Day: December 1, 2022

NASA, Artemis and Beyond: Inside Michigan Tech’s Multiplanetary INnovation Enterprise (MINE)

Dr. Paul van Susante’s Planetary Surface Technology Development Lab (PSTDL) at Michigan Tech is home of the Dusty Thermal Vacuum Chamber. It’s about as close to moon conditions as one can get on Earth!
Paul van Susante

Paul van Susante, Assistant Professor, Mechanical Engineering—Engineering Mechanics talks about MINE, the Multiplanetary INnovation Enterprise team at Michigan Tech, along with electrical engineering majors Brenda Wilson and Gabe Allis; and mechanical engineering major Parker Bradshaw.

Wilson, Allis and Bradshaw—along with about 50 other student members of the MINE team—design, test, and implement robotic technologies for extracting (and using) local resources in extreme environments. That includes Lunar and Martian surfaces, and flooded subterranean environments here on Earth. Prof. van Susante helped launch the team, and serves as MINE’s faculty advisor.

The award-winning Enterprise Program at Michigan Tech involves students—of any major—working in teams on real projects, with real clients. Michigan Tech currently has 23 different Enterprise teams on campus, working to pioneer solutions, invent products, and provide services.

“As an engineer, I’m an optimist. We can invent things that allow us to do things that now seem impossible.”

Paul van Susante
Students in the Huskyworks Lab at Michigan Tech work on the T-REX rover (Tethered permanently-shadowed Region Explorer). The T-REX lays down lightweight, superconducting cable connected to a lander, and it won NASA’s top prize—the Artemis Award.

MINE team members build and test robotic vehicles and technologies for clients in government and the private sector. They tackle construction and materials characterization, too. It all happens in van Susante’s Planetary Surface Technology Development Lab (PSTDL) at Michigan Tech, a place where science fiction becomes reality via prototyping, building, testing—and increasing the technology readiness and level of tech being developed for NASA missions. The PSTDL is also known as Huskyworks.

Prior to coming to Michigan Tech, Prof. van Susante earned his PhD and taught at the Colorado School of Mines, and also served as a NASA Faculty Fellow. He has been involved in research projects collaborating with Lockheed Martin, Northrop Grumman, SpaceX, TransAstra, DARPA, NASA Kennedy Space Center, JPL, Bechtel, Caterpillar, and many others.

Prof. van Susante created the Huskyworks Dusty Thermal Vacuum Chamber himself, using his new faculty startup funding. It’s a vacuum-sealed room, partially filled with a simulated lunar dust that can be cooled to minus 196 degrees Celsius and heated to 150 degrees Celsius—essentially, a simulated moon environment. In the chamber, researchers can test surface exploration systems (i.e., rovers) in a box containing up to 3,000 pounds of regolith simulant. It’s about as close to moon conditions as one can get on Earth.

Students in the PSTDL move a testbox into position for testing in the Dusty Thermal Vacuum Chamber.

The NASA Artemis program aims to send astronauts back to the moon by 2025 and establish a permanent human presence. Building the necessary infrastructure to complete this task potentially requires an abundance of resources because of the high cost of launching supplies from Earth. 

“An unavoidable obstacle of space travel is what NASA calls the ‘Space Gear Ratio’, where in order to send one package into space, you need nearly 450 times that package’s mass in expensive rocket fuel to send it into space,” notes van Susante. “In order to establish a long-term presence on other planets and moons, we need to be able to effectively acquire the resources around us, known as in-situ-resource utilization, or ISRU.”

“NASA has several inter-university competitions that align with their goals for their up-and-coming Artemis Missions,” adds van Susante. 

Huskyworks and MINE have numerous Artemis irons in the fire, plus other research projects, too. We’ll learn a lot more about them during Husky Bites.

LUNABOTICS

A peek at the integrated system of MINE’s Lunabotics rover.
Six members of the Michigan Tech Astro-Huskies (plus Dr. van Susante) at NASA Kennedy Space Center Visitor Center, during the 2021-22 Lunabotics competition

Electrical engineering undergraduate student Brenda Wilson serves as the hardware sub-team lead of the Astro-Huskies, a group of 25 students within MINE who work on an autonomous mining rover as part of NASA’s Lunabotics competition. It’s held every year in Florida at the Kennedy Space Center with 50 teams in attendance from universities across the nation. This is the Astro-Huskies’ third year participating in the competition, coming up in May 2023. 

