Category: Electrical and Computer Engineering

Tim Havens: Warm and Fuzzy Machine Learning

A test vehicle to collect data for explosive hazards detection. Havens has spent the past 12-plus years developing new, improved methods to find explosive hazards, working with the US Army.

Associate Professor Tim Havens, director of the Michigan Tech’s Institute of Computing and Cybersystems and associate dean for research in the College of Computing, along with Hanieh Deilamsalehy generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

“Nearly everyone has heard the term ‘Deep Learning’ at this point, whether to describe the latest artificial intelligence feat like AlphaGo, autonomous cars, facial recognition, or numerous other latest-and-greatest gadgets and gizmos,” says Havens. “But what is Deep Learning? How does it work? What can it really do—and how are Michigan Tech students advancing the state-of-the-art?”

Professor Tim Havens is a Michigan Tech alum. He earned his BS and MS in electrical engineering in 1999 and 2000.

In this session of Husky Bites, Prof. Havens will talked about everyday uses of machine learning—including the machine learning research going on in his lab: explosive hazards detection, under-ice acoustics detection and classification, social network analysis, connected vehicle distributed sensing, and other stuff.

Joining in will be one of Havens’ former students, Hanieh Deilamsalehy, who earned her PhD in electrical engineering at Michigan Tech. She’s now a machine learning researcher at Adobe. Dr. Deilamsalehy graduated from Michigan Tech in 2017 and headed to Palo Alto to work for Ford as an autonomous vehicle researcher. She left the Bay Area for Seattle to take a job at Microsoft, first as a software engineer, and then as a machine learning scientist. In April she accepted a new machine learning position at Adobe, “in the middle of the pandemic!”

Havens is a Michigan Tech alum, too. He earned his BS in ‘99 and MS in Electrical Engineering in ‘00, then went to the MIT Lincoln Laboratory, where he worked on simulation and modeling of the Airborne Laser System, among other defense-related projects. From there it was the University of Missouri for a PhD in Electrical and Computer Engineering, researching machine learning in ontologies and relational data.

Nowadays, Havens is the William and Gloria Jackson Associate Professor and Associate Dean for Research in the College of Computing. In addition to serving as director of Michigan Tech’s ICC, he also heads up the ICC Center for Data Sciences and runs his own PRIME Lab, too (short for Pattern Recognition and Intelligent Machines Engineering).

“An important goal for many mobile platforms—terrestrial, aquatic, or airborne—is reliable, accurate, and on-time sensing of the world around them.”

Tim Havens

Havens has spent the past 12 years developing methods to find explosive hazards, working with the US Army and a research team in his lab. According to a United Nations report, more than 10,000 civilians were killed or injured in armed conflict in Afghanistan in 2019, with improvised explosive devices used in 42 percent of the casualties. Havens is working to help reduce the numbers.

“Our algorithms detect and locate explosive hazards using two different systems: a vehicle-mounted multi-band ground-penetrating radar system and a handheld multimodal sensor system,” Havens explains. “Each of these systems employs multiple sensors, including different frequencies of ground penetrating radar, magnetometers and visible-spectrum cameras. We’ve created methods of integrating the sensor information to automatically find the explosive hazards.” 

As a PhD student at Michigan Tech, Deilamsalehy worked alongside Havens as a research assistant in the ECE department’s Intelligent Robotics Lab (IRLab). “My research was focused on sensor fusion, machine learning and computer vision, fusing the data from IMU, LiDAR, and a vision camera for 3D localization and mapping purposes,” she says. “I used data from a sensor platform in the IRLab, mounted on an unmanned aerial vehicle (UAV), to evaluate my proposed fusion algorithm.”

Havens is also co-advisor to students in the SENSE (Strategic Education through Naval Systems Experience) Enterprise team at Michigan Tech, along with ME-EM Professor Andrew Barnard. Students in SENSE design, build, and test engineering systems in all domains: space, air, land, sea, and undersea. Like all Enterprise teams, SENSE is open to students in any major. 

You’d never know it looking at this hat, but Dr. Havens is a cat person with two “fur children.” He is also musical, playing the bass and the trumpet.

Prof. Havens, when did you first get into engineering? What sparked your interest?

I first became an engineer at Michigan Tech in the late 90s. What really sparked my interest in what-I-do-now was my introductory signal processing courses. The material in these courses was the first stuff that really ‘spoke’ to me. I have always been a serious musician and the mathematics of waves and filters was so intuitive because of my music knowledge. I loved that this field of study joined together the two things that I really loved: music and math. And I’ve always been a computer geek. I was doing programming work in high school to make extra money; so that side of me has always led me to want to solve problems with computers.

Hometown, Hobbies, Family?

I grew up in Traverse City, Michigan, and came to Tech as a student in the late 90s. I’ve always wanted to come back to the Copper Country; so, it’s great that I was able to return to the institution that gave me the jump start in my career. I live (and currently work from home) in Hancock with my partner, Dr. Stephanie Carpenter (an author and MTU professor), and our two fur children, Rick Slade, the cutest ginger in the entire world, and Jaco, the smartest cat in the entire world. I have a grown son, Sage, who enjoys a fast-paced life in Traverse City. Steph and I enjoy exploring the greater Keweenaw and long discussions about reality television, and I enjoy playing music with all the local talent, fishing (though catching is a challenge), and gradually working through the lumber pile in my garage.

Hanieh earned her MS and PhD in Electrical Engineering at Michigan Tech. Before that, she earned an MS in Medical Radiation Engineering from Amirkabir University of Technology – Tehran Polytechnic, and a BS in Electrical Engineering from K.N. Toosi University of Technology (KNTU).

Dr. Deilamsalehy, how did you find engineering? What sparked your interest?

I was born and raised in Tehran, Iran. I have always been into robotics. I was a member of our robotics team in high school and that led me to engineering. I decided to apply to Michigan Tech sort of by chance when a friend of mine told me about it. I looked at the programs in the ECE department, and felt they aligned with my interests. Then soon after I first learned about Michigan Tech, I found out that one of my undergraduate classmates went there. I talked to him, and he also encouraged me to apply. And that’s how I was able to join Michigan Tech for my PhD program. My degree is in electrical engineering but my focus at Michigan Tech involved computer science and designing Machine Learning solutions.

Hanging out above the clouds is one of Dr. Hanieh Deilamsalehy’s favorite pastimes. Since moving to Seattle she has hiked and climbed Mt. Rainier, Mt. Shuksan, Mt. Baker, Mt. Adams and other peaks in the Pacific Northwest.

Hobbies and Interests?

