Tag: FY20

Bo Chen Receives $250K NSF Award for Mobile PDE Systems Research

Bo Chen, CS

Bo Chen, assistant professor of computer science and member of the Institute of Computing and Cybersystems Center for  Cybersecurity, is the principal investigator on a project that has received a $249,918 research and development grant from the National Science Foundation. The project is entitled, “SaTC: CORE: Small: Collaborative: Hardware-Assisted Plausibly Deniable System for Mobile Devices.” This is a potential three-year project.

Abstract: Mobile computing devices typically use encryption to protect sensitive information. However, traditional encryption systems used in mobile devices cannot defend against an active attacker who can force the mobile device owner to disclose the key used for decrypting the sensitive information. This is particularly of concern to dissident users who are targets of nation states. An example of this would be a human rights worker collecting evidence of untoward activities in a region of oppression or conflict and storing the same in an encrypted form on the mobile device, and then being coerced to disclose the decryption key by an official. Plausibly Deniable Encryption (PDE) has been proposed to defend against such adversaries who can coerce users into revealing the encrypted sensitive content. However, existing techniques suffer from several problems when used in flash-memory-based mobile devices, such as weak deniability because of the way read/write/erase operations are handled at the operating systems level and at the flash translation layer, various types of side channel attacks, and computation and power limitations of mobile devices. This project investigates a unique opportunity to develop an efficient (low-overhead) and effective (high-deniability) hardware-assisted PDE scheme on mainstream mobile devices that is robust against a multi snapshot adversary. The project includes significant curriculum development activities and outreach activities to K-12 students.

This project fundamentally advances the mobile PDE systems by leveraging existing hardware features such as flash translation layer (FTL) firmware and TrustZone to achieve a high deniability with a low overhead. Specifically, this project develops a PDE system with capabilities to: 1) defend against snapshot attacks using raw flash memory on mobile devices; and 2) eliminate side-channel attacks that compromise deniability; 3) be scalable to deploy on mainstream mobile devices; and 4) efficiently provide usable functions like fast mode switching. This project also develops novel teaching material on PDE and cybersecurity for K-12 students and the Regional Cybersecurity Education Collaboration (RCEC), a new educational partnership on cybersecurity in Michigan.

Publications related to this research:

[DSN ’18] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen Tao Zhu, Yangguang Tian, Zhan Wang, and Albert Ching. MobiCeal: Towards Secure and Practical Plausibly Deniable Encryption on Mobile Devices. The 48th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’18), June 2018 (Acceptance rate: 28%)
[Cybersecurity ’18] Qionglu Zhang, Shijie Jia, Bing Chang, Bo Chen. Ensuring Data Confidentiality via Plausibly Deniable Encryption and Secure Deletion – A Survey. Cybersecurity (2018) 1: 1.
[ComSec ’18 ] Bing Chang, Yao Cheng, Bo Chen, Fengwei Zhang, Wen Tao Zhu, Yingjiu Li, and Zhan Wang. User-Friendly Deniable Storage for Mobile Devices. Elsevier Computers & Security, vol. 72, pp. 163-174, January 2018
[CCS ’17] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. DEFTL: Implementing Plausibly Deniable Encryption in Flash Translation Layer. 2017 ACM Conference on Computer and Communications Security (CCS ’17), Dallas, Texas, USA, Oct 30 – Nov 3, 2017 (Acceptance rate: 18%)
[ACSAC ’15] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. MobiPluto: File System Friendly Deniable Storage for Mobile Devices. 2015 Annual Computer Security Applications Conference (ACSAC ’15), Los Angeles, California, USA, December 2015 (Acceptance rate: 24.4%)
[ISC ’14] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and Jiwu Jing. MobiHydra: Pragmatic and Multi-Level Plausibly Deniable Encryption Storage for Mobile Devices. The 17th Information Security Conference (ISC ’14), Hong Kong, China, Oct. 2014

Link to more information about this project: https://snp.cs.mtu.edu/research/index.html#pde

Soner Onder Receives Year One Funding for $1.2M NSF SCALE Project

Soner Onder
Dave Whalley

Soner Onder, professor of computer science, was recently awarded $246,329 for the first year of a four-year NSF grant for his project, “SHF: Medium: Collaborative Research: Statically Controlled Asynchronous Lane Execution (SCALE).” The project is in collaboration with Prof. David Whalley of Florida State University. Michigan Tech is the lead institution in the project, it is expected to total $1.2 million, with Michigan Tech receiving $600,000.

