Tag: Biomedical Engineering

Doctoral Finishing Fellowship Fall 2020 Recipient – Srinivas Kannan


I began my doctoral research in the Fall of 2016 in the Biomedical Microdevices lab under the guidance of Dr. Smitha Rao and Dr. Marina Tanasova (Department of Chemistry). My research focuses on understanding compromised metabolic processes in breast cancers and their impact on the local tumor environment and cancer metastasis using a microfluidic platform.  The overall objective is to better understand the nutrient microenvironment and impact from the nutrients available in the body on breast cancer, to improve cancer detection and therapy.  My doctoral work also includes developing three-dimensional in vitro models for understanding cancer microenvironment and metabolic differences, differential uptake of fructose among breast cancer phenotypes, and develop a platform for cancer diagnostics.

I thank the Michigan Tech Grad School for the fellowship and the Department of Biomedical Engineering for their support.

CGS/ProQuest Distinguished Dissertation Nominee – Ameya Narkar

I obtained my Master’s and PhD degrees in Biomedical Engineering at Tech under the guidance of Dr. Bruce P. Lee in the Department of Biomedical Engineering. My PhD dissertation was entitled “Reversibly switching adhesion of smart adhesives inspired by mussel adhesive chemistry.”

The motivation behind conducting this research was to develop smart adhesives that could be reversibly attached and detached from various surfaces by applying an external trigger. I synthesized a smart adhesive consisting of mussel-inspired adhesive groups and boronic acid protective groups. It showed strong adhesion in a wetted saline environment, while this adhesion was dramatically decreased by elevating the pH to a basic value. The adhesive could be reversibly attached and detached owing to the reversible pH-responsive complexation between the adhesive and protective groups.

Such a smart adhesive that can adhere and debond on-command can enable the repeated attachment of sensors and devices to underwater surfaces such as ship hulls and submarines. These sensors and devices can then be retrieved and re-deployed. A moisture-resistant smart adhesive which can be integrated with wearable electronic sensors that track human vital signs also bears tremendous implications in the biomedical field.

I am currently working as a Postdoctoral Researcher at Syracuse University, where I am designing light-triggered biomaterials for examining cellular activity.

Doctoral Finishing Fellowship Fall 2020 Recipient – Kevin Sunderland

I am a PhD Candidate in my final year with the Biomedical Engineering department at Michigan Tech. My research focuses on the study of complex swirling blood flow patterns and how analyzing their characteristics can help to better understand the development, growth, and rupture of cerebral aneurysms. In my doctoral dissertation, I have utilized computational fluid dynamics to simulate blood flow patterns in 3D vascular models taken from medical imaging files of patients with cerebral aneurysms and applied a novel computational analytic method to identify areas of complex swirling flow and measure their changes over the cardiac cycle. This has led to novel quantified metrics that can improve statistical models to predict areas of aneurysm development, and improve models capable of differentiating ruptured and unruptured aneurysms giving new insights into flow conditions suggestive of aneurysm rupture that are often overlooked in other studies. The final aspect of my doctoral research is to use a specialized flow chamber to expose human vascular endothelial cells to multiple areas of swirling flow, with each area having varied spatiotemporal characteristics. These cells will be analyzed to see if varied swirling flow characteristics lead to differing levels of cellular changes indicative of aneurysm rupture: expression of cell-to-cell adhesion proteins, inflammatory markers, and levels of cellular apoptosis (death).

My hope is that this work will one day help doctors further understand the complex nature of aneurysms, and that the quantified measure of swirling flow characteristics will be utilized in the clinical setting to better identify which aneurysms are at high rupture risk. This could help guide clinical decision making to determine if aneurysm surgery prior to rupture is worth the risk, or if an aneurysm is likely to remain stable, posing minimal risk to patient health.

I am extremely grateful to Michigan Tech’s graduate school for this financial support, allowing me the opportunity to finish my research. I also would like to express my gratitude to my advisors Dr. Jingfeng Jaing and Dr. Feng Zhao (now faculty at Texas A&M), as well as my committee members Dr. Sean Kirkpatrick, Dr. Gowtham, and Dr. Min Wang for their expertise and guidance throughout my research at Michigan Tech.

