Category: Applied Computing

Computing Majors on Team that Takes 3rd in Lockheed CTF Competition

Two College of Computing RedTeam students are part of a five-member team that finished 3rd in last weekend’s invitation-only Lockheed Martin Advanced Technologies Laboratories (ATL) Capture the Flag cybersecurity competition.

The multi-day virtual event involved 200 students on 40 teams. It opened for answer submission Friday, January 8, at 8:00 p.m., and closed Sunday, January 10, at 8 p.m.

The 3rd Place team, GoBlue!, trailed the 2nd Place team by only 14 points. RedTeam members are Michigan Tech undergraduates Dakoda Patterson, Computer Science, and Trevor Hornsby, Cybersecurity, and three University of Michigan students from the RedTeam’s partnership with that institution.

Michigan Tech RedTeam faculty advisors are Professor Yu Cai, Applied Computing, and Assistant Professor Bo Chen, Computer Science.

“We were lucky to be one of the 40 teams invited,” said Cai. “This was no small task, as the CTF included a large number of points in Reversing and “pwning” challenges, which proved to be fairly difficult. Other challenges were Cryptography, Stegonography, Web Exploitation, and miscellaneous challenges.”

CTF competitions place hidden “flags” in various computer systems, programs, images, messages, network traffic and other computing environments. Each individual or team is tasked with finding these flags. Participants win prizes while learning how to defend against cybersecurity attacks in a competitive and safe arena.

Top Three Teams

Placement Team Name Institution Total Points
1st Place nullbytes George Mason University 3697
2nd Place ChrisSucks George Mason University 3330
3rd Place GoBlue! Michigan Tech and University of Michigan 3316

1010 with … Nathir Rawashdeh, Weds., Dec. 16

Nathir Rawashdeh (right) and Dan Fuhrmann, Interim Dean, Dept. of Applied Computing

You are invited to spend one-zero-one-zero—that is, ten—minutes with Dr. Nathir Rawashdeh on Wednesday, December 16, from 5:30 to 5:40 p.m.

Rawashdeh is assistant professor of applied computing in the College of Computing at Michigan Tech.

He will present his current research work, including the using artificial intelligence for autonomous driving on snow covered roads, and a mobile robot using ultraviolet light to disinfect indoor spaces. Following, Rawashdeh will field listener questions.

We look forward to spending 1010 minutes with you!

Did you miss last week’s 1010 with Chuck Wallace? Watch the video below.

The 1010 with … series will continue on Wednesday afternoons in the new year on January 6, 13, 20, and 27 … with more to come!

College of Computing Convocation is December 18, 3:30 pm

Congratulations, Class of 2020!

We are looking forward to celebrating the accomplishments of our graduates at a Class of 2020 virtual Convocation program on Friday, December 18, 2020, at 3:30 p.m. EST.

The celebration will include special well-wishes from CC faculty and staff, and many will be sporting their graduation regalia. It is our privilege to welcome Ms. Dianne Marsh, 86, ’92, as our Convocation speaker. Dianne is Director of Device and Content Security for Netflix, and a member of the new College of Computing External Advisory Board.

We may be spread across the country and world this December, but we can still celebrate with some style. We look forward to sharing our best wishes with the Class of 2020 and wishing them continued success as they embark on the next phase of their lives!

This December, 40 students are expected to graduate with College of Computing degrees, joining 92 additional Class of 2020 PhD, MS, and BS alumni.

Dianne Marsh ’86, ’92 is Director of Device and Content Security for Netflix. Her team is responsible for securing the Netflix streaming client ecosystem and advancing the platform security of Netflix-enabled devices. Dianne has a BS (’86) and MS (’92) in Computer Science from Michigan Tech.

Visit the Class of 2020 Webpage

Congratulations Graduates. We’re proud of you.

Sidike Paheding Lecture is Dec. 11, 3 pm

Assistant Professor Sidike Paheding, Applied Computing, will present his lecture, “Deep Neural Networks for UAV and Satellite Remote Sensing Image Analysis,” on Dec. 11, 2020, at 3:00 p.m. via online meeting.