I now live in Seattle, famous for outdoor activities—kind of like the UP, but without the cold—so I do lots of mountaineering, biking, rock climbing, and in the winter, skiing. I learned how to ski at Michigan Tech, up on Mont Ripley. It’s steep, and it’s cold! Once you learn skiing on Ripley, you’re good. You can ski just about anywhere.

Michigan Tech SWE Chapter Makes It Their Mission to Give Back

child looks in wonder as a play-doh circuit lights up a small led light
Who knew! Play Doh can be used to complete a circuit!

The Society of Women Engineers (SWE) at Michigan Tech make it their mission to give back to the community and to spark youth interest in STEM-related fields.

“We’re always looking for opportunities to grow and make new connections, both as an organization on campus and as a member of the community,” says Michigan Tech SWE section president and mechanical engineering major Katie Pioch. “We love getting kids excited about STEM.”

The team gathered for a photo in Fall 2019. This fall gatherings have been mostly virtual for the Michigan Tech section.

This past year, Michigan Tech SWE students helped high school students at Lake Linden-Hubbell Schools form the first-ever SWENext Club. They also mentored two eCYBERMISSION teams, sponsored by the U.S. Army Educational Outreach Program.

SWENext enables girls ages 13 and up to become a part of the SWE engineering community as a student through age 18. SWENexters have access to programming and resources designed to develop leadership skills and self-confidence to succeed in a career in engineering and technology.  Although the program focuses on girls, all students are encouraged to get involved. 

Students in the Michigan Tech SWE section worked closely with a team of 8th graders from Lake Linden Hubbell schools–Jenna Beaudoin, Chloe Daniels, Rebecca Lyons, and Olivia Shank–to develop three hands-on electrical engineering outreach activity kits for SWENext-age students and elementary students, too. The girls worked on the activity kits in conjunction with the eCYBERMISSION Competition sponsored by the US Army Educational Outreach Program, earning an Honorable Mention award for their efforts.

The activities: Play-Doh Circuits for upper elementary students, and Paper Circuits and Bouncy Bots for middle school students. 

Play-Doh and Paper Circuits teach how parallel and series circuits work. Bouncy Bots involves a simple series circuit where a coin vibration motor—the kind used in cell phones and video game controllers—is connected to two 1.5 V batteries and adhered to a 4 oz medicine cup. When the circuit is operational, the device “bounces” across a surface.

Together with Michigan Tech’s Department of Electrical and Computer Engineering SWE students shared the activity kits with more than 400 students: regional Upper Michigan and Northern Wisconsin Girl Scouts; 5th-grade students at Calumet-Laurium-Keweenaw (CLK) schools; 4th-grade students at Hancock Elementary; and 5th-grade students at Lake Linden-Hubbell Schools. 

SWE students mentored Lake Linden-Hubbell eCYBERMISSION 6th grade team, SCubed (Super Superior Scientists). The team recycled school lunch food waste as a food source for pigs, earning an Honorable Mention in the eCYBERMISSION competition.

The Michigan Tech SWE section prepared two grant proposals, one for the SWE-Detroit Professional Section and the other for the Michigan Space Grant Consortium (MSGC), working closely with Michigan Tech’s ECE department. Both proposals were funded, enabling the students to create more activity kits and take them out into the local community.

The funding also allowed for the purchase of soldering tools, electronics components, and other supplies that will now be used to introduce an entire pipeline of students to electrical engineering topics.

High school students create heart rate monitor circuit boards, and also help mentor middle school students through the process of completing holiday tree boards. From there, high school and middle school students will be shown the Bouncy Bot activity; they will lead that activity for their school district’s elementary students. 

“Both SWE and ECE are excited for this “trickle-down” mentoring program,” says Liz Fujita, academic advisor and outreach specialist for Michigan Tech’s Department of Electrical and Computer Engineering. Due to the pandemic, SWE members cannot go to area schools. Fujita plans to resume school outreach once the pandemic ends.

Michigan Tech’s SWE Section developed a video describing their year-long outreach projects for SWE’s national FY20 WOW! Innovation Challenge. A portion of the video was created by high school junior Jenna Beaudoin, founding member of the Lake Linden-Hubbell Schools SWENext Club. For their exceptional outreach efforts, SWE awarded Michigan Tech second place in the challenge.

Gretchen Hein, senior lecturer in the Department of Manufacturing and Mechanical Engineering Technology is Michigan Tech’s SWE faculty advisor. “We really encourage our SWE section members to develop professionally and personally,” she says. Students work especially hard on their annual Evening with Industry event, which takes place each fall during Michigan Tech Career Fair.” The event, held just a few weeks ago, was virtual. Sponsors included Nucor, Marathon Oil, John Deere, Amway, Milwaukee Tool, Corteva and CWC Textron.

Gretchen Hein, MMET senior lecturer and Michigan Tech’s SWE section advisor

Hein and a group of ten Michigan Tech SWE section members traveled to the annual WE19 Conference in Anaheim, California, the world’s largest conference for women in engineering and technology. They attended professional development sessions, participated in the SWE Career Fair, and networked with other student sections and professional members. 

While there, Romana Carden, a major in engineering management, participated in the SWE Future Leaders (SWEFL) program. Carden also attended the day-long SWE Collegiate Leadership Institute (CLI) with Mackenzie Brunet, a fellow engineering management major. Both programs are led by female engineers working in industry and academia, to help college students gain leadership skills. Zoe Wahr, a civil engineering major, received a scholarship in recognition of her academic, university, and SWE accomplishments. And Hein was recognized at WE19 for her 20-plus years of service with the SWE Engaged Advocate Award, which honors individuals who have contributed to the advancement or acceptance of women in engineering.

“We have a strong and sustainable SWE chapter at Michigan Tech, and Dr. Hein’s work as the college of engineering chapter advisor has played a key role in this,” says Janet Callahan, Dean of the College of Engineering. “I am truly grateful to every person who has contributed to SWE—past, present and future.”

“In the coming year, SWE students plant to expand their outreach,” she adds. “We’d love to have more Michigan Tech students join the section and explore what SWE and the SWE members have to offer.” 

Next month, in early November, the section will participate in the WE20 Conference in New Orleans, virtually.

Interested in learning more about the SWE section at Michigan Tech? Join their email list at swe-l@mtu.edu, or follow the section on Facebook and Instagram, @michigantechswe.

Remembering Roger Kieckhafer


By Glen Archer, Interim Chair, Department of Electrical and Computer Engineering

Roger cared deeply for his students, his family, and his profession. I think that may be the source we can draw upon to comfort our own sense of sadness and grief. The impact he had on hundreds of lives will shine on.