This year the Astro-Huskies are designing, building, testing, and competing with an autonomous excavation rover. The rover must traverse around obstacles such as mounds, craters, rocks; excavate ice to be used for the production of rocket fuel, then return to the collection point. By demonstrating their rover, each team in the competition contributes ideas to NASA’s future missions to operate on and start producing consumables on the lunar surface. 

DIVER

Mechanical engineering undergraduate student Gabe Allis is manager of the MINE team’s DIVER project (Deep Investigation Vehicle for Energy Resources). The team is focused on building an untethered ROV capable of descending down into the Quincy mine to map the flooded tunnels and collect water samples. The team supports ongoing research at Michigan Tech that aims to convert flooded mine shafts into giant batteries, or Pumped Underground Storage for Hydropower (PUSH) facilities.

What it looks like beneath the Quincy Mine in Hancock, Michigan. Illustration courtesy of Michigan Tech’s Department of Geological and Mining Engineering and Sciences.

“Before a mine can be converted into a PUSH facility it must be inspected, and most mines are far deeper than can be explored by a conventional diver,”Allis explains.

“This is where we come in, with a robust, deep-diving robot that’s designed for an environment more unforgiving than the expanse of outer space, and that includes enormous external pressure, no communication, and no recovery if something goes wrong,” he says.  

“Differences in water temperature at different depths cause currents that can pull our robot in changing directions,” adds Allis. “No GPS means that our robot may have to localize from its environment, which means more computing power, and more space, weight, energy consumption, and cooling requirements. These are the sort of problems that our team needs to tackle.”

TRENCHER

During Husky Bites, Bradshaw will tell us about the team’s Trencher project, which aims to provide proof-of-concept for extracting the lunar surface using a bucket ladder-style excavator. “Bucket ladders offer a continuous method of excavation that can transport a large amount of material with minimal electricity, an important consideration for operations on the moon,” Bradshaw says. “With bucket ladders NASA will be able to extract icy regolith to create rocket fuel on the moon and have a reliable method to shape the lunar surface.” Unlike soil, regolith is inorganic material that has weathered away from the bedrock or rock layer beneath.

Parker Bradshaw, also a mechanical engineering student, is both a member of MINE and member of van Susante’s lab, where he works as an undergraduate researcher. “Dr. van Susante is my boss, PI, and Enterprise advisor. I first worked with him on a MINE project last year, then got hired by his lab (the PSTDL) to do research over the summer.”

Bradshaw is preparing a research paper detailing data the team has gathered while excavating in the lab’s Dusty Thermal Vacuum Chamber, with a goal of sharing what was learned by publishing their results in an academic journal.

The PSTDL’s field-rover HOPLITE gets ready for field-test last winter.

“An unavoidable obstacle of space travel is what NASA calls the ‘Space Gear Ratio’, where in order to send one package into orbit around Earth, you need nearly 10 times that package’s mass in expensive rocket fuel to send it into space, and even more for further destinations,” van Susante explains. “So in order to establish a long-term presence on other planets and moons, we need to be able to effectively acquire the resources around us, known as in-situ-resource utilization, or ISRU.”

In the world-class Huskyworks lab (and in the field) van Susante and his team work on a wide variety of projects:

Paul van Susante served as a mining judge during the 2018 Regolith Mining Competition at the NASA Kennedy Space Center Visitor Center

NASA Lunar Surface Technology Research (LuSTR)—a “Percussive Hot Cone Penetrometer and Ground Penetrating Radar for Geotechnical and Volatiles Mapping.”

NASA Breakthrough Innovative and Game Changing (BIG) Idea Challenge 2020—a “Tethered permanently shaded Region EXplorer (T-REX)” delivers power and communication into a PSR, (also known as a Polarimetric Scanning Radiometer).

NASA Watts on the Moon Centennial Challenge—providing power to a water extraction plant PSR located 3 kilometers from the power plant. Michigan Tech is one of seven teams that advanced to Phase 2, Level 2 of the challenge.

NASA ESI Early Stage Innovation—obtaining water from rock gypsum on Mars.

