Also In This Section
  • Categories

  • Recent News

  • Category: Lectures

    Sangyoon Han to Present Chemistry Seminar this Friday, Nov. 13, at 3 pm

    A Chemistry Seminar will be presented Friday, September 13, 2020, at 3:00 p.m., via online meeting.

    Dr. Sangyoon Han will present his lecture, “Toward Discovery of the Initial Stiffness-Sensing Mechanism by Adherent Cells.” Han is an Assistant Professor in Biomedical Engineering, an Affiliate Assistant Professor in Mechanical Engineering-Engineering Mechanics, and advisor for the Korean Student Association. Han is a member of the ICC’s Center for Data Science.

    Lecture Abstract

    The stiffness of the extracellular matrix (ECM) determines nearly every aspect of cellular/tissue development and contributes to metastasis of cancer. Adherent cells’ stiffness-sensing of the ECM triggers intracellular signaling that can affect proliferation, differentiation, and migration of the cells. However, biomechanical and molecular mechanisms behind this stiffness sensing have been largely unclear. One critical early event during the stiff-sensing is believed to be a force transmission through integrin-based adhesions, changing the molecular conformation of the molecules comprising the adhesions that link the ECM to the cytoskeleton. To understand this force transmission, my lab develops experimental and computational techniques, which include soft-gel-based substrates, live-cell imaging, computer-vision-based analysis, and inverse mechanics, etc. In this talk, I will talk about how we use soft-gel to quantify the spatial distribution of mechanical force transmitted by a cell, how we use light microscopy and computer vision to analyze the focal adhesions, and how these techniques are related to stiffness sensing. In particular, I will show you new data where cells can transmit different levels of traction forces in response to varying stiffness, even when the activity of the major motor protein, myosin, is inhibited. At the end of the talk, potential molecules responsible for the differential transmission will be discussed. 

    Researcher Bio

    Sangyoon Han received his Ph.D. in Mechanical Engineering at the University of Washington (UW) in 2012 and did postdoctoral training with Dr. Gaudenz Danuser in the Department of Cell Biology at Harvard Medical School and the University of Texas Southwestern Medical Center for five years until 2017. Before the Ph.D., he received B.S and M.S. degree from Mechanical Engineering at Seoul National University, Seoul, Korea in 2002 and 2004.

    He joined Michigan Tech, Biomedical Engineering from fall 2017, and started Mechanobiology Laboratory. His lab’s interests are in understanding the dynamic nature of force modulation occurring across cell adhesions and cytoskeleton that regulate cells’ environmental sensing. His lab develops a minimally-perturbing experimental approach and computational techniques, including soft-gel fabrication, nano-mechanical tools, live-cell microscopy, and image data modeling, to capture the coupling between force modulation and cellular molecular dynamics.


    Accessible Computing Expert Dr. Richard Ladner to Present Keynote November 13

    The ICC’s Center for Human-Centered Computing invites Michigan Tech faculty, staff, students, and alumni to a keynote lecture by leading accessible design expert and research scientist Dr. Richard E. Ladner on Friday, November 13, 2020, at 1:00 p.m., via online meeting.

    His talk, “Accessible K-12 Computer Science Education,” is the final event of HCC’s Husky Research Celebration, a showcase of interdisciplinary HCC research through a series of virtual lab tours, virtual mini talks, and lectures presented in a 360-degree virtual space. More details here.

    Ladner is a Professor Emeritus in the Paul G. Allen School of Computer Science and Engineering at the University of Washington, where he has been on the faculty since 1971.

    His current research is in the area of accessible computing, a subarea of human-computer interaction (HCI). Much of his current research focuses on accessible educational technology.

    Ladner is principal investigator of the NSF-funded AccessComputing Alliance, which works to increase participation of students with disabilities in computing fields. He is also a PI of the NSF-funded AccessCSforAll, which is focused on preparing teachers of blind, deaf, and learning disabled children to teach their students computer science.

    Lecture Title: Accessible K-12 Computer Science Education

    Lecture Abstract: For the past twelve years there has been rapid growth in the teaching of computer science in K-12 with a particular focus on broadening the participation of students from underrepresented groups in computing including students with disabilities. Popular tools such as Scratch, ScratchJr, and many other block-based programming environments have brought programming concepts to millions of children around the world. Code.org’s Hour of Code has hundreds of activities with almost half using block-based environments. New computer science curricula such as Exploring Computer Science and Computer Science Principles have been implemented using inaccessible tools. In the meantime the United States has about 8 million school children with recognized disabilities which is about 16% of the K-12 student population. It is generally not the case that these students are adequately served by the current K-12 computer science education or any of the block-based programming environments.

