Also In This Section
  • Categories

  • Recent News

  • Category: ICC

    Dr. Theda Daniels-Race to Present Seminar September 9

    Dr. Theda Daniels-Race, the Michael B. Voorheis Distinguished Professor in the Division of Electrical & Computer Engineering at Louisiana State University, will present her seminar, “Deposition, Characterization, and Developments in Hybrid Electronic Materials for Next-Generation Nanoelectronics,” on Monday, September 9, at 3:00 pm in Room 6452 of the Dow Environmental Sciences and Engineering Building.

    This seminar is presented by the Institute of Computing and Cybersystems and the Michigan Tech Visiting Professor Program, which is funded by a grant to the Michigan Tech Provost Office from the State of Michigan’s King-Chavez-Parks Initiative.

    Dr. Daniels-Race also has a  joint appointment to the Center for Computation and Technology at Louisiana State University.  She is the founder of the Applied Hybrid Electronic Materials & Structures Laboratory as well as Director of the ECE Division’s Electronic Materials & Devices Laboratory.  Her research has encompassed a range of studies upon electronic materials from the growth of compound semiconductors via molecular beam epitaxy (MBE), to investigations of electron transport in low-dimensional systems such as quantum wells, wires, and dots, to device design and fabrication.  Her current work is in the area of hybrid electronic materials (HEMs) and involves studies of sample morphologies, nanoscale electronic behavior, and the design of apparatus for HEM deposition.

    Dr. Daniels-Race received her degrees in Electrical Engineering from Rice, Stanford, and Cornell universities, for the B.S., M.S., and Ph.D., respectively.  As an undergraduate, she received a GEM (Graduate Engineering Minorities) Fellowship for her future MS studies, and while working on her masters, she was selected to receive one of fewer than ten CRFP (Cooperative Research Fellowship Program) competitive fellowships awarded nationally that year by AT&T for her PhD. Throughout her academic training, Daniels-Race worked in industry with corporations such as Union Carbide, Exxon, General Electric, and AT&T Bell Laboratories.  She began her academic career with the ECE Department at Duke University, where she built that institution’s first MBE laboratory and, over the next thirteen years, established a program in experimental compound semiconductor materials research.  Daniels-Race was recruited to join the LSU faculty where she conducts research upon HEMs for use in next-generation nanoscale devices.  To the community she has been an active member of several professional societies including the IEEE, the American Physical Society, the Materials Research Society, and the National Society of Black Physicists.  She is an ELATES (Executive Leadership in Academic Technology, Engineering and Science) alumna and is a strong advocate for minorities and women in science and engineering.

    Seminar Abstract: Ubiquitous dependence upon semiconductor-based technology has reached a critical turning point.  In effect “small has hit the wall” (Moore’s Law) as advancements, in everything from cell phones to satellites, struggle to keep pace with demands for smaller, faster, and ever more affordable devices. Thus, researchers operating under the broadly defined umbrella of nanoelectronics inherently challenge traditional solid-state electronic design paradigms and fabrication practices.  To this end, my research focuses upon that which I have dubbed HEMs or “hybrid electronic materials.”  In this talk, I will present an overview of work in progress, conducted by both my graduate and undergraduate students, as part of the Applied Hybrid Electronic Materials & Structures (AHEMS) Laboratory that I have established in the Division of Electrical and Computer Engineering at Louisiana State University. With an eye toward the next generation of electronics, new materials and nanoscale structures must be investigated in order to understand the unique physics and potential applications of electronic phenomena “beyond the transistor.”  Using hybrid (inorganic-organic) electronic materials, my group works to characterize the nanoscale formations and electronic behavior of HEMs, as well as to develop innovative yet low-cost apparatus and techniques through which these materials may be explored.

    Theda Daniels-Race CV

    Download the Seminar Flyer


    Vertanen Teaches Workshop in Mumbai, India

    Keith Vertanen

    Keith Vertanen (CS/HCC), associate professor of computer science, traveled to Mumbai, India, in July to co-facilitate a three-day workshop on best practices for writing conference papers. The workshop was presented by ACM SIGCHI and its Asian Development C

    ommittee, which works to increase its engagement with researchers and practitioners from Asia. The aim of the workshop was to encourage res

    earchers from Asia to submit papers for the ACM CHI 2021 Conference on Human Factors in Computing Systems.