Professor Roger Kieckhafer was an inventor, engineer, researcher, educator, veteran and valued faculty member at Michigan Technological University. He died on Friday, July 17 in a tragic vehicle-bicycle accident. He was 69.

The loss to the faculty and staff in the Department of Electrical and Computer Engineering and the College of Engineering is immense. We will not recover quickly from the shock of his death.

Roger received his Bachelor’s degree in nuclear engineering from the University of Wisconsin Madison in 1974 and earned his Master’s and PhD in electrical engineering from Cornell University in 1982 and 1983, respectively. The years between were spent in service to the United States Navy as a Nuclear Officer aboard the Trident missile submarine USS Abraham Lincoln. He also supervised the construction of the USS Indianapolis. His time in industry was also well spent, producing several patents that were licensed to Allied Signal, now Honeywell Corporation.

Roger was fond of classical music, particularly opera, and sang in the Copper Country Chorale, often accompanied by his daughter, Maggie, on organ. He also sang in the prestigious Pine Mountain Music Festival, including the premiere of the opera Rockland, based on the story of the 1906 miner strike in Rockland, Michigan.

Roger was instrumental in creating the computer engineering degree program at Michigan Tech. Working with Linda Ott in the Department of Computer Science in the College of Sciences and Arts, he bridged the gap between two departments in two separate colleges, crafting a program that educated hundreds—a new breed of engineer steeped in both worlds.

Even after the development of the computer engineering program, Roger’s collaboration with the Department of Computer Science continued. “We worked together on a strategic hiring initiative, multiple curricular issues, reorganization discussions and countless other issues,” said Dr. Linda Ott, Chair of the Department of Computer Science. “Roger was always supportive. He clearly believed that we would have stronger programs working together rather than competing.”

Roger was a strong advocate for the ABET accreditation process in the ECE department. He led the initial ABET accreditation of the Computer Engineering program. The procedures and processes he set in place then are still in play nearly 20 years later, guiding the department’s subsequent accreditation for both its electrical engineering and computer engineering degrees.

In the words of Computer Engineering faculty member Kit Cischke, “For Roger, it always boiled down to what was best for our students. The content of our classes. The things our students needed to know to get good jobs. The assignments. The kinds of things they needed to do in the real world. Students were forever contacting Roger after graduation, saying, ‘Thanks for teaching me that. I’m using it every day in my job.’”

Over the past few days, Roger’s former students have reached out to express their grief and sadness. They have shared how much Roger meant to them during their time at Michigan Tech and how well he prepared them for the success they enjoy today. One of those students was Joseph Rabaut. In his words, “I can’t tell you how devastated I am. Dr. Kieckhafer was an amazing person and one of the best professors at Tech. He helped me a lot throughout the past few years, giving me advice and recommendations, and helping me understand computer engineering. I don’t really know what else to say, because words can’t really describe losing him.”

Roger cared deeply for his students, his family, and his profession. I think that may be the source we can draw upon to comfort our own sense of sadness and grief. The impact he had on hundreds of lives will shine on.

As we move forward, his legacy will live on. As suggested by several people, a scholarship fund will be set up in Roger’s memory.

Roger is survived by his wife, Patricia Kieckhafer; son, Alexander Kieckhafer (Mallika Lavakumar) and thoroughly adored granddaughters, Ananya Kieckhafer and Ishani Kieckhafer of Cleveland, Ohio; daughter, Katherine Kieckhafer of Boston, Massachusetts; and Maggie Kieckhafer (Tahmoures Tabatabaei) of Greensboro, North Carolina.

Roger’s obituary can be read here.

If you have memories of Dr. Roger Kieckhafer, please feel free to post them in the comments section below.

Tips and Tricks from Three Chairs and Dean

Embarking soon on your college career? Or, still pondering embarking? Then this is for you. A free, interactive Zoom short course , “Tips and Tricks from Three Chairs and a Dean,” starts this Tuesday (July 7).

“We’ve added an extra chair, so now it is technically “Tips and Tricks from Four Chairs and a Dean,” says Janet Callahan, dean of the College of Engineering at Michigan Technological University. “We’ve created this short course for future college students. Both precollege students, and anyone who might be still be just considering going to college,” Callahan. “We want to give students leg up, and so we’re going to show all the tips and tricks we wish someone had shown us, back when we were starting out. That includes helpful strategies to use with your science and engineering coursework, as well as physics, chemistry, and math.”

The first Tips and Tricks session began on Tuesday, July 7 via Zoom at 6pm EST. If you missed it, no problem. Feel free to join the group during any point along the way. Catch recordings at mtu.edu/huskybites if you happen to miss one.

Each session will run for about 20 minutes, plus time for Q&A each Tuesday in July. The next is July 14, then July 21, and July 28. You can register here.

The series kicked off with Dean Janet Callahan and Brett Hamlin, interim chair of the Department of Engineering Fundamentals (July 7 – Tips and Tricks from Three, no, Four Chairs and a Dean).

Next up is John Gierke, past chair of the Department of Geological and Mining Engineering and Sciences (July 14 – Reverse Engineering: How Faculty Prepare Exam Problems).

Then comes Glen Archer, interim chair of the Department of Electrical and Computer Engineering (July 21 – Tips for the TI-89).

Last but not least is Audra Morse, chair of the Department of Civil and Environmental Engineering (July 28 – Two Triangles Don’t Make a Right).

“Even some middle school students, eighth grade and up, will find it helpful and useful,” adds Callahan. “Absolutely everyone is welcome. After each session, we’ll devote time to Q&A, too. I really hope you can join us, and please invite a friend!”

Get the full scoop and register at mtu.edu/huskybites.

Jeremy Bos: What’s next after FIRST?

“This could be you,” says Michigan Tech ECE assistant professor Jeremy Bos. “Our AutoDrive team brought home the second most trophies at competition last year.”

Jeremy Bos shares his knowledge on Husky Bites, a free, interactive webinar this Monday, July 6 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

FIRST®. You might know it as First Robotics—an international organization dedicated to motivating the next generation to understand, use and enjoy science and technology. Founder and inventor Dean Kamen describes FIRST as “using robots to build kids. “It’s not about the robots,” he said. “FIRST is transforming the way kids see the world.”

FIRST now has more than 67,000 teams around the world, and has given over $80 million in college scholarships. At Michigan Tech, at last count, there are close to fifty FIRST scholarship recipients.

Jeremy Bos: “When I have time I bike, ski, hike, kayak, and stargaze. I spend time with my dog, Rigel, on the Tech Trails nearly every day.”

So, for high school seniors now embarking on their college careers, what’s next after FIRST? How do you enter the field of robotics?

What’s more, how do you know if robotics could be the right career for you?

