Tag: college of engineering

Michigan Tech Alumni & Friends: Join us in Phoenix on Sunday, Feb. 23 for our SME Pasty Social

The Geological & Mining Engineering & Sciences (GMES) Department invites Michigan Tech alumni and families for a pasty social in Phoenix, Arizona. Join us on Sunday, Feb. 23, from 6-9 pm, at the Cornish Pasty Co., 7 West Monroe St. in downtown Phoenix, Arizona.

The GMES Department will provide the first round and some appetizers. Alumni prizes to be raffled off with no purchase required. For those attending the SME Conference, this event is in lieu of the traditional conference social on Tuesday.

GMES will buy the first round. Join us!

All alumni & friends are welcome to join us for this casual evening out! Faculty and students will be in attendance. We hope that alumni and friends attending SME or are otherwise in the local area will join us and bring your families. Please register here: http://www.cvent.com/d/mnq8v8

We are so pleased to announce that our first design team in the SME/NSSGA Student Design Competition has advanced to the second phase of the competition, which occurs at the upcoming SME Conference. Our team was among the top six to advance. Read more here.

Craving a pasty and curious about the history and recipes? Check out this article from MTU Archives: “There’s something about a pasty that is fine, fine, fine!”


2017 American Geophysical Union HONORS Program Recognizes a GMES Alumna

An alumna of GMES is one of seventy-five distinguished scientists to receive the distinction from groups representing their disciplines within the American Geophysical Union.

Lauren N. Schaefer, University of Canterbury, is a recipient of the 2017 Natural Hazards Focus Group Award for Graduate Research. Lauren earned her Ph.D. in Geological Engineering from Michigan Tech in 2016 under the advising of Dr. Thomas Oommen.

Congrats, Lauren! We’re all cheering for your continued success. 

https://eos.org/agu-news/2017-agu-section-and-focus-group-awardees-and-named-lecturers

 


ERUPT: Report Identifies Grand Challenges for Scientific Community to Better Prepare for Volcanic Eruptions

Despite broad understanding of volcanoes, our ability to predict the timing, duration, type, size, and consequences of volcanic eruptions is limited, says a new report by the National Academies of Sciences, Engineering, and Medicine. Meanwhile, millions of people live in volcanically active areas around the world.

 

ERUPT - NAP report
ERUPT: A National Academies report published in April 2017

Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing (ERUPT) identifies grand challenges for the scientific community to better prepare for volcanic eruptions. Michigan Tech volcanologist Simon Carn (GMES) was an author on the report, and served with 11 other volcanologists and scientists on the Committee on Improving Understanding of Volcanic Eruptions that prepared the report. Their goal: improving eruption forecasting and warnings to save lives.

According to the NAP media release on the report, “Volcano monitoring is critical for forecasting eruptions and mitigating risks of their hazards. However, few volcanoes are adequately observed, and many are not monitored at all. For example, fewer than half of the 169 potentially active volcanoes in the US have any seismometers–an instrument to detect small earthquakes that signal underground magma movement. And only three have continuous gas measurements, which are crucial because the composition and quantity of dissolved gases in magma drive eruptions. Enhanced monitoring combined with advances in experimental and mathematical models of volcanic processes can improve the understanding and forecasting of eruptions.”

“This report was requested by NASA, NSF and USGS, the three main sources of funding for volcano science in the US, to identify some of the grand challenges in the field,” says Carn. “It was a privilege to serve on this distinguished committee and help craft a document that we hope will guide and strengthen future research efforts in volcanology.”

“The National Academies convenes committees of experts to review the current understanding of pressing issues and identify priorities for future progress in addressing the issues,” adds Michigan Tech  Department Chair John Gierke (GMES). “Committee reports play important roles in formulating government policies and setting priorities for funding scientific research. Dr. Carn is a global leader in remote sensing for monitoring volcanic emissions and surely contributed a comprehensive assessment of the state of knowledge and recommend how different disciplinary fields could bring new perspectives and approaches to advance the understanding of volcanic hazards.”

Electronic (free) and hard copies ($40) of Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing are available online. More information is available in the NAP media release about the report.

The 2016– 2017 Eruption of Bogoslof Volcano, Aleutian Islands, United States

Bogoslof, a remote, mostly submarine volcano in the Aleutian Island arc began erupting in late December 2016 and activity continues as of February 2017. The Bogoslof eruption highlights several of the challenges facing volcano science. Over one month, the volcano produced numerous explosions with plumes rising 20,000–35,000 ft, posing a significant hazard to North Pacific aviation. There are no ground-based instruments (e.g., seismometers) on the volcano, and so the USGS Alaska Volcano Observatory (AVO) has been relying on distant seismometers, satellite data, infrasound, and lightning detection to monitor activity (Challenge 3). Bogoslof’s submerged vent obscures any preemptive thermal or gas signals, and infrasound and lightning are detectable only after eruptions have begun (Challenge 1). AVO has been unable to provide early warning of these hazardous events. The eruption also highlights our limited understanding of magma–water interactions and raises important questions regarding the controls on phreatomagmatic explosivity, column altitude, ash removal, and pauses (Challenge 2). In more than 20 discrete events, the emerging volcano has reshaped its coastlines repeatedly, providing snapshots of volcano–landscape interactions. The figure below shows the first evidence for an ash-rich (brown-grey) plume, almost one month into the eruptive activity.

Excerpted from Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing, National Academies of Sciences, Engineering, and Medicine, April 2017

 

Bogoslof Volcano
Image from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite showing an eruption plume from Bogoslof volcano on January 18, 2017. The red dot at the base of the eruption cloud is a thermal anomaly on the volcanic edifice. Inset shows a high-resolution image of the volcano from January 11, 2017, with subsequent morphological changes indicated (image courtesy of USGS/AVO).