Category: Mechanical and Aerospace Engineering

Enter to Win a Jersey signed by John Scott (NHL) or Joe Berger (NFL)

Support Michigan Tech student scholarships with a raffle ticket. Gain the chance to win a jersey signed by a mechanical engineering alums John Scott (NHL) or Joe Berger (NFL).
John Scott earned a BS in Mechanical Engineering at Michigan Tech in 2010: “Getting my degree from MTU allowed me the confidence to transition from playing hockey to working in the professional field.”

What do NHL MVP John Scott and NFL player Joe Berger have in common? Both are Michigan Tech Mechanical Engineering alums. Both are now retired from pro sports. And both are ready to sign a jersey on February 12, to support ME-EM department initiatives— including student scholarships, plus support for senior design and faculty special projects.

Here’s how: Signed Jersey Raffle tickets are $50 each, available for purchase here. You need not be present to win (we will call or email you). Winners will be drawn during Michigan Tech’s Winter Carnival hockey game against Bowling Green on February 12, 2022. John and Joe will be at the game to help announce the winners! (Please note: We have our State of Michigan raffle license # X05892.)

Purchase tickets by Saturday February 12, 2022 at 12 noon for a chance to win.

“Most people think being a professional athlete was the greatest accomplishment in my professional life,” says Scott. “They are always surprised to hear that earning my degree in Mechanical Engineering and being able to use that degree today is more gratifying than playing in the NHL. Getting my degree from MTU allowed me the confidence to transition from playing hockey to working in the professional field.”

“As a walk-on at Michigan Tech, I wouldn’t have had a football career without the mechanical engineering program to bring me up to campus in the first place,” says Berger. “The problem solving and teamwork skills that you learn in engineering have a direct correlation to football and sports in general. I enjoyed talking to my teammates about Michigan Tech throughout my career and am very thankful for the opportunity I was given. I look forward to using my mechanical engineering degree more in this next phase of life.”

Joe Berger earned his mechanical engineering degree at Michigan Tech in 2004: “The problem solving and teamwork skills that you learn in engineering have a direct correlation to football and sports in general.”

The ME-EM department is also hosting a Winter Carnival Alumni Hockey Skybox Social on Saturday, February 12, 2022, during the Michigan Tech vs. Bowling Green hockey game. It will take place in the Husky Suite South Skybox of the John MacInnes Student Ice Arena. The social begins at 5 p.m. with a 5:07 p.m. start time for the game. John and Joe will attend the social. Tickets for the social are $40/person, which includes a $20 donation to the ME-EM Alumni Scholarship Fund. Buy ME-EM Skybox Social tickets here.

SWE Celebrates Graduating Seniors and Scholarship Recipients

Michigan Tech’s section of the Society of Women Engineers (SWE) celebrated the end of the semester with a banquet sponsored by Oshkosh.

Graduating seniors recognized at the event are:

The section also awarded two $1,000 scholarships to our upper-division students. The scholarships were sponsored by Ruby & Associates Inc. and Deployed Technologies to recognize students for their contributions to the SWE section and the University community.

Scholarship recipients are:

By Gretchen Hein, Society of Women Engineers Advisor.

Tau Beta Pi Inducts 15 New Members at Michigan Tech

Congratulations to our Fall 2021 Tau Beta Pi Initiates! (Not pictured here: Andrew Scott and Dr. Mary Raber)

The College of Engineering recently inducted 14 students and one eminent engineer into the Michigan Tech chapter of Tau Beta Pi.

Tau Beta Pi is a nationally recognized engineering honor society and is the only one that recognizes all engineering professions. Students who join are the top 1/8th of their junior class, top 1/5th of their senior class, or the top 1/5th of graduate students who have completed 50% of their coursework. The society celebrates those who have distinguished scholarship and exemplary character, and members strive to maintain integrity and excellence in engineering.