Paheding’s research focuses on the areas of computer vision, machine learning, deep learning, image/video processing, and remote sensing.

The lecture is presented by the Department of Computer Science.

Lecture Abstract

Remote sensing data can provide non-destructive and instantaneous estimates of the earth’s surface over a large area, and has been accepted as a valuable tool for agriculture, weather, forestry, defense, biodiversity, etc. In recent years, deep neural networks (DNN), as a subset of machine learning. for remote sensing has gained significant interest due to advances in algorithm development, computing power, and sensor systems.

This talk will start with remote sensing image enhancement framework, and then primarily focuses on DNN architectures for crop yield prediction and heterogeneous agricultural landscape mapping using UAV and satellite imagery.

Speaker Biography

Paheding is an associate editor of the Springer journal Signal, Image, and Video Processing, ASPRS Journal Photogrammetric Engineering & Remote Sensing, and serves as a guest editor/reviewer for a number of reputed journals. He has advised students at undergraduate, M.S., and Ph.D. levels, and authored/coauthored close to 100 research articles.

Sidike Paheding Publishes Paper in Expert Systems and Applications Journal

A research paper by Assistant Professor Sidike Paheding, Applied Computing, is to be published in the November 2020 issue of the journal, Expert Systems and Applications.

An in-press version of the paper, “Binary Chemical Reaction Optimization based Feature Selection Techniques for Machine Learning Classification Problems,” is available online.

Highlights

  • A chemical reaction optimization (CRO) based feature selection (FS) technique is proposed.
  • The proposed CRO based FS technique is improvised using particle swarm optimization.
  • Performance evaluation of proposed techniques on benchmark datasets gives promising results.

Paper Abstract

Feature selection is an important pre-processing technique for dimensionality reduction of high-dimensional data in machine learning (ML) field. In this paper, we propose a binary chemical reaction optimization (BCRO) and a hybrid binary chemical reaction optimization-binary particle swarm optimization (HBCRO-BPSO) based feature selection techniques to optimize the number of selected features and improve the classification accuracy.

Three objective functions have been used for the proposed feature selection techniques to compare their performances with a BPSO and advanced binary ant colony optimization (ABACO) along with an implemented GA based feature selection approach called as binary genetic algorithm (BGA). Five ML algorithms including K-nearest neighbor (KNN), logistic regression, Naïve Bayes, decision tree, and random forest are considered for classification tasks.

Experimental results tested on eleven benchmark datasets from UCI ML repository show that the proposed HBCRO-BPSO algorithm improves the average percentage of reduction in features (APRF) and average percentage of improvement in accuracy (APIA) by 5.01% and 3.83%, respectively over the existing BPSO based feature selection method; 4.58% and 3.12% over BGA; and 4.15% and 2.27% over ABACO when used with a KNN classifier.

Expert Systems With Applications, published by Science Direct/Elsevier, is a refereed international journal whose focus is on exchanging information relating to expert and intelligent systems applied in industry, government, and universities worldwide. The journal’s Impact factor is 5.4.

GSG to Host 3MT Competition Nov. 5

Three Minute Thesis (3MT) competition, hosted by the Graduate Student Government, will take place virtually tomorrow (Nov. 5). Come join us on an eventful day where research meets fun.

Participants are judged on their communication and presentation skills, while delivering content in just three minutes with one static PowerPoint slide.

You can watch the participants’ videos online on GSG’s 3MT website starting at 9 a.m. tomorrow.

With 28 participants and 4 different heats, 8 finalists will be chosen for the final rounds. The judging panel consists of 3 different faculty/staff from different majors. The names of the finalists will be declared by Noon.

The contestants qualifying for the next round will compete against each other from 6 to 8 p.m. Friday (Nov. 6) in the Rozsa Center for Performing Arts.

There will be a limit of 200 patrons who can be seated in the Rozsa center to adhere to social distancing guidelines. The seating will be on a first-come-first-served basis. The event will also be streamed live on GSG’s Facebook page.

