Category: Seminar

Tomorrow Needs Faculty and Scientist Seminar Series

Tomorrow Needs Seminar Flyer

A seminar series to bring advanced PhD students and postdoctoral scholars to Michigan Tech has been launched by the Institute of Computing and Cybersystems, in partnership with the College of Computing, the College of Engineering, and the Great Lakes Research Center. The Tomorrow Needs Faculty and Scientist Seminar Series is intended to build connections with up-and-coming researchers, recruit and retain top talent at Michigan Tech, and provide opportunities for these promising scholars to learn more about Michigan Tech and the University’s excellent resources for research and education.

Those selected will be invited to present a research seminar, tour the Michigan Tech  campus and research facilities, and meet with faculty and students.

Applications to nominate scholars from around the globe are sought from all areas of the university. Nominations of advanced PhD candidates and postdoctoral scholars currently at Michigan Tech are also encouraged.  Find the online nomination form at  mtu.edu/icc/seminars. In the near term, applications will be reviewed as they are received, with a more formal review process to be instituted in the near future.

“Recruiting and retaining talented faculty and researchers is essential for Michigan Tech as we pursue the growth strategies identified by Tech Forward and the University’s leadership team,” says Adrienne Minerick, dean of the College of Computing. “We have an abundance of excellent teaching and creative research at Michigan Tech that complements a terrific quality of life here in the Upper Peninsula. This seminar series will showcase our top-notch people, facilities, teaching and research support infrastructure, and the Houghton/Hancock area to talented new PhDs and post doctoral researchers.”

Tim Havens, the William and Gloria Jackson Associate Professor of Computer Systems and director of the ICC, stresses that the seminar series is open to all University areas. “The need to attract and retain top-tier faculty and researchers is a challenge shared across campus. We welcome nominations from all units. We are also very open to adding new partners to this initiative.”

Download the Seminar Series flyer.

MTRI to Present Research Seminars October 14

The Institute of Computing and Cybersystems will present four brief seminars by researchers from the Michigan Tech Research Institute (MTRI) on Monday, October 14, 2019, 11:00 a.m. to 12:00 p.m., in EERC 122.  MTRI research and outreach focuses on the development of technology to sense and understand natural and manmade environments.

Sarah Kitchen is a mathematician with background in algebraic geometry and representation theory. Her recent research interests include algebraic structures underlying optimization problems and applications of emerging statistical tools to signal processing and source separation problems. Her talk, “Collaborative Autonomy,” will discuss some considerations in centralized, semi-centralized, and decentralized decision-making methods for autonomous systems.

Susan Janiszewski is a mathematician specializing in graph theory and combinatorics. Her research interests lie in applying concepts from discrete mathematics to machine learning, computer vision, and natural language processing. Her talk, “Combining Natural Language Processing and Scalable Graph Analytics,” takes up the fast-growing field of Natural Language Processing (NLP), i.e. the development of algorithms to process large amounts of textual data. Janiszewski will discuss ways to combine common NLP and graph theoretic algorithms in a scalable manner for the purpose of creating overarching computational systems such as recommendation engines or machine common sense capabilities.

Joel LeBlanc has 10 years of experience in statistical signal processing. His research interests include information theoretic approaches to inverse imaging, and computational techniques for solving large inverse problems. LeBlanc’s talk, “Testing for Local Minima of the Likelihood Using Reparameterized Embeddings,” addresses the question: “Given a local maximum of a non-linear and non-convex log-likelihood equation, how should one test for global convergence?” LeBlanc will discuss a new strategy for identifying globally optimal solutions using standard gradient-based optimization techniques.

Meryl Spencer is a physicist with a background in complex systems and network theory. Her research interests include machine learning for image processing, applications of graph algorithms, and self-organization. Her talk, “Computational modeling of collaborative multiagent systems,” will discuss her previous work on modeling self organization in cellular networks, and some areas of interest for future work.

Download the event flyer.