Abstract: Enabling better performing systems benefits applications that span those running on mobile devices to large data applications running on data centers. The efficiency of most applications is still primarily affected by single thread performance. Instruction-level parallelism (ILP) speeds up programs by executing instructions of the program in parallel, with ‘superscalar’ processors achieving maximum performance. At the same time, energy efficiency is a key criteria to keep in mind as such speedup happens, with these two being conflicting criteria in system design. This project develops a Statically Controlled Asynchronous Lane Execution (SCALE) approach that has the potential to meet or exceed the performance of a traditional superscalar processor while approaching the energy efficiency of a very long instruction word (VLIW) processor. As implied by its name, the SCALE approach has the ability to scale to different types and levels of parallelism. The toolset and designs developed in this project will be available as open-source and will also have an impact on both education and research. The SCALE architectural and compiler techniques will be included in undergraduate and graduate curricula.

The SCALE approach supports separate asynchronous execution lanes where dependencies between instructions in different lanes are statically identified by the compiler to provide inter-lane synchronization. Providing distinct lanes of instructions allows the compiler to generate code for different modes of execution to adapt to the type of parallelism that is available at each point within an application. These execution modes include explicit packaging of parallel instructions, parallel and pipelined execution of loop iterations, single program multiple data (SPMD) execution, and independent multi-threading.

This award reflects NSF’s statutory mission and has been deemed worthy of support through evaluation using the Foundation’s intellectual merit and broader impacts review criteria.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1901005&HistoricalAwards=false

US Navy to Present Talks September 17, 3-4 pm

George Anderson and Sally Sutherland of the US Naval Undersea Warfare Center (NUWC)-Newport will present talks on Tuesday, September 17, 2019, from 3:00 to 4:00  pm, in Room 202 of the Michigan Tech Great Lakes Research Center. A reception will follow and refreshments will be served.

 George Anderson will present his talk from 3:00 – 3:30 pm. Titled “Classification of Personnel and Vehicle Activity Using a Sensor System With Numerous Array Elements,” Anderson’s talk will  present the performance of a hybrid discriminative/generative classifier using experimental data collected from a scripted field test.

Sally Sutherland, NEEC Director, NAVSEA Headquarters, whose talk is 3:30-4:00 pm, will present, “An Overview of the Naval Engineering Education Consortium (NEEC) Program,” in which she will share information about the Navy’s Naval Engineering Education Consortium (NEEC) program, whose mission is to educate and develop world-class naval engineers and scientists to become part of the Navy’s civilian science and engineering workforce.

One of two divisions of the Naval Undersea Warfare Center, NUWC Division Newport is the Navy’s full-spectrum research, development, test and evaluation, engineering, and fleet support center for submarine warfare systems and many other systems associated with the undersea battlespace. It provides the technical foundation that enables the conceptualization, research, development, fielding, modernization, and maintenance of systems that ensure our Navy’s undersea superiority. The NUWC Division Newport is responsible, cradle to grave, for all aspects of systems under its charter, and is engaged in efforts ranging from participation in fundamental research to the support of evolving operational capabilities in the U.S. Navy fleet. The major thrust of NUWC Division Newport’s activities is in applied research and system development.
This event is sponsored by the Great Lakes Research Center (GLRC) and the Institute of Computing and Cybersystems (ICC).
Please contact Tim Havens (906-487-3115, thavens@mtu,edu) or Andrew Barnard (906-487-2412, arbarnar@mtu.edu) for additional information.Visit the NAVSEA online at: https://www.navsea.navy.mil/Home/Warfare-Centers/NUWC-Newport/ and Facebook: https://www.facebook.com/NUWCNewport/

Oommen Quoted in EOS Earth and Space News on Flooding in India

 

 

 

Thomas Oommen

Thomas Oommen (GMES) was quoted in the article, “Devastating Floods Hit India for the Second Year in a Row,” posted August 26, 2019, in EOS Earth and Space News. Oommen studies studies landslide hazards in Kerala, India. Link to the article here: https://eos.org/articles/devastating-floods-hit-india-for-the-second-year-in-a-row

 

Oommen Part of Team in Mumbai Working on Disaster Management Curriculum

Thomas Oommen

Thomas Oommen (DataS), associate professor of geological and mining engineering and sciences, was recently featured in a Michigan Tech Unscripted Research Blog titled, ” Geohazards on the Horizon.”

Oommen was part of a US team in Mumbai this August working on disaster management curriculum with the Tata Institute of Social Sciences (TISS), the only institution in all of Mumbai—one of the world’s largest cities with 19 million people—to offer a degree in disaster management.