Fall 2021 Initiates

Undergraduate Students: Dom Bianchi, Mechanical Engineering; Sean Bonner, Civil Engineering; Sam Breuer, Computer & Electrical Engineering; Sophia Brylinski, Materials Science & Engineering; Spencer Crawford, Computer Engineering; Jacqui Foreman, Chemical Engineering; Stephen Gillman, Computer Engineering; Michael Kilmer, Materials Science & Engineering; Emerald Mehler, Chemical Engineering; Ben Stier, Computer Engineering; Alex Stockman, Computer Engineering; and Jordan Zais, Biomedical Engineering

Graduate Students: Tonie Johnson, MS, Biomedical Engineering; and Andrew Scott, MS Electrical & Computer Engineering

Eminent Engineer

Mary Raber is Chair of Michigan Tech’s Department of Engineering Fundamentals

Dr. Mary Raber

Fall 2021 Research Seed Grants for Engineering PIs

Michigan Tech campus and Portage waterway in the autumn.

The Vice President for Research Office announces the Fall 2021 Research Excellence Funds (REF) awards. Congratulations to all the principal investigators!

Thanks to the individual REF reviewers and the REF review panelists, as well as the deans and department chairs, for their time spent on this important internal research award process. Awardees in the College of Engineering include:

Research Seed Grants

By Kathy Halvorsen, Associate Vice President for Research Development.

Engineering Graduate Students Place in 2021 3MT

This year’s Three Minute Thesis competition organized by the Graduate Student Government (GSG) of Michigan Tech had great participation both in person at The Orpheum Theater and virtually over Facebook Live. Twenty-eight participants competed at the MUB Ballroom for a place in the finals, held at The Orpheum Theater on Nov. 4.

After a very close competition, Priyanka Kadav, a PhD student from the Department of Chemistry, won first place.

Kadav’s presentation was titled “Capture and Release (CaRe): A novel protein purification technique.” She will go on to represent Michigan Tech at the regional levels of the competition.

The runner-up was Emily Shaw, a PhD student from the Department of Civil, Environmental, and Geospatial Engineering, with a presentation titled “Toxicity in Fish Tissue: Redefining our Understandings by Quantifying Mixture Toxicity.”

Yue (Emily) Kang from the Department of Mathematical Sciences department won the People’s Choice award with her presentation, titled “Robust numerical solvers for flows in fractured porous media.”

Other finalists were:

Each presentation was scored by a panel of judges from diverse academic backgrounds. The judges for the finals were:

  • Wallace Southerland III, Vice President for Student Affairs and Dean of Students
  • Jim Baker, associate vice president for research administration
  • Marie Cleveland, a Michigan Tech alumna who was awarded the Alumni Association Outstanding Service Award in 2014

This year’s finals were also streamed live on GSG’s Facebook page and can be watched online.

GSG would also like to thank all the volunteers and The Orpheum Theater for making this event possible.

By Graduate Student Government.

Emily Shaw presenting at 3MT.
Emily Shaw presenting at 3MT.
Sunit Girdhar presenting at 3MT.
Sunit Girdhar presenting at 3MT.
Arman Tatar presenting at 3MT.
Arman Tatar presenting at 3MT.
Michael Maurer presenting at 3MT.
Michael Maurer presenting at 3MT.

Bo Chen: What’s next, NEXTCAR?

Bo Chen shares her knowledge on Husky Bites, a free, interactive webinar this Monday, November 15 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Bo Chen is a Professor of Mechanical Engineering and Electrical Engineering at Michigan Tech. She’s been a visiting Professor at Argonne National Laboratory, and was named ASME Fellow in 2020.

What’s next, NEXTCAR? What are you doing for supper this Monday night 11/15 at 6 pm ET? Grab a bite with Dean Janet Callahan and Bo Chen, Professor of Mechanical Engineering and Electrical Engineering at Michigan Tech.