Join us in-person or virtually to enjoy the event and choose a ‘People’s Choice’ award winner. The first and second place winners will receive cash prizes of $300 and $150 respectively. Additionally, a People’s Choice (PC) award will be given to a speaker selected by the event’s audience, with a cash prize of $100. A Facebook poll and in-person voting will happen to choose this speaker.

Michigan Tech Ranked Among Best Colleges in the State and the Country

Michigan Tech is one of the top two universities in Michigan and among the best in the country, according to rankings by the website WalletHub, released Monday.

When compared to colleges and universities in Michigan, Tech was ranked No. 2. Among the 273 midwest colleges and universities listed, Michigan Tech was rated 30th, up one from a year ago.

WalletHub named 500 institutions on its “2021’s College and University Rankings.” Michigan Tech was ranked No. 138 on the overall list, up eight spots from last year’s ranking.

WalletHub looks to find the top-performing schools at the lowest possible costs to undergrads. The website compared more than a thousand U.S. institutions using 33 key measures. That data is grouped into seven categories such as Student Selectivity, Cost and Financing, and Career Outcomes.

Innovative, Active, Effective. Introducing Sidike Paheding, Applied Computing

Be Innovative. Be Active. Be Effective. This is College of Computing Assistant Professor Sidike Paheding’s teaching philosophy.

New to the Department of Applied Computing this fall, Paheding’s teaching interests include digital image processing and machine learning. This academic year he is teaching SAT3812 Cyber Security I.

A member of the Institute of Computing and Cybersystems’s Center for Data Sciences, Paheding’s research seeks to develop novel AI-driven technologies. His primary interests are image/video processing, machine learning, deep learning, computer vision, and remote sensing.

Paheding comes to Michigan Tech from Purdue University Northwest, where he was a visiting assistant professor in the ECE department. Prior to that, he was a postdoctoral research associate and assistant research professor in the Remote Sensing Lab at Saint Louis University from 2017 to 2019.

Paheding is an associate editor of the journals, Signal Image and Video Processing (Springer) and Photogrammetric Engineering and Remote Sensing (ASPRS), and topic editor for Remote Sensing. He completed his Ph.D. in electrical engineering at University of Dayton, Ohio.

Computing is a part of my life.

Sidike Paheding, Assistant Professor, Applied Computing

Active Research

Title: Cybersecurity Modules Aligned with Undergraduate Computer Science and Engineering Curricula
Sponsor: NSF
PI at Michigan Tech
Duration: July 2020 – June 2022
Total Award: $159,417.00

Research Abstract

This project aims to serve the national interest by improving how cybersecurity concepts are taught in undergraduate computing curricula. The need to design and maintain cyber-secure computing systems is increasingly important. As a result, the future technology workforce must be trained to have a security mindset, so that they consider cybersecurity during rather than after system design.

This project aims to achieve this goal by building plug-and-play, hands-on cybersecurity modules for core courses in Computer Engineering, and Computer Science and Engineering. The modules will align with the curricula recommended by the Association for Computing Machinery and will be designed for easy adoption into computing programs nationwide. Modules will be designed for integration into both introductory and advanced courses, thus helping students develop in-depth understanding of cybersecurity as they progress through their computing curriculum. It is expected that the project will encourage more students to pursue careers or higher degrees in the field of cybersecurity.

Recent Publications

Sidike, P., Sagan, V., Maimaitijiang, M., Maimaitiyiming, M., Shakoor, N., Burken, J., … & Fritschi, F. B. (2019). dPEN: deep Progressively Expanded Neural Network for mapping heterogeneous agricultural landscape using WorldView-3 satellite imagery. Remote Sensing of Environment, 221, 756-772. [Impact Factor: 9.085]

Sidike, P., Asari, V. K., & Sagan, V. (2018). Progressively Expanded Neural Network (PEN Net) for hyperspectral image classification: A new neural network paradigm for remote sensing image analysis. ISPRS journal of photogrammetry and remote sensing, 146, 161-181. [Impact Factor: 7.319]

Sidike, P., Asari, V. K., & Alam, M. S. (2015). Multiclass object detection with single query in hyperspectral imagery using class-associative spectral fringe-adjusted joint transform correlation. IEEE Transactions on Geoscience and Remote Sensing, 54(2), 1196-1208. [Impact Factor: 5.855]

Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., & Fritschi, F. B. (2020). Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment, 237, 111599. [Impact Factor: 9.085]

Health Informatics MS: Virtual Info Night is Tues., Oct. 27

Are you thinking about attending graduate school? Are you open to learning about emerging career areas in which you can leverage your undergraduate learning in healthcare or computer science?


