Category Archives: Research

Call for Applications: Songer Research Award for Human Health Research

2018-19 Songer Award Recipients. Pictured Left to Right: Abby Sutherland, Billiane Kenyon, Jeremy Bigalke, Rupsa Basu, Matthew Songer, and Laura Songer.

Matthew Songer, (Biological Sciences ’79) and Laura Songer (Biological Sciences ’80) have generously donated funds to the College of Sciences and Arts (CSA) to support a research project competition for undergraduate and graduate students. Remembering their own eagerness to engage in research during their undergraduate years, the Songers established these awards to stimulate and encourage opportunities for original research by current Michigan Tech students. The College is extremely grateful for the Songers’ continuing interest in, and support of, Michigan Tech’s programs in human health and medicine. This is the second year of the competition.

Students may propose an innovative medically-oriented research project in any area of human health. The best projects will demonstrate the potential to have broad impact on improving human life. This research will be pursued in consultation with faculty members within the College of Sciences and Arts. In the Spring of 2019, the Songer’s gift will support one award for undergraduate research ($4,000) and a second award for graduate research ($6,000). Matching funds from the College may allow two additional awards.

Any Michigan Tech student interested in exploring a medically related question under the guidance of faculty in the College of Sciences and Arts may apply. Students majoring in any degree program in the college, including both traditional (i.e., biological sciences, kinesiology, chemistry) and nontraditional (i.e., physics, psychology, social science, bioethics, computer science, mathematics) programs related to human health may propose research projects connected to human health. Students are encouraged to propose original, stand-alone projects with expected durations of 6 – 12 months. The committee also encourages applications from CSA students who seek to continue research projects initiated through other campus mechanisms, such as the Summer Undergraduate Research Fellowship (SURF) program, Pavlis Honors College activities or the Graduate Research Forum (GRF).

Funds from a Songer Award may be used to purchase or acquire research materials and equipment needed to perform the proposed research project. Access to and research time utilizing University core research facilities, including computing, may be supported. Requests to acquire a personal computer will be scrutinized and must be fully justified. Page charges for publications also may be covered with award funds, as will travel to appropriate academic meetings. This award may not be used for salary or compensation for the student or consulting faculty.

To apply:

  • Students should prepare a research project statement (up to five pages in length) that describes the background, methods to be used, and research objectives. The statement also should provide a detailed description of the experiments planned and expected outcomes. Students must indicate where they will carry out their project and attach a separate list of references/citations to relevant scientific literature.
  • The application package also should provide a concise title and brief summary (1 page) written for lay audiences.
  • A separate budget page should indicate how funds will be used.
  • A short letter from a consulting faculty member must verify that the student defined an original project and was the primary author of the proposal. The faculty member should also confirm her/his willingness to oversee the project. This faculty letter is not intended to serve as a recommendation on behalf of the student’s project.

Submit applications as a single PDF file to the Office of the College of Sciences and Arts by 4:00 p.m. Monday, April 22. Applications may be emailed to djhemmer@mtu.edu.

The selection committee will consist of Matthew Songer, Laura Songer, Shekhar Joshi (BioSci) and Megan Frost (KIP). The committee will review undergraduate and graduate proposals separately and will seek additional comments about the proposed research on an ad-hoc basis from reviewers familiar with the topic of the research proposal. Primary review criteria will be the originality and potential impact of the proposed study, as well as its feasibility and appropriateness for Michigan Tech’s facilities.

The committee expects to announce the recipients by early May of 2019. This one-time research award will be administered by the faculty advisor of the successful student investigator. Students will be expected to secure any necessary IRB approval before funds will be released. Funds must be expended by the end of spring semester 2020; extensions will not be granted. Recipients must submit a detailed report to the selection committee, including a description of results and an accounting of finds utilized, no later than June 30, 2020.

Any questions may be directed to Megan Frost (mcfrost@mtu.edu), David Hemmer (djhemmer@mtu.edu) or Shekhar Joshi (cpjoshi@mtu.edu).


Summer School: Michigan Tech Professors Travel and Teach in India

Lynn and Claudio Mazzoleni posing with a large group of researchers in IndiaAtmospheric science experts Lynn Mazzoleni (Chem) and Claudio Mazzoleni (Physics), traveled more than 8,000 miles from Houghton to the National Institute of Technology Calicut (NIT) in the Southern Indian state of Kerala. Invited by Ravi Varma, associate professor of physics at NIT, and sponsored by the Global Initiative for Academic Networks (GIAN), their three-week trip was punctuated by local cultural experiences, sandwiched between giving several academic lectures.