Dr. Timothy Wilkin to Present “Adventures of a Cyber-Physical Cow,” Mon., Oct. 7, 4 pm

Tim Wilkin

Dr. Timothy Wilkin, associate professor of computer science and associate head of school (student learning) within the School of Information Technology, Deakin University, Australia, will present a talk at Michigan Tech on Monday, October 7, from 4:00-5:00 p.m., in ME-EM 112. A reception and refreshments will follow.

Dr. Wilkin’s talk, “Adventures of a Cyber-Physical Cow,” will present findings from his recent industry-based research into the use of wearable technologies in livestock farming.

Talk Abstract: Fitness and activity trackers, and other wearable sensors have revolutionised both professional sports and the general health & wellbeing market. On the other hand, wearables to support precision livestock farming and general animal health and wellbeing tracking are virtually non-existent. There are significant opportunities to support and grow concepts such as “paddock to plate” food provenance, particularly in the meat and livestock sector, through the use of wearable technologies. In this talk I will present some recent industry-based research between Deakin University and Agersens Pty Ltd, an Australian manufacturer of a world-leading geofencing technology for livestock. Real-time behaviour classification and analytics were used to both improve the existing product, as well as to create new data products for farmers and a greatly enhanced marketability for their smart collar. I will also highlight how this industry-based research has led to several interesting and challenging research questions that have driven ongoing fundamental research in data science at Deakin.

Dr. Wilkin’s Bio: Dr Wilkin’s research interests cover problems in computational and artificial intelligence to support sensor and data analytics, with applications in intelligent control for robotics and autonomous systems, embedded/edge AI, and intelligent sensing. His research has been applied in diverse areas, from marine ecology to childhood health, farming, defence and commercial robotics. Dr Wilkin is also an innovative, award-winning teacher and academic leader. As Associate Head of School he overseas teaching and learning activities of over 100 full-time academic staff and 3500 students enrolled in 16 undergraduate and postgraduate programs.

Tim Wilkin Talk Flyer

Anna Wilbik to Present Seminar October 3

The Institute of Computing and Cybersystems (ICC) and the Michigan Tech Visiting Professor Program will present a seminar by Dr. Anna Wilbik on Thursday, October 3, starting at 3:00 p.m., in ME-EM 112 . A reception will follow and refreshments will be served.  The title of Dr. Wilbik’s seminar is, “The explainability challenge in descriptive analytics: do we understand the data?”
The seminar is presented by the Institute of Computing and Cybersystems and the Michigan Tech Visiting Professor Program, which is funded by a grant to the Michigan Tech Provost Office from the State of Michigan’s King-Chavez-Parks Initiative.
Dr. Anna Wilbik is an assistant professor in the Information Systems Group of the Department of Industrial Engineering and Innovation Sciences at Eindhoven University of Technology (TU/e) in the Netherlands. She received her PhD in Computer Science from the Systems Research Institute, Polish Academy of Science, Warsaw, Poland, in 2010. In 2011, she was a Postdoctoral Fellow with the Department of Electrical and Computer Engineering at the University of Missouri, Columbia, USA. Her research interests are in business intelligence, especially focused on linguistic summaries and computing with words. With her research she tries to bridge the gap between the fuzzy sets theory and industrial applications. She makes this connection in research projects collaborating with industry both on the national and the European level. She has published over 80 papers in international journals and conferences.
Seminar Abstract: Nowadays, ever more data are collected, for instance in the healthcare domain. The amount of patients’ data has doubled in the previous two years. This exponential growth creates a data flood that is hard to handle by decision makers. In many domains, humans are collaborating with machines for decision making purposes to cope with the resulting data complexity and size. This collaboration can be realized through machine learning, visual analytics, or online analytical processing, where a machine is just a tool – but often used to make important decisions. The question now is: do we really understand the data by using the tool this way?
Explainability is a great challenge in data analytics, with the aim to explain to the user why certain decisions have been recommended or made. This challenge is especially important in predictive and prescriptive analytics. Less attention in this respect is payed to less mature analytics levels, descriptive and diagnostics, although they are the first steps for understanding data.
Data analysis methods use numbers, figures, or mathematical equations to show data, decision recommendations, and patterns. Yet for a human, the natural way of communication is natural language: words, not numbers or figures. This causes a gap between the meaning of data and human understanding. The challenge is: How to make data more understandable for humans?
Fuzzy techniques, or the application of the computing with words paradigm, have the potential to close the gap by using natural language as the communication means. In this talk, I will focus on descriptive analytics and show with a set of examples how fuzzy techniques can provide better insight of data to the user. I pay special attention to the technique of linguistic summaries.