NASA Break the Ice—the latest centennial challenge from NASA, to develop technologies aiding in the sustained presence on the Moon.

NASA NextSTEP BAA ISRU, track 3—”RedWater: Extraction of Water from Mars’ Ice Deposits” (subcontract from principal investigator Honeybee Robotics).

NASA GCD MRE—Providing a regolith feeder and transportation system for the MRE reactor

HOPLITE—a modular robotic system that enables the field testing of ISRU technologies.

Dr. van Susante met his wife, Kate, in Colorado.

Dr. van Susante, how did you first get into engineering? What sparked your interest?

Helping people and making the world a better place with technology and the dream of space exploration. My interest came from sci-fi books and movies and seeing what people can accomplish when they work together.

Hometown and Hobbies?

I grew up in The Netherlands and got my MS in Civil Engineering from TU-Delft before coming to the USA to continue grad school. I met my wife in Colorado and have one 8 year old son. The rest of my family is still in The Netherlands. Now I live in Houghton, Michigan, not too far from campus. I love downhill and x-country skiing, reading (mostly sci-fi/fantasy), computer and board games, and photography.

Dr. van Susante has been a huge help—not just with the technical work, but with the project management side of things. We’ve found it to be one of the biggest hurdles to overcome as a team this past year.

Brenda Wilson

Brenda, how did you first get into engineering? What sparked your interest?

My dad, who is a packaging engineer, would explain to me how different machines work and how different things are made. My interest in electrical engineering began with the realization that power is the backbone to today’s society. Nearly everything we use runs on electricity. I wanted to be able to understand the large complex system that we depend so heavily upon. Also, because I have a passion for the great outdoors, I want to take my degree in a direction where I can help push the power industry towards green energy and more efficient systems.

Hometown, family?

My hometown is Naperville, Illinois. I have one younger brother starting his first year at Illinois State in general business. My Dad is a retired packaging engineer with a degree from Michigan State, and my mom is an accountant with a masters degree from the University of Chicago.

Any hobbies? Pets? What do you like to do in your spare time?

I am an extremely active person and try to spend as much time as I can outside camping and on the trails. I also spend a good chunk of my time running along the portage waterfront, swing dancing, and just recently picked up mountain biking.

I got involved in the DIVER project in MINE, and have enjoyed working with Dr. van Susante. He’s a no nonsense kind of guy. He tells you what you need to improve on, and then helps you get there.

Gabe Allis
Gabe Allis

Gabe, how did you first get into engineering? What sparked your interest?

I first became interested in engineering when my great-uncle gave me a college text-book of his on engineering: Electric Circuits and Machines, by Eugene Lister. I must have been at most 13. To my own surprise, I began reading it and found it interesting. Ever since then I’ve been looking for ways to learn more.

Hometown, family?

I’m from Ann Arbor, Michigan, the oldest of nine. First in my family to go to Tech, and probably not the last. 

Any hobbies? Pets? What do you like to do in your spare time?

I like to play guitar, read fiction, mountain bike, explore nature, and hang out/worship at St. Albert the Great Catholic Church.

“Doing both Enterprise work and research under Dr. van Susante has been a very valuable experience. I expect to continue working in his orbit through the rest of my undergrad degree.”

Parker Bradshaw
Parker Bradshaw

Parker, how did you first get into engineering? What sparked your interest?

I was first introduced to engineering by my dad, who manufactured scientific equipment for the University of Michigan Psychology department. Hanging around in his machine shop at a young age made me really want to work with my hands. What I do as a member of MINE is actually very similar to what my dad did at the U of M. I create research equipment that we use to obtain the data we need for our research, just for me it’s space applications (instead of rodent brains).

Hometown, family?

I grew up in Ann Arbor Michigan, and both of my parents work for the University of Michigan Psychology department. My dad is now retired.

Any hobbies? Pets? What do you like to do in your spare time?

I have a variety of things to keep me busy when school isn’t too overbearing. I go to the Copper Country Community Art Center Clay Co-Op as often as I can to throw pottery on the wheel. I also enjoy watercolor painting animals in a scientific illustration style. Over the summer I was working on my V22 style RC plane project.

Michigan Tech MINE team photo (taken last year). The constraints of the pandemic complicated some of their efforts, yet brought out the best in all of them.

