Category: Civil, Environmental, and Geospatial Engineering

SWE Hosts Evening with Industry in 2022

Event room with tables and presentation screen.

On September 20 the Society of Women Engineers (SWE) hosted its annual Evening with Industry (EWI). The event brought together over 115 students and sponsors from 23 companies. The highlight of the evening was keynote speaker Carrie Struss from Milwaukee Tool, who discussed career development and tips from her career journey.

The section would like to thank all who attended and participated in making the evening a success. “EWI has been held for 34 years. Its success is due to the involvement and commitment of the SWE Section and our EWI Committee,” said Gretchen Hein, the section’s advisor.

The EWI Committee comprised four students: Alli Hummel (civil engineering), Natalie Hodge (electrical and computer engineering), and Maci Dostaler and Kathleen Heusser (biomedical engineering).

The SWE section works closely with Career Services to ensure the sponsor registration and support runs smoothly. The section thanks the sponsors for their support and input. They are truly part of the Michigan Tech learning community. These corporate representatives visit with the students during EWI and guide the students through the transition from student to professional. These interactions greatly help students learn how to advocate for themselves and others as they begin their careers.

Many students commented about the benefits of EWI:

  • “I got to know the recruiters before Career Fair and was able to get an interview.”
  • “I talked with Gerdau after EWI and they pulled me aside, went through my resume, and did a mini interview!”
  • “The Textron recruiter I talked to was very excited about me coming to the Textron booth at Career Fair. I’m definitely applying to a company (CWC Textron) I hadn’t considered before today!”
  • “Last year, I stepped into a one-on-one meeting with Stellantis on a whim which led to a successful internship with them, changing my whole career direction!”

SWE has begun planning the 2023 EWI event. If you are interested in learning more about it, please contact us at SWEEWI@mtu.edu.

By Gretchen Hein, Advisor, Society of Women Engineers.

Related

SWE, Aerospace Enterprise Represent MTU at Women in Aviation Day

Women in Aviation Day banner with image of Amelia Earhart.

On September 17, 2022, eight students from the Aerospace Enterprise and Society of Women Engineers represented Michigan Tech at the first annual Women in Aviation Day in Wausau, Wisconsin.

Participating students were:

From Aerospace: Heather Goetz, Seth Quayle and Nolan Pickett (mechanical engineering); and Zoe Knoper (cybersecurity).

From SWE: Sophie Stewart and Katherine Rauscher (mechanical engineering); Kathryn Krieger (environmental engineering); and Cailyn Koerber (engineering management).

This event was hosted by the Learn Build Fly organization, which does incredible volunteer work in engaging their community in aviation. As summarized by Wausau’s WSAW-TV News Channel 7, “The event aimed to get more women involved in recreational and professional aviation. Children had the chance to participate in ‘Young Eagle Flights’ by going for airplane rides, while other aviation organizations gave information about their programs.”

Visitors to the event had the opportunity to see a 3D model of the newest Aerospace Enterprise satellite design and learn how these students were designing and building satellites to go into space, while the SWE team worked with visitors on an outreach activity, Paper Circuits.

Participants’ comments included:

Nolan Pickett: “Our Enterprise was given the opportunity to not only celebrate the women in our program, but also promote STEM to the next generation of college students — and fly in a WWII era B-25!”

Kathryn Krieger: “I loved being able to see so many young girls getting excited about STEM. It was really inspiring to see the many ways kids are getting involved with aviation and other STEM disciplines from such a young age.”

Both SWE and the Aerospace Enterprise teams enjoyed volunteering at Women in Aviation, learning more about the history of aviation and meeting with folks interested in aviation careers. This was a unique outreach opportunity and they appreciated the support they received from Admissions and the College of Engineering.

By Gretchen Hein, SWE Advisor.

Pasi Lautala: Railroads—Back to the Future

The US rail network comprises nearly 140,000 miles of track—and more than 200,000 highway-rail grade crossings. Photo credit: Eric Peterson.

Pasi Lautala shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 9/26 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Pasi Lautala

What are you doing for supper this Monday night 9/26 at 6 ET? Grab a bite with Dean Janet Callahan and Pasi Lautala, associate professor of Civil, Environmental, and Geospatial Engineering at Michigan Tech.