During Husky Bites, Prof. Chen and one of her former students, alum Dr. Joe Oncken, will share how engineers go about designing and creating the crucial elements of an all-electric vehicle ecosystem. Oncken earned his PhD at Michigan Tech—he’s now a postdoctoral researcher at Idaho National Lab.

Chen and her research team at Michigan Tech envision an all-electric future. They develop advanced control algorithms to build the nation’s electric vehicle charging infrastructure and highly efficient hybrid electric vehicles, integrating with advanced sensing technologies that allow for predictive control in real time. These technologies enable the kind of vehicle-to-vehicle and vehicle-to-infrastructure communication that will reduce our nation’s energy consumption. 

Drs. Chen and Oncken among the fleet, outside at the APSRC.

Throughout her career Chen has made major contributions in the field of embedded systems, developing cutting-edge applications for hybrid-electric and electric autonomous systems. 

One of Chen’s courses at Michigan Tech, Model-based Embedded Control System Design, is regularly in high demand, not only by ME students but also EE students. “This is a testament to her teaching ability and the importance of the topic,” says ME-EM department chair Bill Predebon.

Chen’s Intelligent Mechatronics and Embedded Systems Lab is located on the 5th floor of the ME-EM building. But she spends a good deal of time working on NEXTCAR research at the Advanced Power Systems Research Center (APSRC), located a few miles from campus near the Houghton Memorial Airport.

“Vehicles that are both connected and automated—two paradigm-shifting technologies—will soon become vital for the improvement of safety, mobility, and efficiency of our transportation systems.”

Bo Chen

In 2016 the Department of Energy’s Advanced Research Projects-Energy (ARPA-E) awarded $2.5M to Michigan Tech for NEXTCAR research. The project—led by ME-EM Professor Jeff Naber as PI and Co-PIs Chen, Darrell Robinette, Mahdi Shahbakhti, and Kuilin Zhang—developed and demonstrated their energy reduction technologies using a fleet of eight Gen II Chevy Volt plug-in-hybrid vehicles (aka PHEVs).

The team tested the fleet on a 24-mile test loop to showcase energy optimization, forecasting, and controls—including vehicle-to-vehicle communications.

“The rich information provided by connectivity—and the capability of on-board intelligent controls—are shifting the old way (reactive and isolated vehicle/powertrain control) to the new way (predictive, cooperative, and integrated vehicle dynamics and powertrain control),” Chen explains.

Michigan Tech’s NEXTCAR research delivers direct implementation of engineering solutions, tested within the realities of on-road conditions.

Oncken is a hands-on engineer, but not all of his graduate research at Michigan Tech was done under the hood of a hybrid-electric vehicle. In an effort to maximize fuel efficiency in the fleet’s Chevy Volts, he worked with Chen where the car’s digital and mechanical parts meet—powertrain control. He looked at future driving conditions, such as changing traffic lights, and modified the vehicle’s powertrain operation to use the minimum amount of fuel.

Working in Chen’s lab, Oncken used Simulink software to develop a model, specifically looking at predictive controller design. That means when a traffic signal turns red, a self-driving vehicle not only knows to stop, but also gets directions on the best way to slow down and minimize fuel use. 

Oncken would simulate this in the Simulink model, embed the program into the Chevy Volt, then test it using five upgraded traffic signals in Houghton that rely on dedicated short-range communication (DSRC) to talk directly to the car’s programming.

By the end of the NEXTCAR project, the Michigan Tech team had achieved a 21 percent reduction in energy consumption.

All in a day’s work for Dr. Joe Oncken
Dr. Chen with her graduate students at Pictured Rocks National Lakeshore

Now, with new funding from ARPA-E for NEXTCAR II, the team shifts to a broader application of vehicles with level 4 and 5 of autonomy. They will seek to reduce energy consumption by 30 percent this time in the hybrid Chrysler Pacifica and further apply the savings to the RAM 1500 and the Chevy Bolt—while also considering level 4 and 5 automation to gain efficiencies. 