Read more

To the Moon—and Beyond

Watch

Mine Video for Michigan Tech 2022 Design Expo

How Can You Mend a Broken Heart? Flow Dynamics in Arrhythmias

Dr. Hatoum and PhD student Brennan Vogl test heart valves for overall performance and energetics, turbulence generated, sinus hemodynamics (aortic and pulmonic), as well as ventricular, atrial, pulmonic, and aortic flows.

Biomedical Engineering Assistant Professor Hoda Hatoum talks about her cardiovascular research along with PhD student Brennan Vogl, one of the first students to join her Biofluids Lab in the fall of 2020.

Dr. Hoda Hatoum

“One thing we can do in the lab is to study just how AFib ablation impacts the heart’s left atrial flow, says Hatoum.

Atrial fibrillation, when the heart beats in an irregular way, affects up to 6 million individuals in the US, a number expected to double by 2030. More than 454,000 hospitalizations with AFib as the primary diagnosis happen each year. Current treatment guidelines recommend antiarrhythmic drugs as initial therapy, but their efficacy is limited and comes with the risk of serious adverse effects. Another option, catheter ablation, electrically isolates the pulmonary veins—the most frequent site of AFib triggers—with more success and an excellent safety profile.

Brennan Vogl
An actual human heart is about the size of your fist, shaped like an upside down pear. Every cell in your body gets blood from your heart (except for your corneas).

“Our research seeks to better understand flow dynamics of the heart during arrhythmia, complex structural heart biomechanics, prosthetic heart valve engineering, and the structure-function relationships of the heart in both health and disease,” Hatoum says.

Why hearts? “It all started with my doctoral program,” Hatoum recalls. “I had the opportunity to work closely with clinicians, to attend their structural heart meetings, and to plan with them the appropriate therapy to be administered for patients. Every patient is very different, which makes the problem exciting and challenging at the same time.”

Hatoum earned her BS in Mechanical Engineering from the American University of Beirut and her PhD in Mechanical Engineering from the Ohio State University (OSU). She was awarded an American Heart Association postdoctoral fellowship, and completed her postdoctoral training at the Ohio State University and at Georgia Institute of Technology before joining the faculty at Michigan Tech.

“One of my goals is to evaluate and provide answers to clinicians so they know what therapy suits their patients best.”

Hoda Hatoum

Now, working in her own Biofluids Lab at Michigan Tech, Hatoum integrates principles of fluid mechanics, design and manufacturing, and clinical expertise with collaborators nationwide (including Mayo Clinic, Ohio State, Vanderbilt, Piedmont Hospital and St. Paul’s Hospital Vancouver)–all to find solutions for cardiovascular flow problems. 

Play Biomedical Engineering Biofluids Lab Aortic Valve Models video
Preview image for Biomedical Engineering Biofluids Lab Aortic Valve Models video

Biomedical Engineering Biofluids Lab Aortic Valve Models

These aortic valves open and close based via the contraction of a pump, controlled by a LabView program. See more during Husky Bites!

In her lab, Hatoum designed and built a pulse duplicator system—a heart simulator—that emulates the left heart side of a cardiovascular system. She also uses a particle image velocimetry system that allows her to characterize the flow field in vessels and organs.

Hatoum and her team of students use these devices to develop patient-specific cardiovascular models, conducting in vitro tests to assess the performance and flow characteristics of different heart valves. “We use idealized heart chambers or patient-specific ones. We test multiple commercially available prosthetic heart valves—and our in-house made valves, too.”

From the Biofluids Lab website: a wide array of current commercial bioprosthetic transcatheter mitral valves.

Hatoum’s team also designs their own heart valve devices.

“Currently, transcatheter heart valves are made of biological materials, including pig or cow valves, that are prone to degeneration. This can lead to compromised valve performance, and ultimately necessitate another valve replacement.”

To solve this problem, Hatoum collaborates with material science experts from different universities in the US and around the world to utilize novel biomaterials that are biocompatible, durable and suitable for cardiovascular applications. 

Which area of research pulls Dr. Hatoum’s heartstrings the most? “Transcatheter aortic heart valves,” she says. (Look closely at this photo to see the closed leaflets of an aortic valve.)