Lautala directs Michigan Tech’s innovative Rail Transportation Program (RTP), preparing students to thrive and succeed in the rail industry—something he has done for the past 15 years.

Joining in will be Michigan Tech alumnus Eric Peterson, retired assistant chief engineer of public projects at CSX Transportation, who helped establish and grow the RTP at Michigan Tech.

During Husky Bites the two will share the secrets behind the energy efficiency of rail, and guide us from past railroads to what they are today. They’ll also discuss how railroads are securing a future in the era of rapid technology development. 

“Rail is considered more energy efficient. In many ways it is a more sustainable transportation mode compared to highway and air transport, says Lautala. “However, in order for rail transportation to keep up with the other modes of transportation, it must keep developing alongside them—and with an equal amount of passion. In the US, some of those challenges (but also opportunities) include long asset lives, non-flexible structures, and private ownership.”

Pat and Eric Peterson

Before moving to the US from Finland, Lautala worked for several summers with the Finnish Railway system. After graduating from Michigan Tech with his MS in Civil Engineering, he worked for five years as a railroad and highway engineering consultant in Chicago, before returning to Michigan Tech for his PhD in Rail Transportation and Engineering Education.

Michigan Tech’s Railroad Engineering Activity Club, aka REAC, is “for students interested in establishing contacts with, learning about, getting involved with, and a hair’s breadth away from being obsessed with the railroad and transportation industries in the United States of America and beyond.” Lautala and Peterson are honorary members.

“I first met Eric as a young consultant,” Lautala recalls. “He was one of the managers for our client, CSX Transportation. Once I returned to campus as a doctoral student, I learned Eric was a former classmate of my PhD advisor. Eric became an influential force and tireless supporter of our efforts to start the Rail Transportation Program. He still teaches some signals and communications lectures for us.”

“My wife, Pat, and I supported the startup of the Michigan Tech Rail Transportation Program with Pasi as the leader,” adds Peterson. “At the time, we were hiring engineers at CSX for all types of jobs, including field supervisors—people comfortable working both in the field and in the office. The rest of the rail industry was hiring, too.” 

“The railroad industry is still hungry for young people with interest and education in rail transportation,” says Lautala. When he first came to Michigan Tech from Finland in 1996 to earn an MS in Civil Engineering, Lautala brought the railroad bug with him. The son of a locomotive engineer, Lautala grew up in a culture that embraced rail transportation as a sustainable public transit alternative, as well as an efficient way to move freight.

While the US has the most extensive and efficient freight rail system in the world, the development of railroads had been on the back burner for decades, while the rest of the world kept moving forward, he observes. 

In 2007 Lautala established the RTP at Michigan Tech in order to advance rail education to a wide range of students, with integrated coursework, for both undergraduate and graduate students, and a minor in rail transportation. CN, Canadian National Railway Company, quickly came on board as a major sponsor of the program. The RTP also collaborates closely with many industry companies, associations and alumni. Their involvement provides professional networking, education, field trips, conferences, and guest speakers for Michigan Tech students involved in the Railroad Engineering and Activities Club (REAC), the first student chapter ever established by the American Railway Engineering and Maintenance of Way Association (AREMA).

“Students can also take part in hands-on rail industry-sponsored research projects across disciplines. Some topic areas include grade crossing and trespasser safety, materials research on railway equipment, locomotive emissions, the impact of climate change on railroads, and more,” says Lautala. Learning by doing is a central component of RTP’s approach to rail education.

Rail companies actively work with RTP to fill openings with Michigan Tech RTP students, whether for for full time jobs, internships or co-ops. And the RTP Experience wouldn’t be complete without the Railroad Night, an over 15 year tradition at Michigan Tech.

“Rail just makes sense, and it’s something this country needs.”

Pasi Lautala
Michigan Tech RTP students conduct field work

Lautala initially founded RTP’s innovative Summer in Finland program, which integrated an international component to rail education. It was an intensive five-week program, a collaboration among Michigan Tech, the Tampere University of Technology, and the North American and Finnish railroad industry. “That program created sufficient interest from the students and industry to officially launch the Rail Transportation Program,” Lautala says.