    Workshop Students and Instructors

    Vertanen, who is co-chair of the Usability Subcommittee for CHI 2020, presented lectures on paper writing and experimental design to 20 PhD candidates from various universities in India, Sri Lanka, and South Korea. Vertanen also presented a talk on his text entry research and served on an advisory panel that offered feedback to the PhD students on their research in a forum similar to a doctoral consortium. Also co-facilitating the workshop were faculty members from University of Central Lancashire, UK, KAIST University, South Korea, and Georgia Institute of Technology, Atlanta. Visit https://www.indiahci.org/sigchischool/paperCHI2021/ to learn more about the workshop.


    Hembroff Attends KEEN Workshop

    Guy Hembroff, associate professor and director of the Medical Informatics graduate program (CC/CyberS), attended the three-day workshop, “Teaching With Impact – Innovating Curriculum With Entrepreneurial Mindset,” in Milwaukee, Wisc., this July.

    The workshop, presented by KEEN, a network of engineering faculty working to instill within student engineers an entrepreneurial mindset, introduced faculty participants to the framework of entrepreneurially minded learning (EML), which is centered on curiosity, connections, and creating value.  Hembroff and other participants identified opportunities for EML integration into existing coursework, developed a personal approach to integrating EML within the course design process, and learned how to implement continual improvement of their own EML practice.

    Visit https://engineeringunleashed.com for more information about KEEN.


    Susanta Ghosh is PI on $170K NSF Grant

    Susanta Ghosh

    Susanta Ghosh (ICC-DataS/MEEM/MuSTI) is Principal Investigator on a project that has received a $170,604 research and development grant from the National Science Foundation. The project is titled “EAGER: An Atomistic-Continuum Formulation for the Mechanics of Monolayer Transition Metal Dichalcogenides.” This is a potential 19-month project.

    Dr. Ghosh is an assistant professor of Mechanical Engineering-Engineering Mechanics at Michigan Tech. Before joining the Michigan Tech College pof Engineering, Dr. Ghosh was an associate in research in the Pratt School of Engineering at Duke University; a postdoctoral scholar in the departments of Aerospace Engineering and Materials Science & Engineering at the University of Michigan, Ann Arbor; and a research fellow at the Technical University of Catalunya, Barcelona, Spain. His M.S. and Ph.D. degrees are from the Indian Institute of Science (IISc), Bangalore. His research interests include multi-scale solid mechanics, atomistic modeling, ultrasound elastography, and inverse problem and computational science.

    Abstract: Two-dimensional materials are made of chemical elements or compounds of elements while maintaining a single atomic layer crystalline structure. Two-dimensional materials, especially Transition Metal Dichalcogenides (TMDs), have shown tremendous promise to be transformed into advanced material systems and devices, e.g., field-effect transistors, solar cells, photodetectors, fuel cells, sensors, and transparent flexible displays. To achieve broader use of TMDs across cutting-edge applications, complex deformations for large-area TMDs must be better understood. Large-area TMDs can be simulated and analyzed through predictive modeling, a capability that is currently lacking. This EArly-concept Grant for Exploratory Research (EAGER) award supports fundamental research that overcomes current challenges in large-scale atomistic modeling to obtain an efficient but reliable continuum model for single-layer TMDs containing billions of atoms. The model will be translational and will contribute towards the development of a wide range of applications in the nanotechnology, electronics, and alternative energy industries. The award will further support development of an advanced graduate-level course on multiscale modeling and organization of symposia in two international conferences on mechanics of two-dimensional materials. Experimental samples of TMDs contain billions of atoms and hence are inaccessible to the state-of-the-art molecular dynamics simulations. Moreover, existing crystal elastic models for surfaces cannot be applied to multi-atom thick 2D TMDs due to the presence of interatomic bonds across the atomic surfaces. The crystal elastic model aims to solve this problem by projecting all interatomic bonds onto the mid-surface to track their deformations. The actual deformed bonds will, therefore, be computed using the deformations of the mid-surface. Additionally, a technique will be derived to incorporate the effects of curvature and stretching of TMDs on their interactions with substrates. The model will be exercised to generate insights into the mechanical instabilities and the role of substrate interactions on them. The coarse-grained model will overcome the computational bottleneck of molecular dynamics models to simulate TMDs samples comprising billions of atoms. This award reflects NSF’s statutory mission and has been deemed worthy of support through evaluation using the Foundation’s intellectual merit and broader impacts review criteria.