Naber and Chen, along with Grant Ovist, Jeremy Bos, Darrell Robinette, Basha Dudekula and several more graduate students now work together on NEXTCAR II with another round of funding worth $4.5M. They’ll maintain vehicles in multiple locations, both on the Michigan Tech campus and at American Center for Mobility (ACM) for road testing. ACM is a partner in the project, along with Stellantis and GM.

Prof. Chen, how did you first get into engineering? What sparked your interest?

I was attracted by the power of automation and controls. It is currently affecting every aspect of our lives. I want to make contributions specifically to advance the automation technologies.

In her spare time, Dr. Chen likes to work out and travel. Here she’s in Horseshoe Bend, Arizona

Hometown, family?

I was raised in Shaoxing, Zhejiang province in China. I lived in Davis, California for 8 years while earning my PhD at the University of California-Davis. My daughter loves snowboarding and lives in New Jersey.

Dr. Oncken, where did you grow up?

I grew up with my parents and two sisters in Grand Forks, North Dakota. I earned my BS in Mechanical Engineering at the University of North Dakota in 2016. I came to Michigan Tech to earn my PhD soon after, and graduated in 2020.

How did you first get into engineering? What sparked your interest?

There wasn’t any one moment that made me decide to get into engineering. It was more of a process throughout my childhood. Growing up, I was always interested in how things work. My dad is very mechanically inclined so he was alway fixing things around the house and woodworking, so that launched my interest as a young kid. At that time he worked for John Deere, so I got to spend time sitting in tractors and combines, something that will spark any 5 year old’s interest in mechanical things. 

In high school, I also worked for a John Deere dealer. Another job I had involved the technical side (lighting, sound, and set building) of theater and concert productions. While these may seem like two different worlds, they both gave me a behind-the-scenes look at how machinery and large technical systems operate. Together they made me want to pursue a career where I’d be the one designing how things work. 

Finally, living in a university town, there were lots of opportunities to tour the University of North Dakota’s engineering school and see what students got to work on, opportunities that cemented my desire to go into engineering myself.

Joe, out on the Tech Trails.

Any hobbies? Pets?

My main hobby is anything outdoors. I spend my free time mountain biking in the summer, skiing in the winter—and hiking when I’m not doing one of the previous two things.

I also really enjoy cooking and wood working. I don’t currently have any pets, but I did grow up with dogs. I will have a dog of my own sooner rather than later!

Read More

Power Grid, Powertrain and the Models that Connect ThemMichigan Tech Automotive Energy Efficiency Research Receives Federal Award of $2.8 Million from US Department of Energy

Sunit Girdhar, Steven Whitaker Receive 2021 INCE Awards

Two Michigan Tech graduate students were honored by The Institute of Noise Control Engineering (INCE) at their annual honors and awards ceremony recognizing outstanding service, research and activity in noise control.

Sunit Girdhar,
Sunit Girdhar

Sunit Girdhar, doctoral student in mechanical engineering-engineering mechanics, won both the inaugural INCE Student Scholarship and the Martin Hirschorn IAC Prize – Student Project.

Steven Whitaker, an electrical and computer engineering graduate student, received the 2021 Leo Beranek Student Medal for Excellence in Noise Control for Deep recurrent network for tracking an anthropogenic acoustics source in shallow water using a single sensor.

Dana Lodico, INCE-USA vice president, Honors and Awards Committee, applauded the winners. “This year’s winners should be incredibly proud of their achievements in noise control,” said Lodico. “Entries for INCE-USA Honors and Awards were very competitive, and we look forward to seeing how each winner continues to advance the noise control industry in their careers.” 

Read more about the awards on the INCE website.