Outside Michigan Tech, Lautala serves as chair of National Academies’ Research Transportation Board Rail Group. “There are so many research possibilities—everything from infrastructure, with automated track-monitoring systems and recycled materials in railroad ties, to energy efficient equipment and operations,” he says.

Team Lautala!

Lautala’s own engineering research currently involves connected and autonomous vehicle communications at grade crossings, with fellow Civil, Environmental, and Geospatial Associate Professor Kuilin Zhang. The two are working to develop safe and efficient driving and routing strategies for autonomous vehicles at railroad grade crossings. Reduced energy consumption, emissions, and potential time delays are some of their goals. Their research is supported with two separate grants from the Federal Railroad Administration (FRA).

Dr. Lautala, how did you first get into engineering? What sparked your interest?

Prof. Lautala likes to fish, hunt, and play the accordian.

Probably my early summer internships, first at a rail construction site, and then with Finnish Railways.

Hometown?

Kangasala, Finland. I have split my life evenly between Finland and the US, twenty-five years each. I recently spent a year in Finland with my wife and two rascals (children): Olavi (10) and Ansel (8).

What do you like to do in your spare time?

Hobbies, you name it…..soccer (including coaching), hockey, golf, and many other sports. Three accordions and an equal number of bands. I’ve done some acting, too (though that’s been pretty quiet recently).

A rail adventure!

Eric, how did you first get into engineering? What sparked your interest?

I saw the Mackinac Bridge while it was under construction. A few years later when our subdivision was expanded, I spent the summer watching the grading contractor.  

Boating is another hobby. We have a 17’ boat for water skiing and a 20’ sailboat we use each summer for a few weeks on Crystal Lake near Frankfort, Michigan, when our family vacations together.

One of your most memorable accomplishments?

Training as a locomotive engineer.

Hometown?

I was born in Detroit and moved to Bloomfield Township when I was in the 4th grade. I am an only child. I married Patricia Paoli in 1970.

Eric and Pat thus far have three married adult children, and nine grandchildren.

What do you like to do in your spare time

My dad exposed me to both model railroading and real railroads. My primary hobby is model railroading in O Scale 2 rail, which is 1/48 scale. My work was all in the railroad industry.

Read more:

See Tracks? Think Train!

The Michigan Department of Transportation and Michigan Operation Lifesaver are partnering together to raise rail safety awareness. Most Americans today know the dangers associated with drunk driving, distracted driving or texting while crossing the street, But many are unaware of the risks they are taking around railroad tracks.

Kueber Watkins and Middlebrook Selected for 2022 CTL Instructional Awards

Melanie Kueber Watkins
Melanie Kueber Watkins

The Jackson Center for Teaching and Learning (CTL) congratulates the 2022 Deans’ Teaching Showcase members who have been selected to receive 2022 CTL Instructional Awards. Mark your calendars for the following fall semester events, where instructors will discuss the work that led to their nominations. After each presentation they will receive formal recognition and $600 in additional compensation.

CTL Instructional Award Series Schedule:

  • Sept. 29 — Innovative or Out-of-Class Teaching: Kristin Brzeski (CFRES) and Melanie Kueber Watkins (CEGE)
  • Oct. 13 — Large Class Teaching: Loredana Valenzano-Slough (Chemistry)
  • Nov. 8 — Curriculum Development or Assessment: Chris Middlebrook (ECE) and Josue Reynoso (CoB)
Christopher Middlebrook
Christopher Middlebrook

All events will take place from 3:45–4:45 p.m. Detailed presentation titles, topics and registration links for the events will be announced later.

The CTL would also like to thank previous instructional award recipients who were instrumental in the selection process.

We’re looking for nominations for the upcoming (2023) Deans’ Teaching Showcase during spring semester. Please consider suggesting (to your dean or chair) instructors whom you’ve seen make exceptional contributions in curriculum development, assessment, innovative or out-of-class teaching, or large class teaching.

By the Jackson Center for Teaching and Learning.


The Jackson Center for Teaching and Learning will recognize Kristin Brzeski (CFRES) and Melanie Kueber Watkins (CEGE) as co-recipients of the CTL Instructional Award for Innovative or Out of Class Teaching on Sept. 29 at 3:45 p.m.