“Many first year students considering engineering, science, and technology are introduced to these fields from FIRST robotics and similar high school competitions,” says Jeremy Bos, an assistant professor of electrical engineering at Michigan Tech. “In fact, one of the most common questions I hear from new students is ‘What is there at Michigan Tech that’s like FIRST?’ and ‘What major should I choose to have a career in robotics?’”.

Bos is a Michigan Tech alum, having earned his BS in Electrical Engineering at Michigan Tech in 2000 and his PhD in Electrical Engineering and Optics in 2012. He worked at GM on short range wireless product development, and spent several years at the Air Force Research Laboratory on Maui before coming back to Tech as an assistant professor.

Like most things in life there is no one answer that applies to everyone, says Bos. He helps students take their FIRST-inspired passion for robotics and find a place for it Michigan Tech. “What are your affinities? Knowing those, I can help point you in the right direction,” he says.

“One thing I can do is to share an overview of careers in robotics.” says Bos. Hint: it involves the “M’s” the “E’s” and the “C’s”. (Listen to the overview during his live session on Husky Bites to learn more, or catch the Zoom video later.)

Bos is advisor and manager of several robot platforms on campus, including the Robotic Systems Enterprise team, part of Michigan Tech’s award-winning Enterprise program. “It’s one of the best places on campus to learn robotics,” says Bos.

The team’s many projects come in many shapes and sizes, from designing a vision system for work with a robotic arm, to an automatic power management system for weather buoys. Clients include Ford Motor Company and Michigan Tech’s Great Lakes Research Center.

In 2010, as an electrical engineering PhD student at Michigan Tech, Bos organized the investigation of the Paulding Light mystery, working with students in the University’s student chapter of SPIE, the international society of optics and photonics. “We were looking for a project that would be both fun and educational. I thought, ‘What about the Paulding Light?’”

“We use more than just the skills and talents of computer science, electrical engineering, and mechanical engineering majors,” adds Bos “All majors are welcome in the enterprise.”

The team’s main focus is the SAE AutoDrive Challenge, where college teams compete to develop and demonstrate a fully autonomous driving passenger vehicle. Michigan Tech is one of eight universities selected to participate in the 3-year AutoDrive Challenge, sponsored and hosted by GM and SAE International.

Bos mentors the AutoDrive team of 40 undergraduate and graduate students along with Darrell Robinette, an assistant professor of mechanical engineering-engineering mechanics.

The team out started with a Chevy Bolt, named it Prometheus Borealis, and then turned it into a competition vehicle outfitted it with sensors, control systems and computer processors so that it could navigate an urban driving course in automated driving mode.

The team took Prometheus Borealis on a trip to GM’s Desert Proving Ground in Yuma, Arizona in 2018 for an on-site evaluation in the SAE AutoDrive Challenge.
A closer look at some of the LiDAR hardware atop Prometheus Borealis. LiDAR = Light Imaging Detecting and Radar
Snow tires + winter weather = data for the Michigan Tech SAE AutoDrive Challenge team. “Roughly, this is an overhead perspective shot of the what the LiDAR mounted on Prometheus Borealis ‘sees’. The car is not visible but is at the center of the image heading north on US-41 from the Houghton Memorial Airport towards the town of Calumet,” Bos explains. “The clutter visible on the left of the image near the center/car is caused by snow. The ‘V’ notch in the center/top of the image is a dead zone caused by ice build up on the front on the LiDAR unit, a problem we’ve been working to solve.”


Bos accompanies students to the SAE AutoDrive Challenge competitions. The next one is coming up this October in East Liberty, Ohio. Teams are judged in a variety of areas—Object Detection, Localization, MathWorks, and Simulation, to name a few. His expertise in autonomous vehicles and vehicular networks, as well as industrial automation and controls makes Bos an ideal mentor for the students.

My own contribution to this effort is called ‘Autonomy at the End of the Earth.’ My research focuses on the operation of autonomous vehicles in hazardous weather. Specifically, the ice and snow we encounter on a daily basis between November and April.

Jeremy Bos


Bos says he is excited about the brand new Robotics Engineering degree program at Michigan Tech. It will be offered for the first time this fall in the Department of Electrical and Computer Engineering. “Robotics Engineering will cover all the skills you need for developing autonomous vehicles. It’s a unique set of skills now in heavy demand, with a little bit of everything—all the letters (M’s, E’s and C’s) and a little bit more—with a focus on learning the cutting edge.”

When did you first get into engineering? What sparked your interest?

My Dad ran a turn-key industrial automation and robotics business throughout most of my childhood. In fact, I got my first job at age 12 when I was sequestered at home with strep throat. I felt fine, but couldn’t go to school. My Dad put me to work writing programs for what I know now are Programmable Logic Controllers (PLCs); the ‘brains’ of most industrial automation systems.

Later, I was involved with Odyssey of the Mind and Science Olympiad. I also really liked these new things called ‘personal computers’ and spent quite a bit of time programming them. By the time I was in high school I was teaching classes at the local library on computer building, repair, and this other new thing called ‘The Internet’. A career in STEM was a certainty. I ended up in engineering because I like to build things (even if only on a computer) and I like to solve problems (generally with computers and math).

Tell us about your growing up. What do you do for fun?

I was born in Santa Clara, California just as Silicon Valley was starting to be a thing. I grew up in Grand Haven, Michigan where I graduated from high school and then went to Michigan Tech for my undergraduate degree. I liked it so much I came back twice. I now live in Houghton with my wife, and fellow alumna, Jessica (STC ’00). We have a boisterous dog, Rigel, named after a star in the constellation Orion, who bikes or skis with me on the Tech trails nearly every day.

When I have time I also like to kayak, and stargaze. I’ve even tried my hand at astrophotography at Michigan Tech’s AMJOCH Observatory. It’s a telescope, but hopefully, soon it will be a robot, too.

Learn more:

Play @MTUAutonomy winter driving data set test 1 video
Preview image for @MTUAutonomy winter driving data set test 1 video

@MTUAutonomy winter driving data set test 1

Look Ma, No Driver

Huskies Hit the Road

Creativity and Cool Gizmos: Dean Kamen at Michigan Tech

Just in time for Halloween, Michigan Tech Students Solve the Mystery of the Paulding Light

It’s Out There, Return of the Paulding Light

Tony Pinar: How Do Machines Learn?

Tony Pinar generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

Can machines learn, for real? Just how intelligent are they? Will machines and robots someday take over the world?

“Machine learning has become a popular tool in the digital world,” says Tony Pinar. “For people outside the field it seems almost magical that a machine could learn.”