Laura Monroe to Speak About High-performance Computing, Tues. Sept. 24

The Department of Mathematical Sciences and the College of Computing will present a lecture on high-performance computing by Dr. Laura Monroe from the Ultrascale Systems Research Center (USRC) at Los Alamos National Laboratory on Tuesday, September 24, from 5:00 to 6:00 p.m., in Fisher Hall, Room 133. The lecture is titled “The Mathematical Analysis of Faults and the Resilience of Applications.” Discussion will follow the lecture, and pizza and refreshments will be served.

Abstract: As the post-Moore’s-Law era advances, faults are expected to increase in number and in complexity on emerging novel devices. This will happen on exascale and post-exascale architectures due to smaller feature sizes, and also on new devices with unusual fault models. Attention to error-correction and resilience will thus be needed in order to use such devices effectively. Known mathematical error-correction methods may not suffice under these conditions, and an ad hoc approach will not cover the cases likely to emerge, so mathematical approaches will be essential. We will discuss the mathematical underpinnings behind such approaches, illustrate with examples, and emphasize the interdisciplinary approaches that combine experimentation, simulation, mathematical theory and applications that will be needed for success.

Dr. Monroe has spent most of her career focused on unconventional approaches to difficult computing problems, specifically researching new technologies to enable better performance as processor-manufacturing techniques reach the limits of the atomic scale, also known as the end of Moore’s Law. Dr. Monroe received her PhD in the theory of error-correcting codes, working with Dr.Vera Pless. She worked at NASA Glenn, then joined Los Alamos National Laboratory in 2000. She has contributed on the design teams on the LANL Cielo and Trinity supercomputers, and originated and leads the Laboratory’s inexact computing project that is meant to address Moore’s Law challenges in a unique way. She also provides mathematical and theoretical support to LANL’s HPC Resilience project.

Download the event flyer

US Navy to Present Talks September 17, 3-4 pm

George Anderson and Sally Sutherland of the US Naval Undersea Warfare Center (NUWC)-Newport will present talks on Tuesday, September 17, 2019, from 3:00 to 4:00  pm, in Room 202 of the Michigan Tech Great Lakes Research Center. A reception will follow and refreshments will be served.

 George Anderson will present his talk from 3:00 – 3:30 pm. Titled “Classification of Personnel and Vehicle Activity Using a Sensor System With Numerous Array Elements,” Anderson’s talk will  present the performance of a hybrid discriminative/generative classifier using experimental data collected from a scripted field test.

Sally Sutherland, NEEC Director, NAVSEA Headquarters, whose talk is 3:30-4:00 pm, will present, “An Overview of the Naval Engineering Education Consortium (NEEC) Program,” in which she will share information about the Navy’s Naval Engineering Education Consortium (NEEC) program, whose mission is to educate and develop world-class naval engineers and scientists to become part of the Navy’s civilian science and engineering workforce.

One of two divisions of the Naval Undersea Warfare Center, NUWC Division Newport is the Navy’s full-spectrum research, development, test and evaluation, engineering, and fleet support center for submarine warfare systems and many other systems associated with the undersea battlespace. It provides the technical foundation that enables the conceptualization, research, development, fielding, modernization, and maintenance of systems that ensure our Navy’s undersea superiority. The NUWC Division Newport is responsible, cradle to grave, for all aspects of systems under its charter, and is engaged in efforts ranging from participation in fundamental research to the support of evolving operational capabilities in the U.S. Navy fleet. The major thrust of NUWC Division Newport’s activities is in applied research and system development.
This event is sponsored by the Great Lakes Research Center (GLRC) and the Institute of Computing and Cybersystems (ICC).
Please contact Tim Havens (906-487-3115, thavens@mtu,edu) or Andrew Barnard (906-487-2412, arbarnar@mtu.edu) for additional information.Visit the NAVSEA online at: https://www.navsea.navy.mil/Home/Warfare-Centers/NUWC-Newport/ and Facebook: https://www.facebook.com/NUWCNewport/

