Category: Applied Computing

Sidike Paheding Wins MDPI Electronics Best Paper Award

A scholarly paper co-authored by Assistant Professor Sidike Paheding, Applied Computing, is one of two papers to receive the 2020 Best Paper Award from the open-access journal Electronics, published by MDPI.

The paper presents a brief survey on the advances that have occurred in the area of Deep Learning.

Paheding is a member of the Institute of Computing and Cybersystems’ (ICC) Center for Data Sciences (DataS).

Co-authors of the article, “A State-of-the-Art Survey on Deep Learning Theory and Architectures,” are Md Zahangir Alom, Tarek M. Taha, Chris Yakopcic, Stefan Westberg, Mst Shamima Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul A. S. Awwal, and Vijayan K. Asari. The paper was published March 5, 2019, appearing in volume 8, issue 3, page 292, of the journal.

View and download the paper here.

Papers were evaluated for originality and significance, citations, and downloads. The authors receive a monetary award , a certificate, and an opportunity to publish one paper free of charge before December 31, 2021, after the normal peer review procedure.

Electronics is an international peer-reviewed open access journal on the science of electronics and its applications. It is published online semimonthly by MDPI.

MDPI, a scholarly open access publishing venue founded in 1996, publishes 310 diverse, peer-reviewed, open access journals.

Paper Abstract

In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language processing, cybersecurity, and many others.

This survey presents a brief survey on the advances that have occurred in the area of Deep Learning (DL), starting with the Deep Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent developments, such as advanced variant DL techniques based on these DL approaches. This work considers most of the papers published after 2012 from when the history of deep learning began.

Furthermore, DL approaches that have been explored and evaluated in different application domains are also included in this survey. We also included recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys that have been published on DL using neural networks and a survey on Reinforcement Learning (RL). However, those papers have not discussed individual advanced techniques for training large-scale deep learning models and the recently developed method of generative models.

Sidike Paheding

Dean Livesay to Hold Open Office Hours Fridays, 3-4 pm

New College of Computing Dean Dennis Livesay will hold open virtual office hours every Friday from 3:00 to 4:00 p.m., beginning February 5, 2021.

All faculty, staff, and students who wish to chat with Dr. Livesay are invited to “stop in” to this weekly Zoom meeting. Appointments are not needed.

Open office hours will not be held when classes are not in session.

Link to the meeting here:

ETS-IMPRESS Scholarship for Transfer Students in Technology Majors

Applying to MTU as a transfer student? Interested in engineering technology? Check out the ETS-IMPRESS scholarship program.

Open to community college transfer students, applicants must select as their major the College of Computing undergraduate degree programs in Computer Network and System Administration (CNSA) and Electrical Engineering Technology (EET), or the Mechanical Engineering Technology (MET) bachelor’s program.

The program requires participation in the Honors Pathway Program in the Pavlis Honors College, as well as mentoring activities. It fulfills unmet need of $4,500.

Other requirements are listed on the scholarship website, and the deadline for application is February 15.

When I had discovered the ETS-IMPRESS scholarship, it took very little time to understand how helpful it would be to my life, both in and out of college. Not only was I able to afford to go to college, but I was also getting more out of my college experience.

Brad Gipson, 3rd-year CNSA major

Check out ETS-IMPRESS scholar Caleb Devonta Rogers’ story, below, in which he describes his journey to MTU and his plans for his Honors Project, and remember to apply by February 15!

View the original blog article.

Health Research Institute Panel Is January 25, 12 pm

Michigan Tech’s Health Research Institute (HRI) will host a panel discussion on Monday, January 25, 2021,, from 12:00 to 1:00 p.m.

Health research at Michigan Tech has been steadily growing for over 10 years. This growth has led to many practical uses for the technology developed.  Three researchers, Dr. Megan Frost (Kinesiology and Integrative Physiology), Dr. Bruce Lee (Biomedical Engineering), and Assistant Professor Dr. Weihua Zhou (College of Computing) will discuss their experiences with start-ups and applying their research to relevant health problems.

Computing Majors on Team that Takes 3rd in Lockheed CTF Competition

Two College of Computing RedTeam students are part of a five-member team that finished 3rd in last weekend’s invitation-only Lockheed Martin Advanced Technologies Laboratories (ATL) Capture the Flag cybersecurity competition.

The multi-day virtual event involved 200 students on 40 teams. It opened for answer submission Friday, January 8, at 8:00 p.m., and closed Sunday, January 10, at 8 p.m.

The 3rd Place team, GoBlue!, trailed the 2nd Place team by only 14 points. RedTeam members are Michigan Tech undergraduates Dakoda Patterson, Computer Science, and Trevor Hornsby, Cybersecurity, and three University of Michigan students from the RedTeam’s partnership with that institution.

Michigan Tech RedTeam faculty advisors are Professor Yu Cai, Applied Computing, and Assistant Professor Bo Chen, Computer Science.

“We were lucky to be one of the 40 teams invited,” said Cai. “This was no small task, as the CTF included a large number of points in Reversing and “pwning” challenges, which proved to be fairly difficult. Other challenges were Cryptography, Stegonography, Web Exploitation, and miscellaneous challenges.”

CTF competitions place hidden “flags” in various computer systems, programs, images, messages, network traffic and other computing environments. Each individual or team is tasked with finding these flags. Participants win prizes while learning how to defend against cybersecurity attacks in a competitive and safe arena.