Machine-learning algorithms do indeed “learn”, though it probably is not as glamorous as many people think. And not only that, says Pinar, they can be fooled.

ECE faculty member Dr. Tony Pinar earned his BS, MS and PhD in electrical engineering, all at Michigan Tech.

A lecturer and researcher in the Department of Electrical and Computer Engineering at Michigan Tech, Pinar demystifies machine learning for students, and shows them how it’s done.

Pinar has even taught his own laptop a thing or two.

“Machine learning is actually a subfield of AI, or artificial intelligence,” says Pinar. “That’s a buzz word for simulating intelligence with a machine.”

Machine learning, he explains, is a collection of algorithms, biologically-inspired neural networks, that allow a computer to learn properties from observations, often with the goal of prediction.

“One pretty common misconception is that AI and machine learning are new. While the field has made leaps in the last few decades, some aspects of machine learning were developed in the 1800s, probably by Gauss,” says Pinar. Carl Friedrich Gauss, the German mathematician, is considered to be one of the greatest mathematicians of all time.

Pinar’s own research interests are in applied machine learning and data fusion. “It is exciting to me to watch the cutting edge move forward, see what sticks and what doesn’t, and observe how the directions of the field evolve,” he says. “It’s also rewarding to work on open-ended and novel problems that are in their infancy and at the cutting edge of today’s technology.”

Pinar is a member of the Institute of Computing and Cybersystems (ICC) at Michigan Tech. ICC provides a platform for innovative research and supports collaboration. The ICC’s 50 members represent 15 academic units at Michigan Tech.

It is exciting to me to watch the cutting edge move forward, see what sticks and what doesn’t, and observe how the directions of the field evolve.

Dr. Tony Pinar

“Often, the strongest solutions to be found are multidisciplinary, where people from many different fields work on the same problem,” notes Pinar.

As senior design coordinator for Michigan Tech’s ECE department, Pinar mentors students working on the final big design project of their senior year. Michigan Tech’s senior design program is more like a first job than a last class, and many projects are sponsored by industry.

What does working on senior design look like? It looks like testing, iterating, compiling, and teaming. This group of ME, EE, and CpE students is working on the SICK LiDAR challenge. They they ended up winning an Honorable Mention in the nationwide competition.

One senior design team that Pinar advised this past spring⁠—a multidisciplinary team comprised of students majoring in electrical engineering, mechanical engineering, and computer engineering⁠—competed in the TiM$10K Challenge, a national innovation and design competition. Student teams were invited to participate from 20 different universities by Sick USA. Sick AG, based in Waldkirch, Germany, is a global manufacturer of sensors and sensor solutions.

For the competition, teams were supplied with a 270-foot SICK LiDAR sensor, the TIM, and accessories, and challenged to solve a problem, create a solution or new application.

The Tech team members — Brian Parvin, Kurtis Alessi, Alex Kirchner, David Brushaber and Paul Allen — earned Honorable Mention (fourth place overall) for their project, Evaluating Road Markings (the Road Stripe Evaluator). The innovative product aims to help resolve issues caused by poor road markings.

“Road stripes around the world require frequent maintenance,” Pinar explains. “That’s because fading road stripes cause fatal car accidents and other safety concerns. The team’s software and device can be mounted on police cars in order to cover a wide region. And instead of repainting all road stripes, road crews can become discerning, learning which roads need repainting, and focus only on those, potentially saving a fortune each year on paint and maintenance.”

“Each year, fading road stripes cause fatal car accidents,” says Pinar. “This senior design team’s software and device the Road Stripe Evaluator, could potentially save lives.”

SICK asked each team in the competition to submit a video and paper for judging upon completion of its project. A panel of judges decided the winning submissions based on creativity and innovation, ability to solve a customer problem, commercial potential, entrepreneurship of the team, and reporting.

While the team’s prototype does not depend on machine learning, the project may continue in upcoming semester. That way, another senior design team will be able to build a machine learning solution into the prototype, notes Pinar.

In April, the team also won an Honorable Mention for the Road Stripe Evaluator project at Michigan Tech’s Design Expo, competing with 50+ other senior design teams.

How did you first get interested in engineering? What sparked your interest?

I was raised near the small town of Trout Creek, Michigan. I’ve always been obsessed with figuring out how things work. I was also interested in electricity from a young age, thanks to my dad, who had me help him to wire houses as an electrician. These led me to pursue electrical engineering at Michigan Tech, where I learned EE was so much more than power distribution.

You earned your BS, MS and PhD at Michigan Tech, all in electrical engineering. What kind of projects did you work on as a student?

I had the opportunity to work on many interesting projects as a student, both applied and research-based. As an undergrad I contributed to projects such as a solar-tracking solar panel, a Tesla coil, and an industry-sponsored project concerning wireless power transfer. In graduate school I worked on projects involving autonomous underwater gliders, 3D metal printers, and explosive hazard detection using ground penetrating radar; my dissertation was focused on the algorithms I developed and used for much of the explosive hazard detection problem.

What do you like most about teaching electrical engineering?

Teaching is like a puzzle where one may have to take a difficult concept, reduce it to digestible pieces, and deliver them to fresh minds in a way to maximize understanding and insight. That challenge is what drives me to be a better teacher. It keeps me on my toes, forces me to constantly identify holes in my knowledge, and drives me to continuously strive to learn new things.

Can you tell us about your life now? Any hobbies?

I live in Hancock with my wife, Noelle, and our two small boys, Malcolm and Dexter. If I’m not spending time outdoors in the Keweenaw with my family, you will probably find me playing guitar or tinkering with a side project.

Learn More

Play 232: Road Marking Reflectivity Evaluator video
Preview image for 232: Road Marking Reflectivity Evaluator video

232: Road Marking Reflectivity Evaluator

We Reject Racism.

Michigan Tech stands together as a community to reject any actions steeped in racism, hatred and fear. These actions are repugnant to the College of Engineering. They have no place in our classrooms, labs or offices, nor in our society.

The College of Engineering believes that diversity in an inclusive environment is essential for the development of creative solutions to address the world’s challenges. 

Our faculty, staff and students are fully committed to diversity and inclusiveness. There is much work to be done and we all have a part to play in order for meaningful change to occur.