Oommen’s trip was funded by the US Consulate General in Mumbai. Read more about the team’s work on the Unscripted blog here: https://www.mtu.edu/unscripted/stories/2019/august/geohazards-on-the-horizon.html

Mari Buche Is Co-author of Article in ACM SIGMIS Database

Mari Buche

Mari Buche (DataS), School of Business and Economics associate dean and professor of management information systems, is co-author of the article, “He Said, She Said: Communication Theory of Identity and the Challenges Men Face in the Information Systems Workplace,” which was published in the August 2019 issue of the newsletter ACM SIGMIS Database: the DATABASE for Advances in Information Systems.

Co-authors of the article are Cynthia K. Riemenschneider, Baylor University, and Deb Armstrong, Florida State University.

Abstract: The preponderance of the academic research focused on diversity in the IS field has emphasized the perspectives of women and racioethnic minorities. Recent research has found that following the appointment of a female CEO, white male top managers provided less help to colleagues, particularly those identified as minority-status (McDonald, Keeves, & Westphal, 2018). Additionally, Collison and Hearn (1994) assert that white men’s universal status and their occupancy of the normative standard state have rendered them invisible as objects of analysis. To develop a more holistic view of the IS workplace, we expand the academic exploration by looking at the challenges men face in the Information Systems (IS) workplace. Using a cognitive lens, we evoke the challenges men perceive they face at work and cast them into revealed causal maps. We then repeat the process evoking women’s perspectives of men’s challenges. The findings are analyzed using the Communication Theory of Identity (CTI) to determine the areas of overlap and identity gaps. This study advances our understanding of the cognitive overlap (and lack thereof) regarding the challenges facing men in the IS field, and provides another step toward developing a more inclusive IS work environment.

Citation:
ACM SIGMIS Database: the DATABASE for Advances in Information Systems
Volume 50 Issue 3, August 2019
Pages 85-115
ACM New York, NY, USA

https://dl.acm.org/citation.cfm?id=3353407

DOI: 10.1145/3353401.3353407

Weihua Zhou to Present Invited Talk at 2019 American Society of Nuclear Cardiology Conference

Weihua Zhou

Weihua Zhou (DataS), assistant professor of health informatics, will present an invited talk and give a poster presentation at the 2019 American Society of Nuclear Cardiology conference (ASNC), September 12-15, in Chicago, IL.

His talk, “Machine Learning for Automatic LV Segmentation and Volume Quantification,” will discuss the results of his recent research for the American Heart Association, “A new image-guided approach for cardiac resynchronization therapy.” (Project Number: 17AIREA33700016, PI: Weihua Zhou).

Keith Vertanen and Scott Kuhl Awarded $500K NSF Grant

Scott Kuhl
Scott Kuhl
Keith Vertanen
Keith Vertanen

Keith Vertanen, assistant professor of computer science (HCC), and Scott Kuhl (HCC), associate professor of computer science, are principal investigators of a recently funded three-year National Science Foundation grant for their project, “CHS: Small: Rich Surface Interaction for Augmented Environments.” The expected funding over three years is $499,552.00.

Vertanen and Kuhl are members of Michigan Tech’s Institute of Computing and Cybersystems (ICC) Center for Human-Centered Computing. A 2018 ICC research seed grant funded by ECE Alumnus Paul Williams was used to produce some of the preliminary results in the successful proposal. More info about the Williams Seed Grant can be found here: https://blogs.mtu.edu/icc/2019/07/16/appropriating-everyday-surfaces-for-tap-interaction/.

A related video can be found here: https://youtu.be/sF7aeXMfsIQ.

Abstract: Virtual Reality (VR) and Augmented Reality (AR) head-mounted displays are increasingly being used in different computing related activities such as data visualization, education, and training. Currently, VR and AR devices lack efficient and ergonomic ways to perform common desktop interactions such as pointing-and-clicking and entering text. The goal of this project is to transform flat, everyday surfaces into a rich interactive surface. For example, a desk or a wall could be transformed into a virtual keyboard. Flat surfaces afford not only haptic feedback, but also provide ergonomic advantages by providing a place to rest your arms. This project will develop a system where microphones are placed on surfaces to enable the sensing of when and where a tap has occurred. Further, the system aims to differentiate different types of touch interactions such as tapping with a fingernail, tapping with a finger pad, or making short swipe gestures.