    In particular, the approximately 30,000 blind and visually impaired children are left out because only a few educational tools are screen reader accessible. In this talk we address this problem by describing two programming environments that are accessible: the Quorum Language and Blocks4All. The Quorum Language, created by Andreas Stefik, is a text-based programming language whose syntax and semantics have been created to be as usable as possible using randomized controlled trials. The language is not at all intimidating to children. For younger children, Lauren Milne created Blocks4All a block-based programming environment that can be used by anyone including children who are blind or visually impaired. Blocks4All uses a touchscreen platform similar to ScratchJr and takes advantage of the fact the blind children already know how to use touchscreen devices using their built-in screen readers. The challenge for the future of K-12 computer science is to be more inclusive to all students regardless of race, ethnicity, gender, socioeconomic status, and disability status.

    Founded in 2015, the Institute of Computing and Cybersystems (ICC) promotes collaborative, cross-disciplinary research and learning experiences in the areas of computing education, cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems, for the benefit of Michigan Technological University and society at large.

    The ICC creates and supports an arena in which faculty and students work collaboratively across organizational boundaries in an environment that mirrors contemporary technological innovation. The ICC’s 55 members represent more than 20 academic disciplines at Michigan Tech.

    The Center for Human-Centered Computing (HCC) focuses on the research and development of novel interfaces for human-agent interaction, assistive technologies, intelligent health, computational modeling, and examining trust and decision making in distributed systems.

    The Center is directed by Associate Professor Elizabeth Veinott, Cognitive and Learning Sciences, a cognitive psychologist who focuses on two main areas of research: decision making and learning using serious video games.


    HCC Research Expo 2020

    An Immersive Exploration of Research Across Campus

    The ICC’s Human-Centered Computing group (HCC) will host its 3rd annual HCC Research Expo, November 12-13, 2020, in conjunction with World Usability Day 2020.

    VR-Huskies, an exciting virtual social platform that leverages 360-degree panorama technology, is the venue for the 48-hour event. Projects, brief research talks, and lab tours will be available on demand for attendees to browse at leisure. The immersive experience will be available from Thurs., Nov. 12, at 9:00 a.m. too Fri., Nov. 13, at midnight.


    The HCC Expo concludes with a keynote lecture from leading accessible computing and design researcher Dr. Richard E. Ladner on Friday, November 13, at 1:00 p.m., via online meeting. Read more about Dr. Ladner here.

    The aim of the annual HCC Expo is to showcase the interdisciplinary HCC research happening across campus, and to provide a a forum for Michigan Tech students to explore HCC research opportunities, tour labs, and engage in virtual discussions.

    The Human-Centered Computing research group investigates a wide range of 21st century human-centered computing challenges, engaging faculty from computer science, psychology, engineering, and other Michigan Tech departments.

    About VR-Huskies

    VR-Huskies Virtual Social Space

    VR-Huskies is an active research project led by new faculty member, Assistant Professor Ricardo Eiris, Civil and Environmental Engineering, and sponsored by the College of Engineering. It is a custom implementation of Mozilla Hubs®, an open-source platform which creates custom dynamic representations of information.

    Participants can enter the VR-Huskies site with minimal effort, interacting with up to 25 others as they explore the latest research developments in human centered computing at Michigan Tech. Registration is not required. VR Huskies is accessible on any device, including head-mounted displays, desktop computers, laptops, tablets, and mobile devices.

    Eiris says that the goal of VR-Huskies is to deliver in-depth learning in a multitude of contexts, such as field trips, outreach events, and entrepreneurial activities, while engaging students in opportunities to apply critical thinking, collaboration, communication, and creativity.

    Expected outcomes of the project include the implementation of a virtual learning environment in which Michigan Tech students can socially interact with STEM experiences and visit remote locations that are typically impossible to reach.

    Ricardo Eiris received his Ph.D. in Design, Construction, and Planning from the University of Florida in August 2020. He is an educator and a researcher exploring the dynamics and implications of human-technology interactions within construction and engineering.


    Founded in 2015, the Institute of Computing and Cybersystems (ICC) promotes collaborative, cross-disciplinary research and learning experiences in the areas of computing education, cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems.

    The Center for Human-Centered Computing (HCC) focuses on the research and development of novel interfaces for human-agent interaction, assistive technologies, intelligent health, computational modeling, and examining trust and decision making in distributed systems.