  • Janet Callahan, Dean, College of Engineering
  • Leonard Bohmann, Associate Dean, College of Engineering
  • Larry Sutter, Assistant Dean, College of Engineering
  • Sean Kirkpatrick, Chair, Dept. of Biomedical Engineering
  • Pradeep Agrawal, Chair, Dept. of Chemical Engineering
  • Audra Morse, Chair, Dept. of Civil and Environmental Engineering
  • Glen Archer, Chair, Dept. of Electrical and Computer Engineering
  • Jon Sticklen, Chair, Dept. of Engineering Fundamentals
  • John Gierke, Chair, Dept. of Geological and Mining Engineering and Science
  • Steve Kampe, Chair, Dept. of Materials Science and Engineering
  • Bill Predebon, Chair, Dept. of Mechanical Engineering – Engineering Mechanics
  • Walt Milligan, Interim Chair, Dept. of Manufacturing and Mechanical Engineering Technology

Read More:

Design Expo 2020 Award Winners

A view of campus from across the Portage Canal, with light snow, and open water.

More than 1,000 students in Enterprise and Senior Design showcased their hard work last Thursday, April 16 at Michigan Tech’s first-ever virtual Design Expo. Teams competed for cash awards totaling nearly $4,000. Judges included corporate representatives, community members and Michigan Tech staff and faculty.

The College of Engineering and the Pavlis Honors College are pleased to announce award winners, below. Congratulations and thanks to ALL teams for a very successful Design Expo 2020. But first, a few important items:

Design Expo Video Gallery

Be sure to check out the virtual gallery, which remains on display at mtu.edu/expo.

20th Anniversary of Design Expo
This year marked the 20th anniversary of Design Expo. Read the Michigan Tech news story here.

SOAR’s SSROV Royale deployed in summers on Isle Royale National Park as part of the Enterprise partnership.
SOAR’s SSROV Royale deployed in summers on Isle Royale National Park as part of the Enterprise partnership

Special Note:
In addition to all the Michigan Tech teams, SOAR, a high school Enterprise from Dollar Bay High School in Michigan’s Upper Peninsula, also took part in this year’s virtual Design Expo. Advised by teacher Matt Zimmer, the team designs, builds, and deploys underwater remote operated vehicles (ROVs). SOAR partners with local community organizations to monitor, research, and improve the local watershed. Their clients include Isle Royale National Park, Delaware Mine, OcuGlass, and Michigan Tech’s Great Lakes Research Center. Check out the SOAR video here (SOAR is team 124).


Now, without further ado, here are the Design Expo award results!


ENTERPRISE AWARDS
Based on video submissions

Team photo with Baja vehicle outside on campus at Michigan Tech with Portage Canal in the background.

First Place – $500
Blizzard Baja Enterprise
Team Leaders: Olivia Vargo, Mechanical Engineering, and Kurt Booms, Mechanical Engineering Technology
Advisor: Kevin Johnson, Mechanical Engineering Technology
Sponsors: General Motors, Aramco Americas, DENSO, SAE International, Magna, Fiat Chrysler Automobiles, Halla Mechatronics, Meritor, Oshkosh Corporation, Ford Motor Company, John Deere, Nexteer, IPETRONIK, FEV, Milwaukee Tool, Altair, Henkel, ArcelorMittal, TeamTECH, and Keysight Technologies
Overview: Building and innovating a single-seat, off-road vehicle for the SAE Collegiate Design Series-Baja events is the team’s focus. After passing a rigorous safety and technical inspection, they compete on acceleration, hill climb, maneuverability, suspension and endurance. The team also organizes and hosts the Winter Baja Invitational event, a long-standing university tradition dating back to 1981.


Team photo

Second Place – $300
Mining INnovation Enterprise (MINE)

Team Leaders: George Johnson, Mechanical Engineering; and Breeanne Heusdens, Geological Engineering
Advisor: Paulus Van Susante, Mechanical Engineering-Engineering Mechanics
Sponsors: Cignys, Cummins, General Motors, MEEM Advisory Board, Michigan Scientific Corporation, Michigan Space Grant Consortium, Milwaukee Tool, MISUMI, NASA, Raytheon, Wayland Wildcats
Overview: MINE designs, tests, and implements mining innovation technologies—in some hard-to-reach places—for industry partners. The team is developing a gypsum process to mine water on Mars funded by a grant from NASA. Gypsum is 20 percent water by weight and is found abundantly on the surface of Mars. A geological sub-team is developing methodology for deep sea mining research. Last but not least, MINE is creating a robot for the NASA Lunabotics competition, held every year at the Kennedy Space Center with 50 university teams in attendance.


Team photo near the Husky statue at Michigan Tech, in the snow.

Third Place – $200 (tie)
Innovative Global Solutions
(IGS)
Team Leaders: Nathan Tetzlaff, Mechanical Engineering; Marie Marche, Biomedical Engineering
Advisors: Radheshyam Tewari, Mechanical Engineering-Engineering Mechanics; and Nathan Manser, Geological and Mining Engineering and Sciences
Sponsors: Cummins, Milwaukee Tool, and Enterprise Manufacturing Initiative funded by General Motors
Overview: IGS pursues solutions for the needs of developing countries, making contributions toward solving the Grand Challenges, an initiative set forth by the National Academy of Engineering. The team has designed, built and tested an innovative vaccine container to improve the transport of viable vaccines and increase accessibility. They have developed a low-cost, multifunctional infant incubator to help decrease infant mortality rates. They are also working on an open-source-based 3D printer that can recycle plastic to meet basic community needs.


Stratus: Detailed render of the Stratus spacecraft deployed on-orbit.

Third Place – $200 (tie)
Aerospace Enterprise

Team Leaders: Troy Maust, Computer Engineering; and Matthew Sietsema, Electrical Engineering
Advisor: L. Brad King, Mechanical Engineering-Engineering Mechanics
Sponsors: Air Force Research Laboratory, NASA
Overview: Space mission design and analysis, vehicle integration, systems engineering, and comprehensive ground-testing and qualification are all going on within the Aerospace Enterprise at any given time. All members contribute toward achieving specific project goals. The Auris mission demonstrates the technical feasibility of a CubeSat to provide situational data, in collaboration with the Air Force Research Laboratory (AFRL). The Stratus mission involves collecting atmospheric and weather data from a CubeSat in collaboration with NASA—a pathfinder toward developing new, complex space systems leveraging the low-cost and small size of CubeSats to achieve the performance of traditional, monolithic systems.


Lost in Mazie Mansion, a game created by HGD shows an illustration of Mazie (small figure with golden hair, standing in what looks like a library, with 3 sets of bookcases behind her.

Honorable Mention – $100
Husky Game Development (HGD)

Team Leaders: Colin Arkens and Xixi Tian, Computer Science
Advisor: Scott Kuhl, Computer Science
Sponsor: Pavlis Honors College
Overview: Developing video games is the name of the game for HGD. Each year, the Enterprise breaks up into subteams of around six students who experience a full game development cycle, including ideation, design, and end product. HGD explores a wide variety of video game engines and platforms, including Windows, Android, Xbox, and an experimental Display Wall.