Greg Odegard: Manned Mars Missions—New Materials

As NASA shifts its focus from low-earth orbit to deep space exploration, the agency is going to need building materials for vehicles, habitats, power systems and other equipment that are lighter and stronger than those available today. Pictured: NASA’s Curiosity Mars image at Mont Mercou, a rock outcrop that stands 20 feet tall. Credit: NASA/JPL-Caltech/MSSS

Greg Odegard shares his knowledge on Husky Bites, a free, interactive webinar this Monday, November 8 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 11/8 at 6 pm ET? Grab a bite with Dean Janet Callahan and Greg Odegard, Professor of Mechanical Engineering-Engineering Mechanics at Michigan Tech. 

Dr. Greg Odegard is the John O. Hallquist Endowed Chair in Computational Mechanics at Michigan Tech.

It’s a bit of a conundrum. When sending humans into space for long periods of time, a significant amount of mass (food, water, supplies) needs to be put on the rockets that leave Earth. More mass in the rocket requires more fuel, which adds more mass and requires more fuel. Current state-of-the-art structural aerospace materials only add more mass, which requires—you guessed it—more fuel. 

During Husky Bites, Professor Greg Odegard will share how his team of researchers at Michigan Tech go about developing new ultra-light weight structural materials to significantly cut fuel costs for sending humans to Mars—and beyond.

Dr. Bill Predebon is the J.S. Endowed Department Chair in Mechanical Engineering–Engineering Mechanics at Michigan Tech

Joining in will be ME-EM department chair Bill Predebon. Dr. Predebon has been at Michigan Tech since 1975. That’s 46 years, and 24 years as department chair. He plans to retire this summer.

“Bill Predebon has been my mentor since I came to Michigan Tech in 2004. I have enjoyed working for him, and I am not ready for him to retire,” says Odegard. “I was extremely impressed with him during my job interview in 2003, which is one of the biggest reasons I came to Michigan Tech.”

In addition to teaching classes and mentoring students at Michigan Tech, Odegard leads the charge in developing a new lighter, stronger, tougher polymer composite for human deep space exploration, through the Ultra-Strong Composites by Computational Design (US-COMP) Institute.

The NASA-funded research project brings together 13 academia and industry partners with a range of expertise in molecular modeling,manufacturing, material synthesis, and testing, now in the final year of the five-year project. 

Pictured: Pre-machined fragments of a polybenzoxazine high-performance polymer in Dr. Odegard’s lab at Michigan Tech. This polymer can be used with carbon-nanotubes to form ultra-strong composites for deep-space applications.

US-COMP’s goal is to develop and deploy a carbon nanotube-based, ultra-high strength lightweight aerospace structural material within five years. And US-COMP research promises to have societal impacts on Earth as well as in space, notes Odegard. Advanced materials created by the institute could support an array of applications and benefit the nation’s manufacturing sector.

The material of choice, says Odegard: carbon. He specifically studies ultrastrong carbon-nanotube-based composites. But not all carbon is equal, notes Odegard. Soft sheets of graphite differ from the rigid strength of diamond, and the flexibility and electrical properties of graphene.

“In its many forms, carbon can perform in many ways. The tricky part with composites is figuring out how different materials interact,” he explains. 

Odegard and his research team use computational simulation—modeling—to predict what materials to combine, how much and whether they’ll stand up to the depths of space. “When we began developing these ultra-strong composites, we weren’t sure of the best starting fibers and polymers, but over time we started to realize certain nanotubes and resins consistently outperformed others,” says Odegard. “Through this period of development, we realized what our critical path to maximize performance would be, and decided to focus only on that, rather than explore the full range of possibilities.”

“I have the most fun working with my students and the broader US-COMP team. Our whole team is excited about the research and our progress, and this makes for some of the best research meetings I have experienced in my career.”

Dr. Greg Odegard

The challenge when working with carbon nanotubes is their structure, says Odegard. “Under the most powerful optical microscope you see a certain structure, but when you look under an SEM microscope you see a completely different structure,” he explains. “In order to understand how to build the best composite panel, we have to understand everything at each length scale.” 

The US COMP Institute has created dedicated experiments and computational models for the chosen carbon nanotube structure, something that must be done for each length scale, from the macro to the atomic.

