Category Archives: Achievements and Awards

Article by Alex Sergeyev Published in Journal of Engineering Technology (JET)

Alex Sergeyev

An article co-authored by Aleksandr Sergeyev, College of Computing professor and director of the Mechatronics graduate program, has been published in the Journal of Engineering Technology (JET).

The conclusive article, titled “A University, Community College, and Industry Partnership: Revamping Robotics Education to Meet 21st century Needs – NSF Sponsored Project Final Report,” summarizes the work funded by a $750K NSF grant received by Servgeyev in 2015 to to promote robotics education.  The paper details the achievements in curriculum and educational tools development, dissemination, and implementation at Michigan Tech and beyond.

Co-PIs on the project are  Scott A. Kuhl (Michigan Technological University), Prince Mehandiratta (Michigan Technological University), Mark Highum (Bay de Noc Community College), Mark Bradley Kinney (West Shore Community College), and Nasser Alaraje (The University of Toledo).

A related paper was presented at the 2019 ASEE Annual Conference & Exposition, June 21-24, 2019, in Tampa, FL, as part of the panel “Academe/Industry Collaboration” presented by the Technical Engineering Technology Division, where it was awarded the Best Paper Award in the Engineering Technology Division. Download the conference paper here: https://www.asee.org/public/conferences/140/papers/26234/view.

Conference Paper Abstract: Recently, educators have worked to improve STEM education at all levels, but challenges remain. Capitalizing on the appeal of robotics is one strategy proposed to increase STEM interest. The interdisciplinary nature of robots, which involve motors, sensors, and programs, make robotics a useful STEM pedagogical tool. There is also a significant need for industrial certification programs in robotics. Robots are increasingly used across industry sectors to improve production throughputs while maintaining product quality. The benefits of robotics, however, depend on workers with up-to-date knowledge and skills to maintain and use existing robots, enhance future technologies, and educate users. It is critical that education efforts respond to the demand for robotics specialists by offering courses and professional certification in robotics and automation. This NSF sponsored project introduces a new approach for Industrial Robotics in electrical engineering technology (EET) programs at University and Community College. The curriculum and software developed by this collaboration of two- and four-year institutions match industry needs and provide a replicable model for programs around the US. The project also addresses the need for certified robotic training centers (CRTCs) and provides curriculum and training opportunities for students from other institutions, industry representatives, and displaced workers. Resources developed via this project were extensively disseminated through a variety of means, including workshops, conferences, and publications. In this article, authors provide final report on project outcomes, including various curriculum models and industry certification development, final stage of the “RobotRun” robotic simulation software, benefits of professional development opportunities for the faculty members from the other institutions, training workshops for K-12 teachers, and robotic one-day camps for high school students.

The Journal of Engineering Technology® (JET) is a refereed journal published semi-annually, in spring and fall, by the Engineering Technology Division (ETD) of the American Society for Engineering Education (ASEE). The aim of JET is to provide a forum for the dissemination of original scholarly articles as well as review articles in all areas related to engineering technology education. engtech.org/jet


CNSA Major Gary Tropp Named University Innovation Fellow

Gary Tropp

Gary Tropp (Computer Network and System Administration ’22), along with Abigail Kuehne (Psychology and Communication, Culture, and Media/ Applied Cognitive Science and Human Factors ’21), Sam Raber (Psychology ’22), and Lindsay Sandell (Biomedical Engineering ’21), has been named a University Innovation Fellows by Stanford University’s Hasso Plattner Institute of Design.

The global UIF program trains student leaders to create new opportunities for their peers to engage with innovation, entrepreneurship, design thinking, and creativity. Michigan Tech’s team of University Innovation Fellows (UIF) support student interests, create an ecosystem for innovation, and encourage environmentally sustainable practices on campus. They aim to preserve a culture of inclusion, encourage creativity and self-authorship, and help students create lasting connections.

Current UIF proposals include a university-sanctioned gap year program, updates to campus wellness opportunities, student ambassador programs, and creating a space to reduce waste and encourage students to share and reuse common school items. Learn more about UIF here.


Keith Vertanen Is PI on $225K NSF Grant, “Improving Mobile Device Input for Users Who are Blind or Low Vision”

Keith Virtanen
Keith Vertanen

Keith Vertanen (CS/ICC-HCC) is the principal investigator on a three-year project that has received a $225,663 research and development grant from the National Science Foundation. The project is entitled, “CHS: Small: Collaborative Research: Improving Mobile Device Input for Users Who are Blind or Low Vision.”

Abstract: Smartphones are an essential part of our everyday lives. But for people with visual impairments, basic tasks like composing text messages or browsing the web can be prohibitively slow and difficult. The goal of this project is to develop accessible text entry methods that will enable people with visual impairments to enter text at rates comparable to sighted people. This project will design new algorithms and feedback methods for today’s standard text entry approaches of tapping on individual keys, gesturing across keys, or dictating via speech. The project aims to:  1) help users avoid errors by enabling more accurate input via audio and tactile feedback, 2) help users find errors by providing audio and visual annotation of uncertain portions of the text, and 3) help users correct errors by combining the probabilistic information from the original input, the correction, and approximate information about an error’s location. Improving text entry methods for people who are blind or have low vision will enable them to use their mobile devices more effectively for work and leisure. Thus, this project represents an important step to achieving equity for people with visual impairments.

