Category: Academic

Issei Nakamura Selected for Deans’ Teaching Showcase

Issei Nakamura
Issei Nakamura

College of Sciences and Arts Dean LaReesa Wolfenbarger has selected Issei Nakamura, associate professor of physics, as the featured instructor in this week’s Deans’ Teaching Showcase.

Nakamura will be recognized at an end-of-term event with other spring showcase members and is a candidate for the CTL Instructional Award Series.

Nakamura is an outstanding instructor who has taught a suite of undergraduate and graduate courses in the last 10 years. His teaching in physics spans a broad range of subjects, including classical mechanics, solid-state physics, statistical thermodynamics, modern physics for quantum mechanics, electromagnetism, special theory of relativity, and computational physics.

Nakamura’s experience as a physicist in the classroom has been deeply fulfilling, allowing him to engage closely with students at Michigan Tech. His student-centered approach to active learning extends beyond classroom engagement, encouraging students to tackle small problem sets before or after each lecture. As the course progresses, this “just-in-time” learning strategy reinforces concepts, strengthens retention and allows misconceptions to be addressed in real time.

“The way you structured the homework assignments was very helpful for learning the new material,” one student wrote to Nakamura. “It encouraged critical thinking as we applied the material we learned in class, connecting overarching concepts with the minutiae of the complex math required to understand the topics.”

“Dr. Nakamura continually revises his courses to ensure that students are learning concepts and skills to reflect the workplace they will enter upon graduating,” said Wolfenbarger.

Nakamura’s commitment to innovative teaching continues to evolve. He has restructured his computational physics course, integrating introductory machine learning techniques into the curriculum to align with the growing demand for computational expertise. This course — a core component of the graduate certificate program Advanced Computational Physics — equips students with advanced numerical skills applicable beyond academia. These competencies open doors to careers in research, technology and industries reliant upon modern computational physics.

Nakamura’s philosophy in physics education is to inspire students’ passion for learning by not only deepening their understanding of theoretical principles but also demonstrating their practical applications. He emphasizes the interconnectedness of different areas in physics, recognizing that students often struggle to integrate concepts across disciplines. To help bridge this gap, he encourages students to draw connections between different physics fields. For example, to help students develop a more intuitive grasp of these abstract concepts, he highlights how principles in quantum mechanics or thermodynamics can be interpreted through classical mechanics.

“Issei is an exceptional teacher who cares about engaging students in learning and has made meaningful contributions by incorporating computational components that greatly enhance the physics courses,” said Ravindra Pandey, chair of the Department of Physics.


About the Physics Department

Physicists at Michigan Technological University help students apply academic concepts to real-world issues. Our physicists take on the big questions to discover how the universe works—from the smallest particles to the largest galaxies. The Physics Department offers three undergraduate degrees and three graduate degrees. Supercharge your physics skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at physics@mtu.edu. Follow us on FacebookTwitter, and YouTube for the latest happenings. Or read more at the Physics Newsblog.

Faculty Position

Image of Michigan Tech campus from above
Michigan Technological University
Est. 1885

The Department of Physics at Michigan Technological University (MTU) seeks a candidate to fill a faculty position as a tenure-track Assistant Professor or higher level in Optics, to begin in August 2025. Preference will be given to candidates with experience in quantum optics, optical sensing, polaritonics, or photonic quantum computation. However, researchers displaying excellence in any areas of optics that complement the activities of current physics faculty at MTU are encouraged to apply. The successful candidate will receive support from the Elizabeth and Richard Henes Center for Quantum Phenomena (https://www.mtu.edu/quantum/), housed within the department.

Required qualifications include a Ph.D. in Physics or a closely related field, postdoctoral experience, and a proven publication record. Candidates should demonstrate commitment to teaching and mentoring at undergraduate and graduate levels. 

Please apply online at https://www.employment.mtu.edu/cw/en-us/job/493716/assistantprofessor-optics, including vita, statements of research interests and teaching philosophy, and contact information for three references. Application evaluation will begin January 6, 2025, and continue until the position is filled. Detailed information about the department can be found at https://www.mtu.edu/physics/. 

MTU is Michigan’s flagship technological university and will be a Carnegie-classified R1 institution in 2025. The university provides its graduates with an extremely high return on investment through its academic rigor and focus on experiential learning. Located near the shore of Lake Superior in Michigan’s scenic Upper Peninsula, the university provides a high standard of living. The community offers a small-town environment with outstanding four-season recreational opportunities.