As their project comes to a close, they’ve zeroed in how just how polymer can be used with carbon-nanotubes to form ultra-strong composites.


NASA’s Mars Curiosity rover took this mosaic image, looking uphill at Mount Sharp.

US-COMP PARTNERS

  • Florida A&M University
  • Florida State University
  • Georgia Institute of Technology
  • Massachusetts Institute of Technology
  • Pennsylvania State University
  • University of Colorado
  • University of Minnesota
  • University of Utah
  • Virginia Commonwealth University
  • Nanocomp Technologies
  • Solvay
  • US Air Force Research Lab
Professor Odegard up on Mt. Meeker, in Colorado where he grew up and earned his degrees.

“As a group we have been able to push the envelope way beyond where we started in 2017—expanding the performance in a very short time period,” says Odegard. “This was made possible through remarkable collaboration across the institute.”

Before Predebon convinced him to join the faculty at Michigan Tech, Odegard worked as a researcher at NASA Langley Research Center in Hampton, Virginia. Odegard’s research has been funded by NASA, the Air Force Office of Scientific Research, the National Science Foundation, the National Institutes of Health, Mayo Clinic, Southwestern Energy, General Motors, REL, and Titan Tires. As a PI and co-PI, he has been involved in externally funded research projects totaling over $21 million. Odegard was a Fulbright Research Scholar at the Norwegian University of Science and Technology. In 2019 he was elected a Fellow of ASME, in recognition of his significant impact and outstanding contributions in the field of composite materials research.

The Odegard family enjoying their time together

Prof. Odegard, how did you first get into engineering? What sparked your interest?

Growing up, I always knew that I would be an engineer. I was always interested in airplanes and spacecraft. 

Hometown, family?

I grew up and went to college in the Denver area. I was already accustomed to snow when I moved to Michigan. 

Any hobbies? What do you do in your spare time?

In the summer, I enjoy running, mountain biking, hiking, basketball, and soccer. In the winter, I like cross-country skiing and downhill skiing. I also enjoy cooking, traveling, and anything fun with my family.

Dr. Predebon, how did you first get into engineering? What sparked your interest?

During my childhood my dad introduced me to model trains. We had a large 8ft x 4ft board with Lionel trains. I learned how they work and how to set it up. That sparked my interest in engineering.

Bill and Peter at Winter Carnival

Hometown, family?

I was born in Trenton, New Jersey. I had one brother, Peter, who is deceased now.  

What do you like to do in your spare time?

For most of my career at Michigan Tech my hobby has been my work. My work has absorbed my life, by choice. I have a real passion for our program. However, I do enjoy exercising, repairing things, and organic gardening. My wife, Maryanne, is very good; I just help. We have a peach tree, we have grown watermelon, we’ve grown cantaloupes, we’ve grown potatoes, her passion is pumpkins so we grow these large pumpkins—150 pounds.

“The way I look at my role is to nurture the growth of my faculty and staff, right along with our students. I want to help them all reach their potential.”

Dr. Bill Predebon

Read More:

Q&A with MTU Research Award Winner Gregory Odegard
NASA Taps Tech Professor to Lead $15 Million Space Technology Research Institute

Michigan Tech Engineering Students at COP26

UN Climate Change Conference UK 2021 in Partnership with Italy

Six Michigan Tech students and three alumni will help lead events and a press conference at the 26th United Nations Climate Change Conference of the Parties (COP26) in Glasgow, Scotland.

As part of the Youth Environmental Alliance in Higher Education (YEAH), a multidisciplinary research and education network of students and faculty from 10 universities across four continents, MTU representatives will help showcase the “Voices of Optimism, Agents of Change” event and exhibit. They will also participate in a press conference Nov. 3 at 11:30 a.m. ET.

Participating engineering students are:

Read more about engineering students at COP26 in Michigan Tech Press Releases.