On Tuesday, October 27, 2020, at 6:00 p.m., via online Zoom meeting, the Health Informatics Master of Science and Accelerated Master’s programs will present a virtual info session for current students.

Please pre-register for the free info session here.

From the general to the specific, the info session will cover what you need to know about applying for and completing a Health Informatics master’s degree at Michigan Tech.

Attendees will consider the benefits of an advanced degree, learn about the fast-track accelerated master’s program, review the the online application process, and more.

Associate Professor Guy Hembroff, Health Informatics graduate program director, and Jacque Smith, director of Enrollment Services for the Michigan Tech Graduate School, will host the info session.

A link to the virtual info session will be shared shortly.

“It’s Working!” — CCISD, Michigan Tech Launch New CTE Program in Mechatronics

Michigan Tech recently launched a year-long Career and Technical Education (CTE) program for high school juniors or seniors in the area of Mechatronics. The new CTE Mechatronics program is offered through a partnership between Michigan Tech and the Copper Country Intermediate School District (CCISD). 

Teaming up to deliver the instruction are faculty in the Mechatronics, Electrical and Robotics Engineering Technology (MERET) program in the College of Computing, and faculty in the Manufacturing and Mechanical Engineering Technology (MMET) Department in the College of Engineering

Michigan Tech faculty administering the CTE program include Prof. John Irwin, Chair of the Department of Manufacturing and Mechanical Engineering Technology, or Prof. Alex Sergeyev in the College of Computing. 

“Students in the program will find careers in smart manufacturing fields, or they can find a pathway at Michigan Tech into undergraduate or graduate degrees in Engineering Technology, Engineering, or Mechatronics.” says Irwin.

There are 10 students enrolled this fall 2020 from the local area school districts of Houghton, Hancock, Calumet, and L’Anse. CTE Director Shawn Kolbus expects the program to only increase in popularity. “Local business owners approached us last year wanting to get more students from the area interested in Mechatronics, CADD and Engineering,” he says. “The result was the Mechatronics program which encompasses standards from each area.” 

The course is taught by two mechatronics professionals who possess both industry and teaching experience. One of those instructors is George Ochieze, who is pursuing a master’s degree in Mechatronics and a PhD in Mechanical Engineering at Michigan Tech. “Even in difficult times during the pandemic, these young scholars show overwhelming potential to conquer the mechatronics field—a glimpse into a welcoming future in engineering,” says Ochieze.

The second instructor, Chinmay Kondekar, will earn an MS in Electrical Engineering at Michigan Tech in 2021. “Teaching for local schools is an opportunity for me to give back to people in the community who welcomed me as an international student,” says Kondekar. “I hope to create a strong interest in robotics and automation in my students. People with these skills will be the future of manufacturing and will have plenty of opportunities.”

Program enrollment is closed for 2020, but will be available again starting in fall 2021. This spring there will be the opportunity for area sophomore and junior students to visit Michigan Tech to tour the labs and meet the instructors. Both the Applied Computing and MMET department labs used at Michigan Tech are equipped with state-of-the-art electronics and mechanical systems partially provided through generous startup funding from the CCISD.

Mechatronics uses electromechanical systems, typically automated for the design of products and processes. Industry 4.0—sometimes called the “fourth industrial revolution”—applies various aspects of mechatronics to manufacturing enterprises. Topics in the CTE Mechatronics program include; automation, computer integrated manufacturing, high speed manufacturing, embedded systems design and controls, industrial robotics, pneumatics, hydraulics, and computer-aided design. 

For more information please contact Shawn Kolbus, Director, Career and Technical Education, Copper Country Intermediate School District (906) 250-5353.