SENIOR DESIGN AWARDS
Based on video submissions

Blueprint-style drawing of the team's eddy current inspection in-line integration tester.

First Place – $400
Eddy Current Inspection In-line Integration

Team Members: Brett Hulbert, Austin Ballou, Britten Lewis, Nathan Beining, Philip Spillman and Sophie Pawloski, Mechanical Engineering
Advisor: Wayne Weaver, Mechanical Engineering- Engineering Mechanics
Sponsor: MacLean-Fogg Component Solutions-Metform
Overview: Eddy current testing (ECT) is a non-destructive method for testing metal surfaces for defects using electromagnetic induction to detect surface flaws in conductive materials. The team was tasked with developing an eddy current tester that would non-destructively test a washer for surface cracks and flaws before it is assembled with a nut. They created a testing operation that spins, tests, and ejects washers based on whether they pass or fail, all within the existing assembly cell.


CAD drawing of the team's
hospital washer with data optimization sensors.

Second Place – $250
Hospital Washer Auto Sampler Usage & Data Optimization
Team Members: Nick Golden and Jeremy Weaver, Biomedical Engineering; Jack Ivers, Mechanical Engineering
Advisors: Bruce Lee and Sangyoon Han, Biomedical Engineering
Sponsor: Stryker
Overview: Hospitals use wash systems to clean and sterilize instruments after use. Factors of the wash environment can harm surgical instruments. To solve this problem, the team designed a device that actively senses conditions inside a hospital washer to provide information on the effects of the wash environment, allowing for wash cycle optimization.


A 3D-printed pattern cast in aluminum by sponsor Mercury Marine

Third Place – $150
Direct Casting with Additive Manufactured Patterns
Team Members: James Driesenga, Riley Simpson, Camden Miner, Zach Schwab, TC Swittel, and Sean Frank, Mechanical Engineering
Advisor: Bob Page, Mechanical Engineering-Engineering Mechanics
Sponsor: Mercury Marine
Overview: The team developed a lost-foam style casting process that uses a 3D printed pattern instead of expanded polystyrene in metal casting. The use of expanded polystyrene allows for complete part filling, but cost and time required to create a new pattern are high. The 3D printing of patterns eradicates the need for pattern tooling and significantly reduces the time required to produce a pattern.


Medtronic’s radiofrequency ablation platform: Accurian System

Honorable Mention (1) – $100
Radiofrequency Ablation Modeling and Validation of Cannula Design
s
Team Members: Clare Biolchini, Matthew Colaianne, and Ellen Lindquist, Biomedical Engineering; Samuel Miller, Electrical Engineering
Advisor: Jeremy Goldman, Biomedical Engineering
Sponsor: Medtronic
Overview: Predictable lesion formation during radiofrequency (RF) ablation for pain control is a function of many factors and the subject of decades of research. Of specific interest to Medtronic is lesion formation in non-homogeneous tissues and structures. The team developed mathematical models and physical model validation for treatment scenarios, including knees and shoulders. Photo courtesy of Medtronic.


Solidworks model of deicing fluid collection cart

Honorable Mention (2) – $100
Airport Needs Design Challenge
Team Members: Derek Cingel, Jared Langdon, Bryce Leaf, Ruth Maki, and Douglas Pedersen, Mechanical Engineering
Advisor: Paul van Susante, Mechanical Engineering-Engineering Mechanics
Sponsor: Airport Cooperative Research Program
Overview: To help reduce the contamination of deicing fluid in small airports, the team developed a cart specially designed to collect a significant amount of the fluid that comes from the wings. Saving and reusing deicing fluid will save money, and reduce the runoff into streams and waterways.


A prototype of the testing system, shown on a workbench

Honorable Mention (3) – $100
Validation Test System for Boston Scientific IPP
Team Members: McKenzie Hill, Ahmed Al Dulaim, Nathan Halanski, and Katherine Wang, Biomedical Engineering
Advisors: Orhan Soykan and Sangyoon Han, Biomedical Engineering
Sponsor: Boston Scientific
Overview: Performing analyses, simulations, and engineering calculations, the team was able to estimate and predict the movement of IPP cylinders and resulting stress/strain. They designed new test procedures to perform physical testing and fabricated a physical test system.


Team members from left: Brian Parvin, Paul Allen, David Brushaber, Alex Kirchner, Kurtis Alessi

Honorable Mention (4) – $100
Road Marking Reflectivity Evaluator
Team Members: Brian Parvin, Mechanical Engineering; Paul Allen, Electrical Engineering; and David Brushaber, Kurtis Alessi and Alex Kirchner, Computer Engineering
Advisor: Tony Pinar, Electrical and Computer Engineering
Sponsor: SICK, Inc.
Overview: When road stripes wear off, auto accidents increase. To solve this problem, the team developed software that uses reflectivity values obtained using a SICK lidar unit. Their new software identifies deterioration of road stripes and recommends timely repainting, which will also aid in the safety and reliability of self-driving vehicles on roadways. The team constructed a prototype to demonstrate functionality–a pushable cart that evaluates road markings. An intuitive user interface displays the markings being evaluated, and indicates if they meet necessary levels of reflectivity. With their project, the team is taking part in the TiM$10K Challenge, a national innovation and design competition.


20th Anniversary “People’s Choice” Award – $100
Based on receiving the most text-in votes during Design Expo

A CAD drawing of the actuator showing two UGVs connected by the coupling and actuating system

Connector and Coupling Actuator for Mobile Electrical Microgrids
Team Members: Trevor Barrett, Nathan Bondi, and Sam Krusinski, Mechanical Engineering; Travis Moon, Electrical Engineering
Advisor: Cameron Hadden, Mechanical Engineering-Engineering Mechanics
Sponsor: Center for Agile and Interconnected Microgrids
Overview: Imagine how someone living through a natural disaster like Hurricane Katrina or Hurricane Dorian must have felt—scared and helpless, with no way to call for assistance or let loved ones know they were okay. It could be days or weeks before first responders are able to restore power to the area. That is where our project comes in. Our team was tasked to design, prototype, and test a connector and coupling actuator that can establish an electrical connection between two unmanned ground vehicles that will be used to build temporary microgrids in areas that desperately need it.


