsystem-Level Testing, where we group components with similar jobs together and ensure that they can communicate with each other and correctly interoperate. Next is System-Level Testing, where we combine each of the discrete subsystems and make sure that the entire spacecraft works as designed. Last is Behavioral Testing, where we do an end-to-end verification of the function of the spacecraft and essentially ‘pretend’ to operate it like we would in space. The idea is to simulate and/or test everything that the spacecraft can possibly do, to make sure there are no unintended behaviors or nasty surprises once it gets on orbit.”

Q: Is it challenging for the team to manage several ongoing satellite missions?

A: At the moment, we only directly manage two missions: Auris and Stratus. Stratus is still under development, for another two years. Management of the Oculus mission was handed off to the Air Force when we delivered the satellite. But yes, the sentiment remains: it is incredibly challenging to manage a single spaceflight mission, let alone two at the same time. We have a strong core of leaders in our team, and do our best to foster an environment of learning and self-motivation. Our group is structured very closely to actual aerospace companies, so we rely on the tools of the industry and the experience of our members to catalyze progress and keep both missions on track.

Read More

Brad King: Space, Satellites, and Students

And Then There Were Two: MTU’s Next Student-built Satellite, Set to Launch

Michigan Tech’s Pipeline to Space

Winning Satellite to be Launched into Orbit