Doctoral Matwiyoff & Hogberg Endowed Graduate Finishing Fellowship Summer 2020 Recipient – Wenkai Jia

It has been almost five years since I started the journey in MTU. The aurora in summers and the freezing -30 degree Celsius in winters are all my treasured memories. While most of my time was spent in Dr. Feng Zhao’s lab, which is also precious and it determined my future direction. My research focus is on engineering lymphatic and cardiac tissues by using cell derived extracellular matrix, which eliminates the use of artificial materials and augments the outcomes in improving tissue function. Hopefully, the engineered tissues can be used to replace and guide the regeneration of damaged tissues in patients with lymphedema and myocardial infarction.

I would like to thank my adviser Dr. Zhao and Dr. Goldman for their guidance and support. These works cannot be done without them. I would also like to express my sincere gratitude to the Graduate School for the fellowship, which gives me an opportunity to focus on my dissertation and put all my efforts toward completion of my Ph.D. degree.

Portage Health Foundation Graduate Assistantship Spring 2020 Recipient – Pegah Kord Forooshani

Pegah Kord Forooshani
Biomedical Engineering

I joined Dr. Bruce Lee’s lab in the Department of Biomedical Engineering in Fall 2016, where we focused on designing biomimetic materials for different biomedical applications. The overall objective of my research is to manipulate a unique reduction-oxidation chemistry found in mussel adhesive proteins to create novel biomimetic model systems for robust antibacterial activity and enhanced wound healing. Specifically, I have been developing biomimetic hydrogel/microgels which can be activated to release Reactive Oxygen Species such as hydroxyl radical (OH˙) and hydrogen peroxide (H2O2). OH˙ is an extremely potent oxidizer which, unlike H2O2, no known enzyme can detoxify it in the bacteria cells, leading to fast and efficient antibacterial activities. H2O2 is a mild oxidizer, which effectively functions as a broad-spectrum biocide and disinfectant in many biomedical applications. The biological responses to H2O2 are highly dependent on its concentration. The introduction of a relatively high concentration of H2O2 is antimicrobial and a relatively lower concentration promoted wound healing. We are anticipating that our H2O2-releasing hydrogels can serve as a simple and inexpensive approach for the treatment of healing-impaired wounds such as diabetic foot ulcers.

I would like to thank Dr. Lee for all of his valuable guidance and support which have provided me with the opportunity to expand my knowledge and skills. I am also incredibly grateful to the Portage Health Foundation for awarding me this assistantship which will enable me to concentrate on my research and complete my doctoral project.

Doctoral Finishing Fellowship Spring 2020 Recipient – Samerender Nagam Hanumantharao

Samerender Nagam Hanumantharao
Biomedical Engineering

I moved to the city of Houghton to pursue my M.S. degree in Biomedical Engineering in Fall 2015. I completed my Masters’ thesis, titled “ A 3D Biomimetic Scaffold using Electrospinning for Tissue Engineering Applications” under the guidance of Dr. Smitha Rao in Spring 2017. I continued to work with Dr. Rao in pursuit of my Ph.D. My PhD work focuses on understanding and exploiting the role of biomechanical cues in chronic wound healing and cancer. Interestingly, these two diseases share some common factors that can be used to make bandages that can accelerate wound healing or trap metastatic cancer cells.  I want to thank the Graduate School for the funding during the last stage of my research.

Portage Health Foundation Graduate Assistantship Spring 2019 Recipient – Samerender Nagam Hanumantharao

Samerender Nagam Hanumantharao
Biomedical Engineering

I received my Master of Science in Biomedical Engineering from Michigan Tech with the thesis titled “A 3D Biomimetic Scaffold using Electrospinning for Tissue Engineering Applications”. Under the guidance of Dr. Smitha Rao, I have continued my research effort in the field of tissue regeneration focusing on biophysical cues in the micro- and nano- scale that impact tissue growth. Tissue regeneration is a complex process that involves a myriad of biological pathways working in tandem. When this harmony is disturbed, it leads to complications which can be fatal. The healing of wounds caused by diabetic foot ulcer is one such disease that prevents complete healing, and involves time-consuming and expensive rehabilitation. My research focuses on identifying the biophysical cues involved in tissue regeneration for wound healing applications and developing a bandage that accelerates the wound healing process using the native cells of the body. The bandage functions by mimicking the physical characteristics of local tissues providing a framework for the cells to attach and proliferate thereby closing the wound.