Top Three Teams

Placement Team Name Institution Total Points
1st Place nullbytes George Mason University 3697
2nd Place ChrisSucks George Mason University 3330
3rd Place GoBlue! Michigan Tech and University of Michigan 3316

1010 with … Nathir Rawashdeh, Weds., Dec. 16

Nathir Rawashdeh (right) and Dan Fuhrmann, Interim Dean, Dept. of Applied Computing

You are invited to spend one-zero-one-zero—that is, ten—minutes with Dr. Nathir Rawashdeh on Wednesday, December 16, from 5:30 to 5:40 p.m.

Rawashdeh is assistant professor of applied computing in the College of Computing at Michigan Tech.

He will present his current research work, including the using artificial intelligence for autonomous driving on snow covered roads, and a mobile robot using ultraviolet light to disinfect indoor spaces. Following, Rawashdeh will field listener questions.

We look forward to spending 1010 minutes with you!

Did you miss last week’s 1010 with Chuck Wallace? Watch the video below.

The 1010 with … series will continue on Wednesday afternoons in the new year on January 6, 13, 20, and 27 … with more to come!

College of Computing Convocation is December 18, 3:30 pm

Congratulations, Class of 2020!

We are looking forward to celebrating the accomplishments of our graduates at a Class of 2020 virtual Convocation program on Friday, December 18, 2020, at 3:30 p.m. EST.

The celebration will include special well-wishes from CC faculty and staff, and many will be sporting their graduation regalia. It is our privilege to welcome Ms. Dianne Marsh, 86, ’92, as our Convocation speaker. Dianne is Director of Device and Content Security for Netflix, and a member of the new College of Computing External Advisory Board.

We may be spread across the country and world this December, but we can still celebrate with some style. We look forward to sharing our best wishes with the Class of 2020 and wishing them continued success as they embark on the next phase of their lives!

This December, 40 students are expected to graduate with College of Computing degrees, joining 92 additional Class of 2020 PhD, MS, and BS alumni.

Dianne Marsh ’86, ’92 is Director of Device and Content Security for Netflix. Her team is responsible for securing the Netflix streaming client ecosystem and advancing the platform security of Netflix-enabled devices. Dianne has a BS (’86) and MS (’92) in Computer Science from Michigan Tech.

Visit the Class of 2020 Webpage

Congratulations Graduates. We’re proud of you.

Sidike Paheding Lecture is Dec. 11, 3 pm

Assistant Professor Sidike Paheding, Applied Computing, will present his lecture, “Deep Neural Networks for UAV and Satellite Remote Sensing Image Analysis,” on Dec. 11, 2020, at 3:00 p.m. via online meeting.

Paheding’s research focuses on the areas of computer vision, machine learning, deep learning, image/video processing, and remote sensing.

The lecture is presented by the Department of Computer Science.

Lecture Abstract

Remote sensing data can provide non-destructive and instantaneous estimates of the earth’s surface over a large area, and has been accepted as a valuable tool for agriculture, weather, forestry, defense, biodiversity, etc. In recent years, deep neural networks (DNN), as a subset of machine learning. for remote sensing has gained significant interest due to advances in algorithm development, computing power, and sensor systems.

This talk will start with remote sensing image enhancement framework, and then primarily focuses on DNN architectures for crop yield prediction and heterogeneous agricultural landscape mapping using UAV and satellite imagery.

Speaker Biography

Paheding is an associate editor of the Springer journal Signal, Image, and Video Processing, ASPRS Journal Photogrammetric Engineering & Remote Sensing, and serves as a guest editor/reviewer for a number of reputed journals. He has advised students at undergraduate, M.S., and Ph.D. levels, and authored/coauthored close to 100 research articles.

Sidike Paheding Publishes Paper in Expert Systems and Applications Journal

A research paper by Assistant Professor Sidike Paheding, Applied Computing, is to be published in the November 2020 issue of the journal, Expert Systems and Applications.

An in-press version of the paper, “Binary Chemical Reaction Optimization based Feature Selection Techniques for Machine Learning Classification Problems,” is available online.


  • A chemical reaction optimization (CRO) based feature selection (FS) technique is proposed.
  • The proposed CRO based FS technique is improvised using particle swarm optimization.
  • Performance evaluation of proposed techniques on benchmark datasets gives promising results.

Paper Abstract

Feature selection is an important pre-processing technique for dimensionality reduction of high-dimensional data in machine learning (ML) field. In this paper, we propose a binary chemical reaction optimization (BCRO) and a hybrid binary chemical reaction optimization-binary particle swarm optimization (HBCRO-BPSO) based feature selection techniques to optimize the number of selected features and improve the classification accuracy.

Three objective functions have been used for the proposed feature selection techniques to compare their performances with a BPSO and advanced binary ant colony optimization (ABACO) along with an implemented GA based feature selection approach called as binary genetic algorithm (BGA). Five ML algorithms including K-nearest neighbor (KNN), logistic regression, Naïve Bayes, decision tree, and random forest are considered for classification tasks.

Experimental results tested on eleven benchmark datasets from UCI ML repository show that the proposed HBCRO-BPSO algorithm improves the average percentage of reduction in features (APRF) and average percentage of improvement in accuracy (APIA) by 5.01% and 3.83%, respectively over the existing BPSO based feature selection method; 4.58% and 3.12% over BGA; and 4.15% and 2.27% over ABACO when used with a KNN classifier.

Expert Systems With Applications, published by Science Direct/Elsevier, is a refereed international journal whose focus is on exchanging information relating to expert and intelligent systems applied in industry, government, and universities worldwide. The journal’s Impact factor is 5.4.