    Scalable Spectral Sparsification of Graph Laplacians and Integrated Circuits

    Circuit board

    Researcher: Zhuo Feng, Associate Professor, Electrical and Computer Engineering

    Sponsor: National Science Foundation: SHF: Small

    Amount of Support: $450,000

    Duration of Support: 3 years

    Abstract: This research is motivated by investigations on scalable methods for design simplifications of nanoscale integrated circuits (ICs). This is to be achieved by extending the associated spectral graph sparsification framework to handle Laplacian-like matrices derived from general nonlinear IC modeling and simulation problems. The results from this research may prove to be key to the development of highly scalable computer-aided design algorithms for modeling, simulation, design, optimization, as well as verification of future nanoscale ICs that can easily involve multi-billions of circuit components. The algorithms and methodologies developed will be disseminated to leading technology companies that may include semiconductor and Electronic Design Automation companies as well as social and network companies, for potential industrial deployments.

    Spectral graph sparsification aims to find an ultra-sparse subgraph (a.k.a. sparsifier) such that its Laplacian can well approximate the original one in terms of its eigenvalues and eigenvectors. Since spectrally similar subgraphs can approximately preserve the distances, much faster numerical and graph-based algorithms can be developed based on these “spectrally” sparsified networks. A nearly-linear complexity spectral graph sparsification algorithm is to be developed based on a spectral perturbation approach. The proposed method is highly scalable and thus can be immediately leveraged for the development of nearly-linear time sparse matrix solvers and spectral graph (data) partitioning (clustering) algorithms for large real-world graph problems in general. The results of the research may also influence a broad range of computer science and engineering problems related to complex system/network modeling, numerical linear algebra, optimization, machine learning, computational fluid dynamics, transportation and social networks, etc.

    More details.


    Improving Reliability of In-Memory Storage

    Electronic circuit board

    Researcher: Jianhui Yue, PI, Assistant Professor, Computer Science

    Sponsor: National Science Foundation, SHF: Small: Collaborative Research

    Amount of Support: $192, 716

    Duration of Support: 3 years

    Abstract: Emerging nonvolatile memory (NVM) technologies, such as PCM, STT-RAM, and memristors, provide not only byte-addressability, low-latency reads and writes comparable to DRAM, but also persistent writes and potentially large storage capacity like an SSD. These advantages make NVM likely to be next-generation fast persistent storage for massive data, referred to as in-memory storage. Yet, NVM-based storage has two challenges: (1) Memory cells have limited write endurance (i.e., the total number of program/erase cycles per cell); (2) NVM has to remain in a consistent state in the event of a system crash or power loss. The goal of this project is to develop an efficient in-memory storage framework that addresses these two challenges. This project will take a holistic approach, spanning from low-level architecture design to high-level OS management, to optimize the reliability, performance, and manageability of in-memory storage. The technical approach will involve understanding the implication and impact of the write endurance issue when cutting-edge NVM is adopted into storage systems. The improved understanding will motivate and aid the design of cost-effective methods to improve the life-time of in-memory storage and to achieve efficient and reliable consistence maintenance.

    Publications:

    Pai Chen, Jianhui Yue, Xiaofei Liao, Hai Jin. “Optimizing DRAM Cache by a Trade-off between Hit Rate and Hit Latency,” IEEE Transactions on Emerging Topics in Computing, 2018. doi:10.1109/TETC.2018.2800721

    Chenlei Tang, Jiguang Wan, Yifeng Zhu, Zhiyuan Liu, Peng Xu, Fei Wu and Changsheng Xie. “RAFS: A RAID-Aware File System to Reduce Parity Update Overhead for SSD RAID,” Design Automation Test In Europe Conference (DATE) 2019, 2019.