I look forward to utilizing this opportunity to develop improved scaffolds and enable technologies to enhance our understanding of the various signaling pathways involved in wound healing. I will continue to identify commercial applications and develop my skills both as a researcher and an entrepreneur. The PHF assistantship will be invaluable in my pursuit. I want to thank the Portage Health Foundation, the department of biomedical engineering at Michigan Tech and my advisor Dr. Rao for the help, support and guidance.

Portage Health Foundation Graduate Assistantship Fall 2019 Recipient – Srinivas Kannan

Srinivas Kannan
Biomedical Engineering

I began my doctoral research in the Fall of 2016 in the Biomedical Microdevices lab under the guidance of Dr. Smitha Rao. My research is focused on breast cancer and understanding breast cancer cell metastasis using a microfluidic platform. The compromised metabolic processes in breast cancers impact the local tumor environment. This is supported by the enhanced uptake of fructose and expression of GLUT5 (fructose specific transporter membrane proteins) in breast cancer cells compared to healthy cells. The overall objective is to better understand the nutrient microenvironment and impact from the nutrients available in the body on breast cancer, to improve cancer detection and/or therapy. Towards this end, I have contributed by testing the GLUT5 specific fluorescent fructose mimics (ManCou probes) developed in Dr. Tanasova’s lab. My doctoral work also includes developing a three-dimensional in vitro model for understanding cancer microenvironment and metabolic differences, differential uptake of fructose among breast cancer phenotypes and develop a platform for cancer diagnostics.

I thank the Portage Health Foundation for awarding me the assistantship and the department of Biomedical engineering at Michigan tech for the financial support. I am grateful for the continued guidance from my advisor Dr. Smitha Rao and my co-advisor Dr. Marina Tanasova.

 

DeVlieg Foundation Fellowship Summer 2019 Recipient – Ami Kling

Ami Kling
Biomedical Engineering

I am a second-year PhD student in the Biomedical Engineering program, although I never intended to pursue a graduate education when I first came to Michigan Tech. I came to this school as an undergraduate student in the fall of 2013 with an associate degree in hand, intent on earning a bachelor’s in 2-3 years and obtaining a job – any job – in the medical device industry. Four years, an undergrad degree, and a newfound love of physics later, I became first a masters and then a PhD student in the Biomedical Engineering department.

My research focuses on a novel medical imaging technique called elastography, which is used to noninvasively quantify tissue stiffness distributions in vivo. Specifically, I am interested in combining optical and ultrasound elastography techniques in order to create an improved system that has potential applications in both research and clinical environments.

I would like to express my sincere gratitude to the DeVlieg Foundation and the Graduate Dean Awards Advisory Panel for the support that has been provided to me for the summer of 2019. This financial support will allow me to concentrate efforts on developing instrumentation, gathering experimental data, and publishing results. Consequently, this support will also further my overarching goal of creating a useful, portable, and readily available diagnostic imaging system. I would also like to thank: the Biomedical Engineering Graduate Programs Committee for their recommendation; my advisors, Dr. Jingfeng Jiang and Dr. Sean J. Kirkpatrick, for their guidance and support; and Mr. David Rosen for his assistance with this project.

Doctoral Finishing Fellowship Spring 2019 Recipient – David Rosen

David Rosen
Biomedical Engineering

My graduate study at MTU began the spring of 2015.  My broad research interests and aspirations are oriented toward soft tissue biomechanics and the physiology and technologies that are associated with the topic.  For my PhD research, my interest in biomechanics has been specifically focused on a medical ultrasound technology called elastography.  Elastography is a technique used to assess soft tissue elasticity in vivo. My graduate research efforts have focused on how the distinctive mechanical properties of soft tissue (i.e. viscoelasticity, heterogeneity, and nonlinear elasticity) manifest in elastography measurements and what role they have in elastographic uncertainty as it relates medical diagnosis.

I am immensely grateful for the support provided by the Graduate School through the Doctoral Finishing Fellowship. This support is instrumental in this final stage of my graduate study. It has been a privilege to study and work on research at MTU and I am excited to see how the skills and knowledge I have developed during my time here will impact my career and my field.