“With the rise of minimally-invasive surgeries, the clinical field is moving towards transcatheter approaches to replace heart valves, rather than open heart surgery,” she explains. “With the challenges that come with TAVs, and with the low-risk population targeted, I believe this is an urgent field to look into, so we can minimize as much as possible any adverse outcomes, improve valve designs and promote longevity of the device.”

The treatment of congenital heart defects in children is another strong focus for Hatoum, who devises alternatives for highly-invasive surgeries for pulmonary atresia and Kawasaki disease. She collaborates with multiple institutions to acquire patient data, then, using experimental and computational fluid dynamics, she examines the different scenarios of various surgical design approaches.

“One very important goal is to develop predictive models that will help clinicians anticipate adverse outcomes,” she says.

“In some centers in the US and the world, the heart team won’t operate without engineers modeling for them—to visualize the problem, design a solution better, improve therapeutic outcomes, and avoid as much as possible any adverse outcomes.”

Hoda Hatoum
Dr. Hoda Hatoum grew up in Lebanon. She’s a big fan of road trips.

Brennan Vogl was the first student to begin working with Hatoum in the lab when she arrived at Michigan Tech in 2020. “It is a great pleasure to work with Brennan,” says Hatoum. “He is very responsible and focused. He handles multiple projects, both experimental and computational, and excels in all aspects of them. I am proud of the tremendous improvement he keeps showing, and his constant motivation to do even better.”

Dr. Hatoum, how did you first get into engineering? What sparked your interest?

As a high-school student, I got the chance to go on a school trip to several universities and I was fascinated by the projects that mechanical engineering students did. That was what determined my major and what sparked my interest.

Hometown, family?

I was raised in Kab Elias, Bekaa, Lebanon. It’s about 45 kilometers (28 miles) from the Lebanese capital, Beirut. The majority of my family still lives there.

‘My niece took this image from the balcony of our house in Lebanon, located in Kab Elias. It shows the broad landscape and the mountains, and the Lebanese coffee cup that’s basically iconic.”

What do you like to do in your spare time?

I like to watch TV, read stories (thrillers) and go on road trips.

The sun temple in the Haidara ruins near Dr. Hatoum’s hometown of Kab Elias in Lebanon are believed to date back to the Roman era.
Snow on the ground in Kab Elias.

How can a student request to join your Biofluids lab?

I currently work with two PhD students and two undergraduates. Usually, an email with interest in the research that I do is sufficient. Our lab employs both mechanical engineering students and biomedical engineering students because of our focus on mechanics. When a student first joins our lab, they do not have any idea about any of the problems we are working on. As they get exposed to to them, they add their own valuable perspective.

The student experience is an amazing one, and one that is rewarding.

Brennan, how did you first get into engineering? What sparked your interest?

I first got into engineering when I participated in Michigan Tech’s Summer Youth Program (SYP). At SYP I got to explore all of the different engineering fields and participate in various projects for each field. Having this hands-on experience really sparked my interest in engineering.

Hometown, family?

I grew up in Saginaw, Michigan. My family now lives in Florida, so I get to escape the Upper Peninsula cold and visit them in the warm Florida weather.

Brennan loves to ski in Houghton’s plentiful powder, but he’s an even bigger fan of warm, sunny weather.
Poppy is on the left and Milo is on the right.

Pets? Hobbies?

I enjoy skiing, and I have two Boston Terriers—Milo and Poppy. They live with my parents in Florida. I don’t think they would be able to handle the cold here in Houghton, as much as I would enjoy them living with me.

Michigan Tech and Eagle Mine Partner for EV Battery Recycling Innovation and Climate Sustainability

Chemical Engineering Associate Professor Lei Pan is principal investigator of two newly-funded research projects at Michigan Tech that will address several economic and technical challenges in the lithium-ion battery recycling industry.

On Nov. 16, the Biden Administration announced a $74 million funding package to advance domestic battery recycling and reuse that will strengthen the nation’s battery supply chain. Michigan Technological University and Eagle Mine are co-recipients of part of this funding. $8.1 million will be used to prove new research technologies that develop sustainable processes to supply critical minerals for electric vehicle (EV) battery manufacturing.

An additional $2.5 million from the U.S. Department of Energy’s Advanced Research Project Agency-Energy grant program was also awarded to Michigan Tech and Eagle Mine, which will enable the University to study carbon dioxide mineralization opportunities in Eagle Mine’s tailings facility. The money will be used to develop new technologies that enable accelerated carbon mineralization using mine tailing minerals.