Watkins’ award presentation is titled “Collaborative Classroom Cloud Computing.”

From the abstract:

“Dr. Watkins will highlight her use of project-based learning to enhance student computing skills and job preparedness. Her approach involved integrating new concepts and skills into courses for 2D hydraulic modeling with lidar data, including Linux scripting.”

Environmental Engineering Presentations at AEESP 2022

Environmental Engineering at the Confluence AEESP St. Louis 2022

Rose Daily and Benjamin Barrios, both PhD students in environmental engineering, traveled to St. Louis with their advisor, Daisuke Minakata (CEGE). They attended the Association of Environmental Engineering and Science Professors (AEESP) Conference on June 28-30, where they presented their research findings.

Daily gave her podium presentation about advanced reduction technology for the remediation of organic contaminants in water including per- and poly-fluoroalkyl substances (PFAS). Barrios presented a poster about an aquatic photochemistry project supported by the National Science Foundation.

The AEESP Research and Education Conference addresses the most critical environmental challenges of this era. Its theme, “Environmental Engineering and Science at the Confluence,” is designed to span the field of environmental engineering, to explore convergence and to highlight emerging developments.

Michigan Space Grant Consortium Awardees for 2022-2023

Michigan Space Grant Consortium NASA

The University of Michigan – Michigan Space Grant Consortium has announced grant recipients. Michigan Tech faculty and staff researchers receiving grants are:

Faculty Led Fellowships for Undergraduates

Brendan Harville for “Seismic Amplitude based Lahar Tracking for Real-Time Hazard Assessment.”

Sierra Williams for “Understanding the Controls of Solute Transport by Streamflow Using Concentration-Discharge Relationship in the Upper Peninsula of Michigan.”

Graduate Fellowships

Espree Essig for “Analyzing the effects of heavy metals on vegetation hyperspectral reflectance properties in the Mid-Continent Rift, USA.”

Caleb Kaminski for “Investigation of Ground-Penetrating Radar Interactions with Basaltic Substrate for Future Lunar Missions.”

Katherine Langfield for “Structural Characteristics of the Keweenaw and Hancock Faults in the Midcontinent Rift System and Possible Relationship to the Grenville Mountain Belt.”

Tyler LeMahieu for “Assessing Flood Resilience in Constructed Streambeds: Flume Comparison of Design Methodologies.”

Paola Rivera Gonzalez for “Impacts of La Canícula (“Dog Days of Summer”) on agriculture and food security in Salvadoran communities in the Central American Dry Corridor.”

Erican Santiago for “Perchlorate Detection Using a Graphene Oxide-Based Biosensor.”

Kyle Schwiebert for “LES-C Turbulence Models and their Applications in Aerodynamic Phenomena.”

HONES Awards

Paul van Susante for “Lunabotics Competition Robot.”

Research Seed Grants

Xinyu Ye for “Analyzing the effects of potential climate and land-use changes on hydrologic processes of Maumee River Watershed using a Coupled Atmosphere-Lake-Land Modeling System.”

Pre-College Educational Programs

Jannah Tumey for “Tomorrow’s Talent Series: Exploring Aerospace & Earth System Careers through Virtual Job-Shadowing.”

Q&A with Xin Xi: Uncovering Global Dust-Climate Connections

Dr. Xin Xi: “Surface weather observations are worth a refreshed look and can be used for improving our dust-climate modeling capability.”

GMES Assistant Professor Xin Xi’s new open-source dataset, duISD, is featured in Michigan Tech’s Unscripted Research blog. Here, he tells us more about it.

Q: How did you get started studying dust and desertification? 

XX: I grew up in humid southern China and had no experiences with dust storms when I was young. When I started college in Beijing, I had personal encounters with the “yellow dust” or Kosa (in Korea and Japan). The sky turned murky yellow every spring, while the whole city was shrouded in a cloud of dust blown from northwestern China. 

When I started graduate school at Georgia Tech, atmospheric aerosols emerged as a central theme in climate research, largely because they are capable of counteracting the warming effect of greenhouse gasses and play a crucial role in the hydrological cycle. Like many others, I became interested in my research due to the positive influence of my Ph.D. advisor, an expert in atmospheric aerosols, particularly mineral dust. 

