Former Peace Corps Volunteer and Geoscientist Welcomed as New Geoscience Communication Fellow

Alexandria, VA – The American Geosciences Institute (AGI) and Schlumberger welcome former Peace Corps volunteer and geoscientist, Stephanie Tubman as the AGI/Schlumberger Geoscience Communication Fellow. Through a generous donation from Schlumberger, a global service provider to the oil and gas industry, Tubman will be working with AGI’s Critical Issues Program to disseminate geoscience information to help support decision making at the federal, state and municipal levels.  

Team Places 3rd in Society of Exploration Geophysicists Challenge

At a recent student “Challenge Bowl” competition organized by the Society of Exploration Geophysicists at the University of Oklahoma, a team of Michigan Tech students came in third. They were the only team composed of undergraduates to make the final round and they were also the only team with any females to make the finals.

“This is the third year that Michigan Tech students have participated in this competition, and our students consistently perform extremely well,” said Wayne Pennington, interim dean of engineering and faculty advisor for the Michigan Tech student section of SEG. “This year’s team consisted entirely of undergraduates, and they were up against formidable opposition from advanced graduate students, defeating almost all of them. We are very proud of their performance, and I personally am very pleased that Neala Creasy and Stephanie Dow were the students who chose to compete on our behalf.”

Seminar: Ice, Rocks, and Robots, Oh My!–Paving the Yellow-Brick Road to Europa

Department of Geological and Mining Engineering and Sciences Seminar
Friday, March 21, 3:05-3:55 pm, Dow 610
Ice, Rocks, and Robots, Oh My!–Paving the Yellow-Brick Road to Europa
Victoria Siegel, Ph.D. Student
GMES, Michigan Technological University
Astrobiologists agree that Jupiter’s moon Europa is one of the most promising places where our solar system might harbor life (besides Earth, of course). Data from Galileo and Hubble’s recent images of possible water vapor plumes escaping from Europa’s surface suggest that a liquid water ocean lies concealed beneath the moon’s thick ice shell. Over the past ten years, NASA has funded several projects to investigate autonomous systems we might use to explore this strange and challenging environment. As they are developed, these robots are put to good, practical use in terrestrial Europa-analog environments. From an Alaskan glacier, to flooded sinkholes in Mexico, to an ice-covered sea in Antarctica, these ‘bots are helping us explore, map, and understand extreme environments and life forms on Earth–all the while bringing us closer to making Europa sub-surface exploration a reality. If you think the Curiosity Rover is wild (it is), come see what planetary exploration could look like in the future.

Michigan Tech Students Head to Detroit for Alternative Spring Break

Students from the Michigan Tech National Society of Black Engineers (NSBE) visited seven middle and high schools in Detroit over their Spring Break, March 11-14, 2014, to promote college and engineering to K-12 students. Two GMES students were in the group, Simisola Arogundade and Samantha Fentress. In the evenings, they conducted Family Engineering Night events at three K-8 schools. NSBE’s Alternative Spring Break is conducted in collaboration with the Detroit Public Schools Office of Science and the Detroit Math & Science Center, and funded in part, with a grant from John Deere.  

Michigan Tech Alumnus Tackles Graduate School in Israel

Many Michigan Technological University students at this moment are trying to decide what to do after graduation, and a common question is: graduate school or a job? But, Nathan Sankary, who graduated from Michigan Tech last spring, added another layer of complexity to the question: Could he complete more schooling in a country where he did not know the language, one that is riddled with turmoil over the Western perspective of their international political problems?

MORE

Environmentally and Socially Responsible Mining Presentation

Hannah White, public outreach manager at Northwest Mining Association, a national nonprofit, nonpartisan trading association representing the entire mining life cycle, from exploration to reclamation and closure. Their purpose is to advocate and advance, educate, and foster and promote environmentally and socially responsible mining. She spoke to students in a seminar on November 19th. More info

Michigan Tech Students Win First Place in National Mining Competition

The National Mining Competition announced the three winners from the 2013 event. First place Michigan Tech, second place University of British Columbia, and third place Edwards School of Business.

The winning Michigan Tech Mining team, “the fabulous four,” was Cora Hemmila, Matthew Younger, Matthew Schuman and Matthew Schwalen. The team advisor is James Murray Gillis, Instructor, Geological and Mining Engineering and Sciences, Director, Mine Safety and Health Training Program.

GMES Seminar: Linking mantle dynamics to plate tectonics

GMES Seminar: Linking mantle dynamics to plate tectonics

Trond H. Torsvik, Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0316 Oslo, Norway; Friday, November 1, 2013, Dow 610

The calibration of longitude in the mid-eighteenth century by the invention of a sea-going chronometer gave mariners confidence that they could reliably calculate their absolute position on the Earth’s surface. Until recently, Earth scientists have been in the comparable position of having no way of calculating the longitudes of continents before the Cretaceous, leaving paleomagnetism, which cannot determine longitude, as the only quantitative means of positioning continents on the globe before that time. However, by choosing a reference continent that has moved the least longitudinally (i.e. Africa), longitudinal uncertainty can be minimized. The analytical trick is to rotate all paleomagnetic poles to Africa and calculate a global apparent polar wander path in African co-ordinates, which serves as the basis for subsequent global reconstructions. This method is dubbed the ‘zero-longitudinal motion’ approximation for Africa, and has allowed us to confidently estimate true polar wander (TPW) since Pangea formation (320 Ma), and to demonstrate that ancient large igneous provinces and kimberlites have been sourced by plumes from the edges of the large low shear-wave velocity provinces (LLSVPs) on the core-mantle boundary beneath Africa and the Pacific. Using this surface-to-CMB correlation and a new iterative approach for defining a palaeomagnetic reference frame corrected for TPW, we have developed a model for absolute plate motion back to earliest Paleozoic time that maintains the remarkable link between surface volcanism and the LLSVPs. For the Paleozoic we have for the first time identified several phases of slow, oscillatory TPW (less than 1 degree/Myr) during which the Earth’s axis of minimum moment of inertia was similar to that of Mesozoic times. We model ten phases of clockwise and counter-clockwise rotations since 540 Ma, which can be interpreted as oscillatory swings approximately around the same axis (11 degrees East at equator). Net TPW angles peaked at 22 degrees in the Mesozoic and 62 degrees in the Paleozoic, and paleomagnetic and TPW-corrected (mantle) reconstructions therefore differ significantly in the early Paleozoic.

Link