“Eagle Mine is proud to partner with Michigan Tech and support sustainable technologies that will create critical mineral pathways for future demand,” said Darby Stacey, managing director of Eagle Mine. “Eagle Mine is the only nickel mine in the United States, and the availability of our experience and use of our resources, waste streams and nickel concentrates are essential to understanding the societal impact of the nation’s transportation needs.”

“The state of Michigan is the home to the automotive industry, nickel mining industry and future lithium-ion battery industry in this nation,” said Lei Pan, associate professor of chemical engineering at Michigan Tech and principal investigator of both funded projects. “Addressing both the supply of critical minerals and reprocessing and reuse of mine tailings is critical to advance sustainability in the mining industry.”

MTEC SmartZone of Houghton and the Michigan Small Business Development Center contributed toward the successful grant application. In collaboration with Michigan Tech, MTEC leveraged the Michigan Economic Development Corporation’s Federal Match Program and Technology Transfer Talent Network program by providing matching funds toward cost-shares required in the $8.1 million award, and to recruit and hire an entrepreneur-in-residence for the project. 

MTEC was also intimately involved in helping establish Nion Metals LLC and worked in concert with Nion Metals in the development of pro forma budgets, market analysis, competitor due diligence and technology commercialization planning. In addition, MTEC provided assistance with the grant writing, editing and review; developed presentation materials; and assisted in obtaining letters of support from industry and two national labs.

“This was a collaborative effort between Nion Metals, Michigan Tech’s Office of Innovation and Commercialization, MTEC SmartZone and Eagle Mine,” said David Rowe, CEO of MTEC SmartZone. “MTEC SmartZone’s mission is to accelerate high-tech business growth, and this project is a prime example of that function.”

“This robust investment will support Michigan Tech’s researchers, faculty and students’ continued efforts to develop and deploy the next generation of technologies to recycle electric vehicle batteries that will guide the future of the auto industry in Michigan and nationwide,” said Rick Koubek, president of Michigan Tech. “We thank our industry partners and Eagle Mine for supporting this research that will lead to new critical mineral technologies.”

The funding for the project, named the Nion Project, will help MTU and Eagle Mine address several economic and technical challenges in the lithium-ion battery recycling industry, including 1) low payable metals, 2) difficulty in achieving specifications for battery-grade lithium from mixed secondary feedstock, and 3) high operational costs and environmental impact of current state-of-the-art recycling practices. 

In Dr. Lei Pan’s lab at Michigan Tech, graphite bubbles form during froth flotation, a technique used in mining engineering, which forces hydrophobic materials to the top as froth (in this case, graphite), and allows valuable cathode materials to sink to the bottom so they can be recovered and recycled.

The funding will support the University in moving its research from the lab to a pilot-scale facility that will be newly constructed in the Upper Peninsula.

The project team consists of engineers and experts in subject matter, commercialization, permitting and investor/community engagement to ensure the success of this project, with the end goal of enabling the commercialization of these technologies to the benefit of the electric vehicle lithium-ion battery supply chain in the United States.

“We have the technology and resources in the Upper Peninsula to make a positive impact on the nation,” said Stacey. “This partnership will not only help advance new technologies in our nation but, if ultimately successful, will also bring new construction and jobs to the Upper Peninsula.”

Potential project impacts also include: 

  • Reducing total energy use and total greenhouse gas emission by at least 25% per nickel unit produced compared to the current state-of-the-art recycling practice.
  • Establishing a profitable battery recycling business regardless of the types of cathode chemistry.
  • Supplying additional nickel and cobalt minerals from unconventional resources. If further successful, an additional 56 million pounds of nickel and 2 million pounds of cobalt from Eagle’s Humboldt Tailing Disposal Facility could be recoverable.

About Eagle Mine

Eagle Mine is an underground, high-grade nickel and copper mine located in western Marquette County of Michigan’s Upper Peninsula. It is the first mine to be permitted under Michigan’s Part 632 Non-Ferrous Mineral Mining Law. The mine is expected to produce 440 million pounds of nickel, 429 million pounds of copper and trace amounts of other minerals over its estimated mine life (2014-2026).