DESIGN EXPO IMAGE CONTEST
Based on team photos submitted during Design Expo registration

First Place – $200
Formula SAE Enterprise

F-276 Racecar racing by on a speedway with the driver shown in his black helmet.
F-276 Racecar. Photo Credit: Brendan Treanore, 4th year, MSE

Second Place – $100
Flammability Reduction in Magnesium Alloys for Additive Manufacturing

Two orange-yellow flames jet up from a pike of ashes.
Flammability test of a magnesium AZ61 alloy. Photo Credit: Max Urquhart, 3rd year, ECE

Third Place – $50
Velovations Enterprise

Three fat tired bikes are parked in the snow along the Michigan Tech "Tech Trails" groomed trail system, covered in snow, with sunshine and trees in the background.
Velovations Enterprise: Testing dropper posts in the snow Photo Credit: Somer Schrock, 3rd year, ME

DESIGN EXPO INNOVATION AWARDS
Based on application
. Learn more here.

The Husky Innovate logo shows a lightbulb with blue, green and teal dots flowing out in the rough profile of a Husky dog.
Microphoto of master alloy nanoindentation array of Al25Mn, courtesy of MSE 4th year student Ryan Lester
Microphoto of master alloy nanoindentation array of Al25Mn. Credit: Ryan Lester

First Place – $250
Increasing the Young’s Modulus of Cast Aluminum for Stiffness-Limited Applications

Team Members: Joel Komurka, Ryan Lester, Zeke Marchel, and
Wyatt Gratz, Material Science and Engineering
Advisor: Paul Sanders, Materials Science and Engineering
Sponsor: Eck Industries


Benchtop design which simulates physiological conditions in HLHS patients for testing of our stent prototype. (photo taken by Kelsey LeMay)
The team’s benchtop design, which simulates the physiological conditions in HLHS patients used to test infant heart stent prototype.

Second Place – $150
Transcatheter Sign Ventricle Device (BME)

Team Members: David Atkin, Kelsey LeMay, and Gabrielle Lohrenz, Biomedical Engineering
Advisors: Smitha Rao and Jeremy Goldman, Biomedical Engineering
Sponsor: Spectrum Health—Helen DeVos Children’s Hospital


a prototype of the vaccine transporter, which is about the size of a large breadbox, and fits inside a duffel bag.
Second iteration of the IGS team’s vaccine cold transport container for developing countries, which fits neatly inside a duffel bag.

Third Place – $100
Innovative Global Solutions (IGS)

Team Leaders: Nathan Tetzlaff, Mechanical Engineering; Marie Marche, Biomedical Engineering
Advisors: Radheshyam Tewari, ME-EM and Nathan Manser, Geological and Mining Engineering and Sciences
Sponsor: Enterprise Manufacturing Initiative funded by General Motors, Cummins, Milwaukee Tool

2020 ENTERPRISE AWARDS
Based on student, advisor, faculty and staff nominations.

The Michigan Tech Enterprise Program logo, created over a decade ago by a Michigan Tech student, features a yellow lower case "e" in the shape of a swoosh


Student Awards
Outstanding Leadership: Allysa Meinburg, Consumer Product Manufacturing

Rookie Award: Bryce Traver, Alternative Energy Enterprise

Innovative Solutions: Travis Wavrunek, Alternative Energy Enterprise

Industry/Sponsor Relations: Jordan Woldt, Blue Marble Security/Oshkosh Baja Suspension Team

Faculty/Staff/Sponsor Awards
Outstanding Enterprise Advisor: Dr. Tony Rogers, Consumer Product Manufacturing

Outstanding Enterprise Sponsor: Michael Bunge, Libbey Inc.

Behind the Scenes: Steven Lehmann, Biomedical Engineering


THANKS TO ALL!

Now, be sure to check out all the awesome Enterprise and Senior Design team projects at mtu.edu/expo.

Engineering Graduate Students Elected to Executive Board

Nathan Ford
Nathan Ford

The Graduate Student Government (GSG) has elected its Executive Board for the 2020-2021 session. The new Executive Board members are:

  • Nathan Ford (MEEM), President
  • Michael Maurer (ECE), Vice-President
  • Aaron Hoover (Humanities), Secretary
  • Laura Schaerer (Biological Sciences), Treasurer
  • Sarvada Chipkar (Chemical Engineering), Research Chair
  • Yasasya Batugedara (Mathematical Sciences), Professional Development Chair
  • Eric Pearson (Chemical Engineering), Social Chair
  • Marina Choy (Humanities), Public Relations Chair

The new Executive Board will assume office on May 1 and is looking forward to serving the graduate student body and the community at large.

By Apurva Baruah, GSG President.

NSBE Students Reach Out to Detroit Schools

Six members of Michigan Tech’s student chapter of the National Society of Black Engineers (NSBE) Pre-College Initiative (PCI) reached a total of 1,500 students during their 8th Annual Alternative Spring Break in Detroit March 9-11, 2020. Our students spent their spring break visiting six middle and high schools in Detroit to encourage students to consider college and a STEM (Science, Technology, Engineering, Math) career.

During the school day, the Michigan Tech students made classroom presentations to middle and high school students encouraging them to continue their education after high school, consider going to college or community college, and choose a STEM career path. After the school day ended, the NSBE students conducted K-8 Family Engineering events at two K-8 schools for students and their families, and at a Boys & Girls Club in Highland Park.

Participating students included:

The schools visited included:

  • Osborn High School
  • Detroit Arts HS
  • Mackenzie Middle School
  • University Prep Math & Science Middle School
  • University Prep Academy of the Arts Middle School
  • Neinas Academy Middle School

The NSBE students made a special stop at the Fauver-Martin Boys & Girls Club on the afternoon of March 10 to put on a hands-on engineering event for 30 K-12 students from across the city. This event was organized by Mike Reed from the Detroit Zoological Society, who also invited Michael Vaughn, the first president of MTU’s NSBE student chapter in 1995.

The goal of the NSBE classroom presentations and Family Engineering events are to engage, inspire, and encourage diverse students to learn about and consider careers in engineering and science through hands-on activities and providing ‘hometown’ role models (most of the participating NSBE students are from the Detroit area). These programs are designed to address our country’s need for an increased number and greater diversity of students skilled in STEM (math, science, technology, and engineering). 

This MTU NSBE chapter’s outreach effort is funded by General Motors and the Department of Civil & Environmental Engineering and coordinated by Joan Chadde, director of the Michigan Tech Center for Science & Environmental Outreach. High school students at these schools are also encouraged to apply to participate in a 5-day High School Summer STEM Internship at Michigan Tech from July 13-17, 2020 that is specifically targeting underrepresented students. Each participating student will be supported by a $700 scholarship. The Detroit high school students are also informed of scholarships available to attend MTU’s Summer Youth Programs.

For more information about the MTU-NSBE student chapter’s Alternative Spring Break, contact NSBE student chapter President, Bryce Stallworth or Chadde.

By Joan Chadde.