Alumni Gift of Advanced 3D Metal Printer Now Up and Running at Michigan Tech

One of the first test prints on Michigan Tech’s new 3D metal printer: intricate little fish.

A gift from Alumni, Michigan Tech’s highly-advanced 3D metal printer—a 3D Systems ProX350—arrived last March. It’s now up and running, able to process 11 unique metals, including bio-grade titanium (for biomedical applications), cobalt and chromium, several types of stainless steel, and more. With a resolution of 5 microns, this new large printer is state-of-the-art. 

Obtaining the new 3D printer was made possible by the generosity of Michigan Tech alumni. ME-EM Department Chair Bill Predebon received a 20 percent discount on the $875K system from Scarlett Inc. The owner of Scarlett Inc, Jim Scarlett, is a mechanical engineering alumnus. 

In addition to Scarlett, several other alumni donors pitched in. One anonymous donor provided over $600K , and five others have made up the difference to meet the full cost of $673K. Those five are: Ron Starr, John Drake, Frank Agusti, Todd Fernstrum, and Victor Swanson.

ME-EM department chair Bill Predebon and mechanical engineering alum Jim Scarlett

“Very few universities have a 3D metal printer of this quality and versatility,” says Predebon. “It is one of the most accurate metal 3D printers available. With approximately a 1-ft. cube size billet, which is an impressive size billet, you can make a full-size or scaled-down version of just about anything,” says Predebon.

“We can use our own metal powders, as well,” adds Predebon. “That’s a huge plus. Michigan Tech researchers, particularly those focused on materials development, can use the printer to deposit experimental metal compositions to produce unique metal alloys customized specifically for the 3D printing process.”

Faculty and graduate students at Michigan Tech will have access to the 3D metal printer for research projects. Undergraduate students working on senior design projects and student-run Enterprise teams will, too.

The process is direct metal printing, or DMP, and it’s a type of additive manufacturing, Predebon explains. “You start with metal powders, and from those you create the final metal part. You’re adding a material—in this case, metal—bit by bit. Traditional manufacturing is all about subtracting: taking metal away to make a part. This is the inverse, and it’s a game changer. You can do so much more this way.”

“For many industries—including medical, automotive and aerospace—3D metal printing is a game changer. Here on campus it will be a game changer for Michigan Tech faculty and students, too.” 

William Predebon, Chair, Mechanical Engineering-Engineering Mechanics

Very few universities yet have a system with this sophistication and quality, notes Predebon. 

The benefit for Michigan Tech students, Predebon says, is competitive advantage. “When our students interview for a job, they will be able to communicate how they’ve been able to produce parts in a way very similar to what industry is doing. Some companies have metal 3D printers worth millions of dollars. In industry, engineers can use one of those to print out an entire engine block,” he says. “When Michigan Tech graduates see one on out in industry, the 3D metal printer might be larger, but they will already be familiar with the type of system.”

According to Materials Science and Engineering Professor Steve Kampe, development of additive manufacturing of metals represents a huge opportunity that will be prominent in manufacturing for generations to come. “It is a transformative technology in engineering,” says Kampe. “Using 3D printing to create metallic components poses huge challenges; but the potential benefits are enormous.”

“Metal additive manufacturing along with polymer additive processes are industry 4.0 topics included in Michigan Tech’s online graduate certificate in Manufacturing Engineering,” adds Professor John Irwin, chair of the Department of Manufacturing and Mechanical Engineering Technology. “It is very fortunate for us to have this metal 3D printer here on campus. We’ll use it to demonstrate additive manufacturing design principles and view product purpose: form, fit, and function. 

Michigan Tech’s new metal 3D printer is located on campus in the Minerals and Materials Engineering (M&M) Building. The location in Room 117, is near several other 3D polymer printers. For more information on using the new printer, contact MSE Research Engineer Russ Stein.

Take A Virtual Tour of Our 3D Metal Printer

https://www.mtu.edu/unscripted/2021/10/be-brief-metal.html