Dr. Theda Daniels-Race to Present Seminar September 9

Dr. Theda Daniels-Race, the Michael B. Voorheis Distinguished Professor in the Division of Electrical & Computer Engineering at Louisiana State University, will present her seminar, “Deposition, Characterization, and Developments in Hybrid Electronic Materials for Next-Generation Nanoelectronics,” on Monday, September 9, at 3:00 pm in Room 6452 of the Dow Environmental Sciences and Engineering Building.

This seminar is presented by the Institute of Computing and Cybersystems and the Michigan Tech Visiting Professor Program, which is funded by a grant to the Michigan Tech Provost Office from the State of Michigan’s King-Chavez-Parks Initiative.

Dr. Daniels-Race also has a  joint appointment to the Center for Computation and Technology at Louisiana State University.  She is the founder of the Applied Hybrid Electronic Materials & Structures Laboratory as well as Director of the ECE Division’s Electronic Materials & Devices Laboratory.  Her research has encompassed a range of studies upon electronic materials from the growth of compound semiconductors via molecular beam epitaxy (MBE), to investigations of electron transport in low-dimensional systems such as quantum wells, wires, and dots, to device design and fabrication.  Her current work is in the area of hybrid electronic materials (HEMs) and involves studies of sample morphologies, nanoscale electronic behavior, and the design of apparatus for HEM deposition.

Dr. Daniels-Race received her degrees in Electrical Engineering from Rice, Stanford, and Cornell universities, for the B.S., M.S., and Ph.D., respectively.  As an undergraduate, she received a GEM (Graduate Engineering Minorities) Fellowship for her future MS studies, and while working on her masters, she was selected to receive one of fewer than ten CRFP (Cooperative Research Fellowship Program) competitive fellowships awarded nationally that year by AT&T for her PhD. Throughout her academic training, Daniels-Race worked in industry with corporations such as Union Carbide, Exxon, General Electric, and AT&T Bell Laboratories.  She began her academic career with the ECE Department at Duke University, where she built that institution’s first MBE laboratory and, over the next thirteen years, established a program in experimental compound semiconductor materials research.  Daniels-Race was recruited to join the LSU faculty where she conducts research upon HEMs for use in next-generation nanoscale devices.  To the community she has been an active member of several professional societies including the IEEE, the American Physical Society, the Materials Research Society, and the National Society of Black Physicists.  She is an ELATES (Executive Leadership in Academic Technology, Engineering and Science) alumna and is a strong advocate for minorities and women in science and engineering.

Seminar Abstract: Ubiquitous dependence upon semiconductor-based technology has reached a critical turning point.  In effect “small has hit the wall” (Moore’s Law) as advancements, in everything from cell phones to satellites, struggle to keep pace with demands for smaller, faster, and ever more affordable devices. Thus, researchers operating under the broadly defined umbrella of nanoelectronics inherently challenge traditional solid-state electronic design paradigms and fabrication practices.  To this end, my research focuses upon that which I have dubbed HEMs or “hybrid electronic materials.”  In this talk, I will present an overview of work in progress, conducted by both my graduate and undergraduate students, as part of the Applied Hybrid Electronic Materials & Structures (AHEMS) Laboratory that I have established in the Division of Electrical and Computer Engineering at Louisiana State University. With an eye toward the next generation of electronics, new materials and nanoscale structures must be investigated in order to understand the unique physics and potential applications of electronic phenomena “beyond the transistor.”  Using hybrid (inorganic-organic) electronic materials, my group works to characterize the nanoscale formations and electronic behavior of HEMs, as well as to develop innovative yet low-cost apparatus and techniques through which these materials may be explored.

Theda Daniels-Race CV

Download the Seminar Flyer