    Pai Chen, Jianhui Yue, Xiaofei Liao, Hai Jin. “Trade-off between Hit Rate and Hit Latency for Optimizing DRAM Cache,” IEEE Transactions on Emerging Topics in Computing, 2018.

    More details


    Appropriating Everyday Surfaces for Tap Interaction

    Zachary Garavet and Siva Kakula

    Researchers

    Scott Kuhl (Associate Professor, CS)

    Keith Vertanen (Assistant Professor, CS)

    Sponsor: ECE Alumnus Paul Williams ’61

    Amount of Support: $44,000

    Duration of Support: 1 year

    What if an everyday surface, like a table, could be transformed into a rich, interactive surface that can remotely operate things like computers, entertainment systems, and home appliances?

    That’s what Michigan Tech Institute of Computing and Cybersystems (ICC) researchers Keith Vertanen and Scott Kuhl set out to do with a $44K seed grant from Electrical and Computer Engineering alumnus Paul Williams ’61.

    Vertanen, assistant professor of computer science, and Kuhl, associate professor of computer science, are members of the ICC’s Center for Human-Centered Computing, which integrates art, people, design, technology, and human experience in the research of multiple areas of human-centered computing. They were assisted in this research by PhD candidate Siva Krishna Kakula, Computer Science, and undergraduate Zachary Garavet, Computer Engineering.

    The team’s research goals were threefold: to create machine learning models that can precisely locate a user’s taps on a surface using only an array of inexpensive surface microphones; demonstrate the feasibility and precision of the models by developing a virtual keyboard interface on an ordinary wooden table; and conduct user studies to validate the system’s usability and performance.

    The researchers are working on a related technical conference paper to present to their peers. Their outcomes included a prototype virtual keyboard that supports typing at rates comparable to a touchscreen device; possibly the first-ever acoustic sensing algorithm that infers a continuous two-dimensional tap location; and novel statistical models that quickly adapt to individual users and varied input surfaces.

    Further, their results, hardware, and data sets can be applied to future collaborative work, and were used in the researchers’ $500K National Science Foundation proposal, “Text Interaction in Virtual and Augmented Environments,” which is under review.

    Future applications of the research include enriched interactions in Virtual Reality (VR) and Augmented Reality (AR), compared to existing vision-only based sensing; and on-body interaction, like using your palm as an input surface.

    Vertanen and Kuhl plan to continue this research, working to improve the accuracy of tap location inference, build richer interactions like swiping or tapping with multiple fingers, develop wireless sensor pods that can be quickly and easily deployed on any flat surface, and explore the display of virtual visual content on surfaces via Augmented Reality smartglasses.

    View a video about this research at https://youtu.be/sF7aeXMfsIQ.

    Seed grant donor Paul Williams is also the benefactor of the Paul and Susan Williams Center for Computer Systems Research, located on the fifth floor of the Electrical Energy Resources Center. The 10,000-square-foot, high-performance computing center—the home of the ICC—was established to foster close collaboration among researchers across multiple disciplines at Michigan Tech

    The ICC, founded in 2015, promotes collaborative, cross-disciplinary research and learning experiences in the areas of cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems. It provides faculty and students the opportunity to work across organizational boundaries to create an environment that mirrors contemporary technological innovation.

    Five research centers comprise the ICC. The ICC’s 50 members, who represent 15 academic units at Michigan Tech, are collaborating to conduct impactful research, make valuable contributions in the field of computing, and solve problems of critical national importance.

    Visit the ICC website at mtu.edu/icc. Contact the ICC at icc-contact@mtu.edu or 906-487-2518.

    Download a summary of this research.