Q: Why did you decide to revisit the use of horizontal visibility? 

XX: Primarily because of the long timespan of the visibility record from surface weather stations. It is by far the longest instrumental data record of dust, including regions near the dust source where modern-day satellites have difficulties providing reliable observations. 

Long-term, uninterrupted data records are paramount for understanding the variability of dust in response to climate and land use changes. I believe the visibility record has not been used to its full potential, so I took on the effort to develop a homogenized dust-climate record.

Q: Who do you imagine will get the most use from your new dataset? How would a researcher make use of it, and why? 

XX: This new dataset is an initial version of the dust-climate dataset I have been working on. Currently it consists of monthly records of the ambient dust burden at more than 10,000  weather stations worldwide. It is presented in an easy-to-read format, so anyone familiar with spreadsheets can use it. Dust researchers may find it useful, because they can avoid the tedious preprocessing steps with the raw data and are presented with summary statistics to help them pick the stations for their region of interest.

Dr. Xi used the dataset to characterize dust variability and climate connections around the world. The results of his study are featured in an article in the Journal of Geophysical Research: Atmospheres

Q: Do you intend to update with future versions? 

XX: Definitely. I plan to conduct data fusion by combining the surface observations with additional climate and land information from satellites or models.

Q: What are the most unique and noteworthy aspects of this research? 

XX: It is a climate data record development project, and the ultimate goal is to create a quality-controlled dataset for the climate community to study trends, variability and relationships about dust and climate. In addition, I believe the dataset can offer other insightful information about the deficiency of current climate models. 

Q: What do you plan to research next? 

XX: I plan to take on the next step of updating the initial dataset I created, and develop new analytic results, which can convince myself — and, hopefully, the climate community — that surface weather observations are worth a refreshed look and can be used for improving our dust-climate modeling capability.

Xi’s open-source dataset, duISD, can be accessed online

OHM and Michigan Tech Alumni team up to Lead Family Engineering Nights in Detroit Schools

Fifteen OHM staff helped present the Family Engineering Night sessions, including several Michigan Tech alumni.

From May 10-12, Michigan Technological University teamed up with OHM Advisors to provide STEM outreach at five schools in Detroit. 

The program they presented, Family Engineering, engages K-8 students and their families in engineering investigations. Family Engineering was created by Michigan Tech and partners in 2011 with a grant from the National Science Foundation. A key outcome of the program was the publication of the Family Engineering Activity & Event Planning Guide, published in 2011.

Sessions took place at the schools, followed by free pizza at Mackenzie Middle School, Clippert Multicultural Magnet Honors Academy, and Adams Middle School. The event began with short opener activities that adults and children explore together. These included: Glue is the Clue, Domino Diving Board, Who Engineered It?, Let’s Communicate, Boxing Beans, Picture This, Solid Ground, Hoop Glider, Inspired by Nature, Shifting Shapes, All The Right Tools, and Thrillseekers.

Next, families took part in three Engineering Challenges:

  1. Stop & Think – Why was this object designed? What need did it address? Can you make it better?
  1. Team Up – Discover why engineers work in teams. What helps a team work well together? How can we address challenges?
  1. Give Me Hand – How can an engineer help a person who has lost their hand, or some other part of their body?
Family Engineering Night took place recently in Detroit, with volunteer help from OHM Advisors.

Fifteen OHM staff helped present the sessions, including several Michigan Tech alumni.

Ron Cavallaro, Vice President of OHM Michigan, echoed the value of introducing kids to engineering at an early age. He earned his bachelor’s degree in civil engineering at Michigan Tech and is now a member of the Michigan Tech Department of Civil, Environmental and Geospatial Engineering’s Professional Advisory Board. “Many of the families that attended the events brought younger siblings,” said Cavallaro. It was awesome to see the middle school students, their parents and siblings helping each other on the challenges.”

“OHM Advisors has been seeking out ways to get younger children interested in STEM fields. We are fortunate to have had MTU reach out to us to help with this program.”

Ron Cavallaro, Vice President of OHM Michigan

Chandler Park Academy High School and UPrep Science & Math High School hosted another Michigan Tech alum, retired Lt. Colonel Otha Thornton, chair of Michigan Tech’s Diversity, Equity, Inclusion and Sense of Belonging (DEIS) Alumni Advisory Board, formed in Fall 2021. 