They participated in a six-day GIAN-sponsored workshop, “Atmospheric Aerosol: Optical Properties, Composition, and Effects on Climate,” for students and junior faculty from NIT and elsewhere. The GIAN program is funded by the Indian government to foster high-quality international experiences and to elevate India’s reputation in science, technology, engineering and mathematics (STEM). One way to achieve the mission is by inviting internationally renowned scientists like the Mazzolenis to share their expertise in atmospheric aerosols.

Read the full story on mtu.edu/news.


Yoke Khin Yap Wins Research Award

Yoke Khin YapYoke Khin Yap, professor of physics, has won the 2018 Research Award.

It’s a story well ingrained in our collective consciousness—the tale of the scientist laboring long hours for months or even years in dogged pursuit of answers. It’s a story we like to tell because it assures us someday our hard work will pay off. And in Yoke Khin Yap’s case, it certainly has.

The professor of physics has pursued a research path that embodies this story of science, taking an idea about certain nanomolecules from mere theory to, very soon, commercialized product. He also won the Bhakta Rath Research Award with student Chee Huei Lee in 2011. Yap’s contributions to fundamental understanding of boron-carbon-nitrogen nanostructures, the development of transistors without semiconductors and commercialization of high-brightness fluorophores for medical imaging have been honored with his receipt of Michigan Tech’s Research Award.

Read the full story on mtu.edu/news.



Hawry, Hjorth are 2018 SURF Award Recipients

Congratulations to Connor Hawry and Zackerie Hjorth (both advised by Prof. Yoke Khin Yap), who received Summer Undergraduate Research Fellowships for 2018. Connor will be working on synthesis of small diameter BNNTs for biomedical application and Zackerie on boron nitride nanosheet synthesis for increasing electron mobility of graphene and TMDCs on SiO2 substrates.


In Print

Raymond ShawRaymond Shaw (Physics/EPSSI) is the principal investigator on a project that has received a $185,703 research and development grant from the National Science Foundation (NSF). Will Cantrell (Physics) is Co-PI on the project “Laboratory Studies of the Effect of Turbulence on Aerosol-Cloud Interactions.”
This is the first year of a possible three-year project potentially totaling $719,035.


New Funding

image153545-persMark Kulie (GMES/EPSSI) is the principal investigator on a project that received a $8,448 research and development grant from the National Aeronautics and Space Administration (NASA). The project is “Deployment and Maintenance of a Proposed Snowfall Measurement Network to Study GFM Footprint-level Snowfall Variability.”
This is a nine-month project.

Yap’s Review Article Top 10 in 2017

Yoke Kin Yap in a lab with lab coat and safety glassesFrontier Review article published by Yoke Khin Yap was one of the Top 10 most downloaded articles published in Environmental Science: Nano in 2017 and was included in a feature collection showcasing the journal’s Most Downloaded Articles. This article, entitled “Water Purification: Oil-water Separation by Nanotechnology and Environmental Concerns” was co-authored by Chee Huei Lee, Bishnu Tiwari, and Dongyan Zhang.

Environmental Science: Nano is a high-impact journal published by the Royal Society of Chemistry. This journal is designated to publish articles on nanomaterial applications and interactions with environmental and biological systems.


Do the Room Temp Melt: Physics of Soft Materials

Screen Shot 2018-01-08 at 4.59.40 PMSalt-doped block polymers and ionic liquids—it’s a thermodynamic party. Better physics simulations crank up the possibilities for new composite materials.

Issei Nakamura is a theoretical physicist bringing a reality check to soft materials development. Specifically, he models the complex interactions of ionic liquids and block polymers, which together create salt-doped block polymers.

The ionic liquid squishes in between all the loops and strands of the block polymer. Because an ionic liquid can assemble a block polymer into millions of structures with wide-ranging properties, the possibilities are nearly endless. The composite materials show promise for battery electrodes, fuel cell membranes, electrochemical sensors and even artificial muscles.

The catch is that the materials have to get their thermodynamic groove figured out. Right now, untwining the conditions and properties of all those possible structures is like learning to tango blindfolded. Researchers and engineers can go through the motions, but understanding the sequence, the steps—and why—requires a new way to look at the system. And that’s where Nakamura steps in. Read the full story in Unscripted.