This project will investigate different machine learning algorithms for producing a continuous coordinate for taps on a surface along with associated error bars. Using the confidence of sensed taps, the project will investigate ways to intelligently inform aspects of the user interface, e.g. guiding the autocorrection algorithm of a virtual keyboard decoder. Initially, the project will investigate sensing via an array of surface-mounted microphones and design “surface algorithms” to determine and compare the location accuracy of the finger taps on the virtual keyboard. These algorithms will experiment with different models including existing time-of-flight model, a new model based on Gaussian Process Regression, and a baseline of classification using support vector machines. For all models, the project will investigate the impact of the amount of training data from other users, and varying the amount of adaptation data from the target user. The project will compare surface microphones with approaches utilizing cameras and wrist-based inertial sensors. The project will generate human-factors results on the accuracy, user preference, and ergonomics of interacting midair versus on a rigid surface. By examining different sensors, input surfaces, and interface designs, the project will map the design space for future AR and VR interactive systems. The project will disseminate software and data allowing others to outfit tables or walls with microphones to enable rich interactive experiences.

Dr. Theda Daniels-Race to Present Seminar September 9

Dr. Theda Daniels-Race, the Michael B. Voorheis Distinguished Professor in the Division of Electrical & Computer Engineering at Louisiana State University, will present her seminar, “Deposition, Characterization, and Developments in Hybrid Electronic Materials for Next-Generation Nanoelectronics,” on Monday, September 9, at 3:00 pm in Room 6452 of the Dow Environmental Sciences and Engineering Building.

This seminar is presented by the Institute of Computing and Cybersystems and the Michigan Tech Visiting Professor Program, which is funded by a grant to the Michigan Tech Provost Office from the State of Michigan’s King-Chavez-Parks Initiative.

Dr. Daniels-Race also has a  joint appointment to the Center for Computation and Technology at Louisiana State University.  She is the founder of the Applied Hybrid Electronic Materials & Structures Laboratory as well as Director of the ECE Division’s Electronic Materials & Devices Laboratory.  Her research has encompassed a range of studies upon electronic materials from the growth of compound semiconductors via molecular beam epitaxy (MBE), to investigations of electron transport in low-dimensional systems such as quantum wells, wires, and dots, to device design and fabrication.  Her current work is in the area of hybrid electronic materials (HEMs) and involves studies of sample morphologies, nanoscale electronic behavior, and the design of apparatus for HEM deposition.

Dr. Daniels-Race received her degrees in Electrical Engineering from Rice, Stanford, and Cornell universities, for the B.S., M.S., and Ph.D., respectively.  As an undergraduate, she received a GEM (Graduate Engineering Minorities) Fellowship for her future MS studies, and while working on her masters, she was selected to receive one of fewer than ten CRFP (Cooperative Research Fellowship Program) competitive fellowships awarded nationally that year by AT&T for her PhD. Throughout her academic training, Daniels-Race worked in industry with corporations such as Union Carbide, Exxon, General Electric, and AT&T Bell Laboratories.  She began her academic career with the ECE Department at Duke University, where she built that institution’s first MBE laboratory and, over the next thirteen years, established a program in experimental compound semiconductor materials research.  Daniels-Race was recruited to join the LSU faculty where she conducts research upon HEMs for use in next-generation nanoscale devices.  To the community she has been an active member of several professional societies including the IEEE, the American Physical Society, the Materials Research Society, and the National Society of Black Physicists.  She is an ELATES (Executive Leadership in Academic Technology, Engineering and Science) alumna and is a strong advocate for minorities and women in science and engineering.

Seminar Abstract: Ubiquitous dependence upon semiconductor-based technology has reached a critical turning point.  In effect “small has hit the wall” (Moore’s Law) as advancements, in everything from cell phones to satellites, struggle to keep pace with demands for smaller, faster, and ever more affordable devices. Thus, researchers operating under the broadly defined umbrella of nanoelectronics inherently challenge traditional solid-state electronic design paradigms and fabrication practices.  To this end, my research focuses upon that which I have dubbed HEMs or “hybrid electronic materials.”  In this talk, I will present an overview of work in progress, conducted by both my graduate and undergraduate students, as part of the Applied Hybrid Electronic Materials & Structures (AHEMS) Laboratory that I have established in the Division of Electrical and Computer Engineering at Louisiana State University. With an eye toward the next generation of electronics, new materials and nanoscale structures must be investigated in order to understand the unique physics and potential applications of electronic phenomena “beyond the transistor.”  Using hybrid (inorganic-organic) electronic materials, my group works to characterize the nanoscale formations and electronic behavior of HEMs, as well as to develop innovative yet low-cost apparatus and techniques through which these materials may be explored.

Theda Daniels-Race CV

Download the Seminar Flyer