This project will contribute novel interface designs to the accessibility and human-computer interaction literature. It will advance the state-of-the-art in mobile device accessibility by: 1) studying text entry accessibility for low vision in addition to blind people, 2) studying and developing accessible gesture typing input methods, and 3) studying and developing accessible speech input methods.  This project will produce design guidelines, feedback methods, input techniques, recognition algorithms, user study results, and software prototypes that will guide improvements to research and commercial input systems for users who are blind or low-vision. Further, the project’s work on the error correction and revision process will improve the usability and performance of touchscreen and speech input methods for everyone.


Yakov Nekrich paper accepted by 2020 ACM-SIAM Symposium on Discrete Algorithms

Yakov Nekrich

A paper by Yakov Nekrich, associate professor of computer science, has been accepted by the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), the prime conference in the area of algorithms research.

The article, “Better Data Structures for Colored Orthogonal Range Reporting,” was co-authored by Timothy M. Chan of University of Illinois at Urbana-Champaign (UIUC).

The SODA 2020 conference takes place January 5-8, 2020, in Salt Lake City, Utah.


Alex Sergeyev Wins ASEE Best Paper Award

Alex Sergeyev

College of Computing Professor Alex Sergeyev presented his research article, “University, Community College and Industry Partnership: Revamping Robotics Education to Meet 21st Century Workforce Needs – NSF Sponsored Project Final Report,” at the 2019 American Society of Engineering Education (ASEE) annual conference, receiving the Best Paper Award in the Engineering Technology Division.

The conference took place June 16-19 in Tampa, Florida.

Co-authors of the publication are S. Kuhl, N. Alaraje, M. Kinney, M. HIghum, and P. Mehandiratta. The paper will be published in the fall issue of the prestigious Journal of Engineering Technology (JET).


Ali Ebnenasir is Co-Author of Publication in ACM Transactions on Computational Logic

Ali Ebnenasir
Ali Ebnenasir

An article co-authored by Ali Ebnenasir (SAS/CS) and Alex Klinkhamer, “Verification of Livelock-Freedom and Self-Stabilization on Parameterized Rings,” was recently published in ACM Transactions on Computational Logic.

Abstract: This article investigates the verification of livelock-freedom and self-stabilization on parameterized rings consisting of symmetric, constant space, deterministic, and self-disabling processes. The results of this article have a significant impact on several fields, including scalable distributed systems, resilient and self-* systems, and verification of parameterized systems. First, we identify necessary and sufficient local conditions for the existence of global livelocks in parameterized unidirectional rings with unbounded (but finite) number of processes under the interleaving semantics. Using a reduction from the periodic domino problem, we show that, in general, verifying livelock-freedom of parameterized unidirectional rings is undecidable (specifically, Π10-complete) even for constant space, deterministic, and self-disabling processes. This result implies that verifying self-stabilization for parameterized rings of self-disabling processes is also undecidable. We also show that verifying livelock-freedom and self-stabilization remain undecidable under (1) synchronous execution semantics, (2) the FIFO consistency model, and (3) any scheduling policy. We then present a new scope-based method for detecting and constructing livelocks in parameterized rings. The proposed semi-algorithm behind our scope-based verification is based on a novel paradigm for the detection of livelocks that totally circumvents state space exploration. Our experimental results on an implementation of the proposed semi-algorithm are very promising as we have found livelocks in parameterized rings in a few microseconds on a regular laptop. The results of this article have significant implications for scalable distributed systems with cyclic topologies.

https://dl.acm.org/citation.cfm?id=3326456&dl=ACM&coll=DL

doi: 10.1145/3326456




ICC Achievement Awards

At the annual awards banquet of the Michigan Tech Institute of Computing and Cybersysytems (ICC), on Friday, April 12, three ICC members received the ICC Achievement Award in recognition of their exceptional contributions to research and learning in the fields of computing.

Soner Önder, director of the ICC Center for Scalable Architectures and Systems and professor of computer science, was recognized for his research in next-generation architectures. Önder is principal investigator of three National Science Foundation (NSF) grants, and he has three NSF grant proposals under review.

Kevin Trewartha, a member of the ICC’s Center for Human-Centered Computing, was recognized for his interdisciplinary and collaborative research at the intersection of technology and human motor movement. Trewartha is an assistant professor with a dual appointment in the departments of Cognitive and Learning Sciences and Kinesiology and Integrative Physiology. He is co-principal investigator, with ICC member Shane Mueller, of a new, three-year, interdisciplinary and collaborative project funded by the National Institutes of Health.

Bo Chen, a member of the ICC’s Center for Cybersecurity and assistant professor of computer science, was recognized for his teaching and research in cybersecurity of mobile devices. Chen is the co-PI of two external grants on cybersecurity from the National Security Agency, and he has submitted numerous cybersecurity proposals to NSF, NSA, Microsoft and Google.

The ICC, founded in 2015, promotes collaborative, cross-disciplinary research and learning experiences in the areas of cyber-physical systems, cybersecurity, data sciences, human-centered computing and scalable architectures and systems. It provides faculty and students the opportunity to work across organizational boundaries to create an environment that mirrors contemporary technological innovation. Five research centers comprise the ICC. Visit the ICC website, contact the ICC at icc-contact@mtu.edu or 7-2518.

 


2019 Graduate Research Colloquium Award Recipients

The Graduate Student Government (GSG) hosted the 11th Annual Graduate Research Colloquium March 27 and 28, to celebrate the hard work and outstanding achievements of our graduate students. The event has grown from a one-session event with a handful of participants into a two-day event with a record 85 participants, representing 17 academic schools and departments. The event ended with an awards banquet honoring presenters, award nominees and three new awards recognizing departments for supporting graduate education. Congratulations to the 2019 graduate student recipients for their outstanding accomplishments.

Congratulations to Daniel Byrne who received the Graduate Student Service Award!  Read the full Tech Today article here