    The Center is directed by Associate Professor Elizabeth Veinott, Cognitive and Learning Sciences, a cognitive psychologist who focuses on research in decision making and learning using serious video games.


    Junqiao Qiu to Present Lecture November 6

    Assistant Professor Junqiao Qiu, Computer Science, will present his lecture, “Speculative Parallelization for FSM-centric Computations,” this Friday, Nov. 6, 2020, at 3:00 p.m., via online meeting.

    Lecture Abstract

    As a fundamental computation model, finite-state machine (FSM) has been used in a wide range of data-intensive applications, including malware detection, bioinformatics, semi-structured data analytics, natural language processing and even machine learning. However, FSM execution is known to be “embarrassingly sequential” due to the state dependences among transitions. Current studies find that speculation is a promising solution to address the inherent dependencies in FSM computations and thus enables scalable FSM parallelization.
    This talk will firstly introduce the fundamental scalability bottleneck in the current FSM parallelization, and then an aggressive speculation, a generalized speculation model that allows a speculated state to be validated against the result from another speculation, is proposed to address the scalability limitations. Finally, this talk will discuss the possibility to enlarge the applicability of the proposed approach and go beyond the FSM-based computations.

    Juneiao Qiu is a member of the Institute of Computing and Cybersystems’ (ICC) Center for Scalable Architectures and Systems (SAS).


    GSG to Host Grant Writing Webinar Nov. 12

    As a student or a researcher, a necessary component of your work is applying for a multitude of grants to obtain funding for future projects. Peter Larson, director of research development at Michigan Tech, will conduct a seminar on Grant Writing from 4 to 5  p.m. on Thursday, Nov. 12 via Zoom.

    Larson specializes in creating effective grant and research proposals, particularly in the non-technical proposal sections that researchers often struggle with. Please send any topics or questions you wish to see discussed to gsg-prodev@mtu.edu so we can structure the seminar to better suit your needs.

    Those who participate in the seminar will get a chance to enter a raffle draw. Space is not really limited but just so we know how many students to expect, be sure to register.


    Leo Ureel Receives 2020 CTL Instructional Award

    by Michael R. Meyer, Director, William G. Jackson CTL

    Assistant Professor Leo Ureel, Computer Science, is among the Deans’ Teaching Showcase members who have been selected to receive 2020 CTL instructional Awards.

    The awardees will make presentations next spring semester to share the work that led to their nomination.

    When their presentation concludes, each will be formally recognized with a certificate and $750 in additional compensation .

    Tuesday, Jan. 26, 2021 — Curriculum Development: Katrina Black, Senior Lecturer in Physics

    Thursday Feb. 18, 2021 — Innovative or Out of Class Teaching: Libby Meyer, Lecturer in Visual and Performing Arts and Leo Ureel, Assistant Professor in Computer Science

    Tuesday, March 30, 2021 — Large Class Teaching: Kette Thomas, Associate Professor of Diverse Literature in Humanities

    These events will take place from 3:30-4:30 on the dates listed. Detailed titles, topics, and registration links for each presentation will be circulated in anticipation of each event.

    Many thanks to the previous CTL instructional award recipients and the Provost’s office staff who were instrumental in the selection process.

    Please consider suggesting instructors whom you’ve seen make exceptional contributions in Curriculum Development, Assessment, Innovative or Out-of-Class teaching or Large Class Teaching to the appropriate chair or dean so that they can be considered for the upcoming (2021) Deans’ Teaching Showcase during spring semester.


    Tim Havens: Warm and Fuzzy Machine Learning

    What are you doing for supper this Monday night at 6? Grab a bite with Dean Janet Callahan and Associate Professor Tim Havens, director of the Michigan Tech’s Institute of Computing and Cybersystems and associate dean for research in the College of Computing. Get the full scoop and register at mtu.edu/huskybites.

    “Nearly everyone has heard the term ‘Deep Learning’ at this point, whether to describe the latest artificial intelligence feat like AlphaGo, autonomous cars, facial recognition, or numerous other latest-and-greatest gadgets and gizmos,” says Havens. “But what is Deep Learning? How does it work? What can it really do—and how are Michigan Tech students advancing the state-of-the-art?”

    In this session of Husky Bites, Prof. Havens will talk about everyday uses of machine learning—including the machine learning research going on in his lab: explosive hazards detection, under-ice acoustics detection and classification, social network analysis, connected vehicle distributed sensing, and other stuff.