Lt. Colonel Otha Thornton

Thornton presented at four student assemblies as part of the outreach effort. He shared how students could find their own pathway to STEM and described STEM careers. Thornton also described highlights of his own career⁠—working directly with President Barack Obama, First Lady Michelle Obama, and Vice President Biden in the White House, along with Congress, to promote passage of the Every Student Succeeds Act. The Act supports STEM education in K-12 schools. 

Thornton’s STEM work is preceded by a 21-year career with the U.S. military. He earned the Bronze Star Medal for exceptional performance in combat operations during Operation Iraqi Freedom. His other military assignments included working with the White House Communications Agency and U.S. forces in Iraq. As the 53rd president of the National Parent Teacher Association (PTA), Thornton was the first and only African American male to serve as President in the National PTA’s 125-year history. 

Any school can access the Family Engineering Activity & Event Planning Guide to provide positive engineering experiences for K-8 students and their families. For more info, contact: Joan Chadde, jchadde@mtu.edu or 906-487-3341.

Michigan Tech Partners with Lockwood STEM Center: Expanding Educational Access in the Great Lakes Bay Region

The Lockwood STEM Center in Hemlock, Michigan opened in 2020, a fantastic place for students to learn and practice robotics.

This month, Michigan Tech launched a partnership with the Lockwood STEM Center, part of Hemlock Public Schools in Hemlock, to provide educational outreach and opportunities to its students.

As part of the partnership, Michigan Tech established a scholarship program for Hemlock students who participate in robotics activities while in high school and then enroll at Michigan Tech as first-year students. The award provides $1,000 and is renewable annually. Two students will begin receiving the scholarship in Fall 2022 (still to be announced).

Students work on a robot in the Blue Marble Security Enterprise. It’s one of 25 different student-led Enterprise teams operating at Michigan Tech

At Michigan Tech a variety of options exist for students who want to pursue robotics. The University also has a new BS in Robotics, in the Department of Electrical and Computer Engineering. Several Enterprise teams are focused on Robotics, including the Robotics Systems Enterprise, advised by Michigan Tech Professor (and alumnus) Jeremy Bos.

“Our partnership with the Lockwood STEM Center is in recognition of the incredible academic opportunities it provides to Hemlock Public School District students. We are thrilled to show our support for the Hemlock community and Great Lakes Bay region,” said Cassy Tefft de Muñoz, Executive Director of Enrollment Initiatives at Michigan Tech.  

“Who has robots? We have robots,” says Michigan Tech’s Robotic Systems Enterprise team, open to all majors on campus.

The Lockwood STEM Center was the vision of Tom and Dana Lockwood, teachers at Hemlock High School (HHS) who sought to advance STEM educational opportunities in the community. The state-of-the-art facility is truly a community effort with support from local individuals, industry and Hemlock Public Schools.

Former HHS student Gary Gariglio earned two bachelor degrees at Michigan Tech—one in electrical engineering (’86), and the other in business (’87). He is now president of Interpower Induction in Almont, Michigan. He delivered a keynote address to students and attendees during a special event on May 4 celebrating the new partnership. Gariglio highlighted the value of his Michigan Tech education and emphasized the importance of perseverance in the face of adversity—giving special acknowledgement to Matt Pumford and Greg Turner of Pumford Construction for their commitment and support in the oversight and construction of the Lockwood STEM Center. Pumford earned his bachelors degree in civil engineering at Michigan Tech in 1988.

The collaboration with Hemlock Public Schools is a continuation of Michigan Tech’s strong presence in the Great Lakes Bay Region. This includes a longstanding partnership with Hemlock Semiconductor supporting educational outreach and student attendance at Michigan Tech’s Summer Youth Programs (SYP).

Michigan Technological University is a public research university founded in 1885 in Houghton, Michigan, and is home to more than 7,000 students from 55 countries around the world. Consistently ranked among the best universities in the country for return on investment, the University offers more than 125 undergraduate and graduate degree programs in science and technology, engineering, computing, forestry, business and economics, health professions, humanities, mathematics, social sciences, and the arts. The rural campus is situated just miles from Lake Superior in Michigan’s Upper Peninsula, offering year-round opportunities for outdoor adventure.