    Development of a Low-Cost Marine Mobile Networking Infrastructure

    Zhaohui Wang

    Researchers:

    Zhaohui Wang, Assistant Professor, ECE

    Nina Mahmoudian, Adjunct Professor, ME-EM

    Sponsor: ECE alumnus Paul Williams ’61
    Amount of Support: $50,000
    Duration of Support: 1 year

    Underwater acoustic communication has been in use for decades, but primarily for military applications. In recent years, private sectors such as environmental monitoring, off-shore oil and gas exploration, and aquaculture have become interested in its possibilities.

    But existing research about underwater acoustic communication networks often relies on human-operated surface ships or cost-prohibitive autonomous underwater vehicles (AUVs). And these cost barriers can limit academic research evaluation to computer simulations, constraining research innovation towards practical applications.

    Recognizing the above gap, Michigan Tech Institute of Computing and Cybersystems (ICC) researchers Zhaohui Wang, assistant professor, Electrical and Computer Engineering, and Nina Mahmoudian, adjunct professor, Mechanical Engineering-Engineering Mechanics,  saw an opportunity to combine their areas of expertise: for Wang, underwater acoustic communications, for Mahmoudian, low-cost marine robotics and AUVs.

    Also part of the research team were PhD student Li Wei, Electrical and Computer Engineering, and post-doc research engineer Barzin Moridian, Mechanical Engineering-Engineering Mechanics. The team also collaborated with scientists at Michigan Tech’s Great Lakes Research Center.

    With a $50K seed grant from Electrical and Computer Engineering alumnus Paul Williams ’61, the team took the research beneath the surface to develop a low-cost marine mobile infrastructure and investigate the challenges and possible solutions in engineering a leading-edge AUV communication network.

    They broke it down into three areas: the development of low-cost, high-modularity autonomous surface vehicles (ASVs), each equipped with a collection of sensors and serving as surrogates for AUVs; equipping each ASV with an acoustic modem and implementing communication and networking protocols to facilitate underwater communication among the vessels; and conducting field experiments to collect data about the fundamental challenges in mobile acoustic communications and networking among AUVs.

    The team’s outcomes included two low-cost, autonomous, on-the-water boats; an experimental data set, data analysis, and preliminary results; a technical paper presented at the 2018 IEEE OES Autonomous Underwater Vehicle Symposium; and a marine mobile wireless networking infrastructure for use in continued research.

    Just half of their seed grant has been used, and this summer Wang and Mahmoudian will work to improve the boats and the communications system, and conduct more field research. In addition, they are planning to write two National Science Foundation proposals to take their research even further.

    View a summary of the research here.

    Seed grant donor Paul Williams is also the benefactor of the Paul and Susan Williams Center for Computer Systems Research, located on the fifth floor of the Electrical Energy Resources Center. The 10,000-square-foot, high-performance computing center—the home of the ICC—was established to foster close collaboration among researchers across multiple disciplines at Michigan Tech

    The ICC, founded in 2015, promotes collaborative, cross-disciplinary research and learning experiences in the areas of cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems. It provides faculty and students the opportunity to work across organizational boundaries to create an environment that mirrors contemporary technological innovation.

    Five research centers comprise the ICC. The ICC’s 50 members, who represent 15 academic units at Michigan Tech, are collaborating to conduct impactful research, make valuable contributions in the field of computing, and solve problems of critical national importance.

    Visit the ICC website at mtu.edu/icc. Contact the ICC at icc-contact@mtu.edu or 906-487-2518.

    Download a summary of the research.


    ECE Department to Host Cyber-physical Security Workshop July 30-31

    The Department of Electrical and Computer Engineering is pleased to announce a two-day workshop on cyber-physical security for power infrastructure and transportation to be held on campus July 30-31, 2019. Experts from industry and the academy will share information on current threats and countermeasures to protect power infrastructure and transportation systems.

    Registration protocols will support 13 hours of continuing education for professional license holders.

    More detailed information on the workshop can be found on the ECE blog.

    The cost for Michigan Tech faculty and staff to attend is $100, and the cost for students is $25. Register for the workshop on the online store. To receive the discount, faculty and staff must use the promotional code MTUFAC, and students must use the code MTUSTU on the registration form checkout page.

    Questions about the workshop can be directed to ECE at 7-2550 or ece@mtu.edu.