    Joining in will be one of Havens’ former students, Hanieh Deilamsalehy, who earned her PhD in electrical engineering at Michigan Tech. She’s now a machine learning researcher at Adobe. Dr. Deilamsalehy graduated from Michigan Tech in 2017 and headed to Palo Alto to work for Ford as an autonomous vehicle researcher. She left the Bay Area for Seattle to take a job at Microsoft, first as a software engineer, and then as a machine learning scientist. In April she accepted a new machine learning position at Adobe, “in the middle of the pandemic!”

    Havens is a Michigan Tech alum, too. He earned his BS in ‘99 and MS in Electrical Engineering in ‘00, then went to the MIT Lincoln Laboratory, where he worked on simulation and modeling of the Airborne Laser System, among other defense-related projects. From there it was the University of Missouri for a PhD in Electrical and Computer Engineering, researching machine learning in ontologies and relational data.

    Nowadays, Havens is the William and Gloria Jackson Associate Professor and Associate Dean for Research in the College of Computing. In addition to serving as director of Michigan Tech’s ICC, he also heads up the ICC Center for Data Sciences and runs his own PRIME Lab, too (short for Pattern Recognition and Intelligent Machines Engineering).

    “An important goal for many mobile platforms—terrestrial, aquatic, or airborne—is reliable, accurate, and on-time sensing of the world around them.”Tim Havens

    Havens has spent the past 12 years developing methods to find explosive hazards, working with the US Army and a research team in his lab. According to a United Nations report, more than 10,000 civilians were killed or injured in armed conflict in Afghanistan in 2019, with improvised explosive devices used in 42 percent of the casualties. Havens is working to help reduce the numbers.

    “Our algorithms detect and locate explosive hazards using two different systems: a vehicle-mounted multi-band ground-penetrating radar system and a handheld multimodal sensor system,” Havens explains. “Each of these systems employs multiple sensors, including different frequencies of ground penetrating radar, magnetometers and visible-spectrum cameras. We’ve created methods of integrating the sensor information to automatically find the explosive hazards.” 

    As a PhD student at Michigan Tech, Deilamsalehy worked alongside Havens as a research assistant in the ECE department’s Intelligent Robotics Lab (IRLab). “My research was focused on sensor fusion, machine learning and computer vision, fusing the data from IMU, LiDAR, and a vision camera for 3D localization and mapping purposes,” she says. “I used data from a sensor platform in the IRLab, mounted on an unmanned aerial vehicle (UAV), to evaluate my proposed fusion algorithm.”

    Havens is also co-advisor to students in the SENSE (Strategic Education through Naval Systems Experience) Enterprise team at Michigan Tech, along with ME-EM Professor Andrew Barnard. Students in SENSE design, build, and test engineering systems in all domains: space, air, land, sea, and undersea. Like all Enterprise teams, SENSE is open to students in any major. 

    Prof. Havens, when did you first get into engineering? What sparked your interest?

    I first became an engineer at Michigan Tech in the late 90s. What really sparked my interest in what-I-do-now was my introductory signal processing courses. The material in these courses was the first stuff that really ‘spoke’ to me. I have always been a serious musician and the mathematics of waves and filters was so intuitive because of my music knowledge. I loved that this field of study joined together the two things that I really loved: music and math. And I’ve always been a computer geek. I was doing programming work in high school to make extra money; so that side of me has always led me to want to solve problems with computers.

    Hometown, Hobbies, Family?

    I grew up in Traverse City, Michigan, and came to Tech as a student in the late 90s. I’ve always wanted to come back to the Copper Country; so, it’s great that I was able to return to the institution that gave me the jump start in my career. I live (and currently work from home) in Hancock with my partner, Dr. Stephanie Carpenter (an author and MTU professor), and our two fur children, Rick Slade, the cutest ginger in the entire world, and Jaco, the smartest cat in the entire world. I have a grown son, Sage, who enjoys a fast-paced life in Traverse City. Steph and I enjoy exploring the greater Keweenaw and long discussions about reality television, and I enjoy playing music with all the local talent, fishing (though catching is a challenge), and gradually working through the lumber pile in my garage.

    Dr. Deilamsalehy, how did you find engineering? What sparked your interest?

    I was born and raised in Tehran, Iran. I have always been into robotics. I was a member of our robotics team in high school and that led me to engineering. I decided to apply to Michigan Tech sort of by chance when a friend of mine told me about it. I looked at the programs in the ECE department, and felt they aligned with my interests. Then soon after I first learned about Michigan Tech, I found out that one of my undergraduate classmates went there. I talked to him, and he also encouraged me to apply. And that’s how I was able to join Michigan Tech for my PhD program. My degree is in electrical engineering but my focus at Michigan Tech involved computer science and designing Machine Learning solutions.