Read More

Jeremy Bos: What’s Next After First?

STEM Center Named: See photos and learn more about the new Lockwood STEM Center.

Registration for Michigan Tech’s Summer Youth Programs is open and more information is available at mtu.edu/syp.

Michigan Tech Teams Win at CMU’s 10th Annual New Venture Challenge

Congratulations to these Michigan Tech New Venture Challenge 2022 Award Winners! L to R: Husky Innovate Program Manager Lisa Casper, students Jordan Craven, Bayle Golden, Ali Dabas, Rourke Sylvain, Jakob Christiansen, and Husky Innovate Co-Director Jim Baker

Central Michigan University (CMU) and Michigan Tech collaborate each year to offer Michigan Tech students a chance to compete in CMU’s New Venture Challenge (NVC). This showcase event provides an opportunity for students at both universities to present their businesses and network with prospective investors, mentors and partners. Student participants at NVC compete for a total of $60,000 in prizes and in-kind services.

On Friday (April 22), four Michigan Tech student teams pitched their ideas and businesses in person at Central Michigan University in Mount Pleasant. Michigan Tech Husky Innovate co-director Jim Baker and program manager Lisa Casper attended the event to support teams, as well as strengthen innovation and entrepreneurship connections.

Michigan Tech engineering management student Bayle Golden presents her pitch for her new wearable child safety device, SafeRow, at the CMU New Venture Challenge.
Michigan Tech construction management student Jakob Christiansen delivers his two-minute pitch for his new supply chain e-commerce platform, ProBoard.

Students had an opportunity to compete in either the two-minute pitch competition or the seven-minute business model competition. There was also a gallery competition, where teams had tables with individual displays and took questions from attendees.

The competition took place out of town during the last hectic week of spring semester at Michigan Tech. But in the end, all their hard work paid off: Michigan Tech teams brought home $21K in prizes for their ideas.

“Congratulations to our Husky Innovate student teams—your ideas have the potential to change the world.”

Lisa Casper, Husky Innovate Program Manager

Michigan Tech’s New Venture Challenge award winners:

Two-Minute Pitch Competition

  • Jakob Christiansen (construction management) won first place and received $4,000. Christiansen pitched “ProBoard,” an e-commerce platform to solve issues in the construction material supply chain.

Seven-Minute Pitch Competition

  • Bayle Golden (engineering management) won first place in the Social Mission category and received $10,000. Golden pitched “SafeRow,” an innovative wearable device designed to keep children safe when every second counts.
  • Rourke Sylvain and Ali Dabas (both biomedical engineering) won second place in the High Tech High Growth category, receiving $5,000. Their pitch was “imi (integrated molecular innovations),” an electrochemical biosensor for T4 detection.
  • Jordan Craven (management information systems, minoring in computer science) won third place in the High Tech High Growth category and received $2,000. Craven pitched “Tall and Small Designs,” a technology company that provides software as a service to retailers who sell clothes online.

“The results speak to the tireless efforts of our students—and the impact of the programs provided by Husky Innovate and its partners.”

Jim Baker, Husky Innovate Co-Director
Michigan Tech biomedical engineering students Ali Dabas and Rourke Sylvain discuss their electrochemical biosensor start-up, “imi”

In preparing for the New Venture Challenge, Michigan Tech students participated in a number of Husky Innovate workshops and review sessions. They also benefited from resources and expertise available within MTEC SmartZone, the local state-funded technology business incubator, and the Upper Peninsula Regional Small Business Development Center, which is hosted by Michigan Tech’s Office of Innovation and Commercialization in collaboration with the College of Business.

“Thanks go out to our distributed team of mentors and our sponsors at Michigan Tech, including the Pavlis Honors College, Office of Innovation and Commercialization, College of Business, College of Engineering, Biomedical Engineering, and Civil Engineering,” said Casper. “We also thank Central Michigan University, and especially Julie Messing, director of the Isabella Bank Institute for Entrepreneurship, for the collaboration and congenial hospitality.”

Michigan Tech management information systems student Jordan Craven pitched “Tall and Small Designs,” a new kind of software for retailers who sell clothes online