    Hobbies and Interests?

    I now live in Seattle, famous for outdoor activities—kind of like the UP, but without the cold—so I do lots of mountaineering, biking, rock climbing, and in the winter, skiing. I learned how to ski at Michigan Tech, up on Mont Ripley. It’s steep, and it’s cold! Once you learn skiing on Ripley, you’re good. You can ski just about anywhere.
    3


    Jim Keller to Present ICC Distinguished Lecture October 30

    Dr. James Keller, recently retired Curators’ Distinguished Professor in the EE/CS department at University of Missouri, Columbia, will present his lecture, “Soft Streaming Classification,” on Friday, October 30, 2020, at 3:00 p.m., via Zoom online meeting.

    The talk is an Institute of Computing and Cybersystems’ (ICC) Distinguished Lecture Series event.

    Join the meeting here.


    A Life Fellow of the Institute of Electrical and Electronics Engineers (IEEE), Keller recently received the IEEE Frank Rosenblatt Award for his “fundamental work on fuzzy pattern recognition, fuzzy clustering, and fuzzy technologies in computer vision.” He holds a number of additional professional and academic honors and awards.

    Lecture Abstract

    As the volume and variety of temporally acquired data continues to grow, increased attention is being paid to streaming analysis of that data. Think of a drone flying over unknown terrain looking for specific objects which may present differently in different environments. Understanding the evolving environments is a critical component of a recognition system.

    With the explosion of ubiquitous continuous sensing (something Lotfi Zadeh predicted as one of the pillars of Recognition Technology in the late 1990s), this on-line streaming analysis is normally cast as a clustering problem. However, examining most streaming clustering algorithms leads to the understanding that they are actually incremental classification models.

    These approaches model existing and newly discovered structures via summary information that we call footprints. Incoming data is routinely assigned crisp labels (into one of the structures) and that structure’s footprints are incrementally updated; the data is not saved for iterative assignments.

    The three underlying tenets of static clustering:

    1. Do you believe there are any clusters in your data?
    2. If so, can you come up with a technique to find the natural grouping of your data?
    3. Are the clusters you found good groupings of the data?

    These questions do not directly apply to the streaming case. What takes their place in this new frontier?

    In this talk, I will provide some thoughts on what questions can substitute for the Big 3, but then focus on a new approach to streaming classification, directly acknowledging the real identity of this enterprise. Because the goal is truly classification, there is no reason that these assignments need to be crisp.

    With my friends, I propose a new streaming classification algorithm, called StreamSoNG, that uses Neural Gas prototypes as footprints and produces a possibilistic label vector (typicalities) for each incoming vector. These typicalities are generated by a modified possibilistic k-nearest neighbor algorithm.

    Our method is inspired by, and uses components of, a method that we introduced under the nomenclature of streaming clustering to discover underlying structures as they evolve. I will describe the various ingredients of StreamSoNG and demonstrate the resulting algorithm on synthetic and real datasets.


    Tim Schulz to Present Michigan Tech Research Forum Oct. 14

    Timothy Schulz

    University Professor Timothy Schulz (ECE) will be featured at the Michigan Tech Research Forum (MTRF) at 4:30 p.m. Wednesday, Oct. 14.
    Schulz’s presentation is titled “Direct Measurement of Coherent Fields.” Additional details can be found on the MTRF website.

    The presentation will be available via Zoom and a limited number of people will be permitted to attend in person, dependent on university guidelines on the date of the event. If you wish to be considered for in-person attendance, complete this form by today (Oct. 9).

    Schulz is a member of the ICC’s Center for Data Sciences.

    The MTRF is presented by the Office of the Provost in coordination with the Office of the Vice President for Research. The forum showcases and celebrates the work of Michigan Tech researchers and aims to strengthen discussions in our community. All are welcome, including the general public.


    Guy Hembroff Presents Invited Talk at Bahiana Medical School, Brazil

    Associate Professor Guy Hembroff, director of Michigan Tech’s Health Informatics graduate program, presented an invited virtual talk to physicians, residents, and medical students at the Bahiana Medical School, Salvador, Brazil, on September 25, 2020.

    Hembroff spoke about, “The Challenges and Opportunities of Artificial Intelligence in Disease Prevention and Monitoring.”

    BAHIANA (Bahia School of Medicine and Public Health) is a private, nonprofit, educational, cultural, scientific and healthcare institution. Its main purpose is “teaching, research and the spread of knowledge and special services in the fields of health, science and culture in general.” Learn more here.