MTU is an Equal Opportunity Educational Institution/Equal Opportunity Employer that provides equal opportunity for all, including protected veterans and individuals with disabilities. 


About the Physics Department

Physicists at Michigan Technological University help students apply academic concepts to real-world issues. Our physicists take on the big questions to discover how the universe works—from the smallest particles to the largest galaxies. The Physics Department offers three undergraduate degrees and three graduate degrees. Supercharge your physics skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at physics@mtu.edu. Follow us on FacebookTwitter, and YouTube for the latest happenings. Or read more at the Physics Newsblog.

The Reactive INTERFACE Force Field

Professor Ravindra Pandey
Professor Ravindra Pandey

A team including Michigan Tech research groups led by Ravi Pandey and Greg Odegard (MAE) has published a research article in Nature Communications. The title is “Implementing reactivity in molecular dynamics simulations with harmonic force fields.”

The research highlights the development of the Reactive INTERFACE Force Field (IFF-R) for molecular dynamics simulations for various material systems, including molecules, nanotubes, metals and polymer composites. The newly developed IFF-R, which incorporates specific chemical environments and electronic structure effects as needed, is both accurate and efficient. IFF-R calculations use significantly fewer computational resources compared to current reactive force fields to predict the structural and mechanical properties of complex biological and material structures, from atomic to micrometer scales.

Recent physics alum Geeta Sachdeva (PhD ’22) was a key contributor to this project. The research groups of Hendrik Heinz of the University of Colorado Boulder, Adri van Duin of Penn State, and Pieter J. in ‘t Veld of BASF, Germany also collaborated on the study.

The work was partially supported by grant NNX17AJ32G from the NASA Space Technology Research Institute for Ultra-Strong Composites by Computational Design to Michigan Tech.


About the Physics Department

Physicists at Michigan Technological University help students apply academic concepts to real-world issues. Our physicists take on the big questions to discover how the universe works—from the smallest particles to the largest galaxies. The Physics Department offers three undergraduate degrees and three graduate degrees. Supercharge your physics skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at physics@mtu.edu. Follow us on FacebookTwitter, and YouTube for the latest happenings. Or read more at the Physics Newsblog.

Giusarma Garners Deans’ Teaching Showcase Honors

College of Sciences and Arts Dean Ravindra Pandey has selected Elena Giusarma, assistant professor in the Department of Physics, for the Deans’ Teaching Showcase. Giusarma will be recognized at an end-of-term event with other showcase members. Her inclusion makes her a candidate for the CTL Instructional Award Series.

Giusarma Instruction Innovator

Elena Giusarma
Elena Giusarma

Giusarma has proven herself to be an excellent instructor in the classroom environment. She’s implemented innovative teaching methods and strategies to enhance the learning experience for students. Giusarma incorporates interactive simulations, virtual observatory tools, and multimedia resources to bring the wonders of astronomy directly to the students. This approach aims to cater to diverse learning styles and foster a deeper understanding of complex celestial concepts. Her teaching style goes beyond traditional lecture formats. Active learning techniques such as classroom discussions, group activities, and debates encourage students to articulate their thoughts and challenge their understanding of astronomical concepts.

Giusarma’s course in Statistics, Data Mining, and Machine Learning in Astrophysics for undergraduate and graduate students plays a crucial role in shaping students’ academic and professional trajectories. In an era dominated by data-driven decision-making, proficiency in these areas is highly sought after in both research and industry. The course serves as a pathway to developing practical skills directly applicable to analyzing and interpreting vast astronomical datasets. The course is part of a graduate certificate program developed in 2022, offering participants a structured pathway to acquire expertise in statistical analysis, data mining, and machine learning in astrophysics. The importance of these skills extends beyond academia, opening doors to diverse career opportunities in research institutions, technology companies, and various sectors that rely on data analytics.

Giusarma Receives Praise

Jacek Borysow, interim chair of the physics department, noted that Giusarma’s knowledge and understanding of physics and astronomy allow her to be a role model for female students who aspire to succeed in science and engineering. “Her presence in the classroom enables female students to visualize where they want to go and what is possible to achieve. … Her lectures are full of positive energy and unlimited enthusiasm; she sincerely cares about the students. She is simply an outstanding instructor and mentor.”

Maria Bergstrom, associate dean for undergraduate education in the College of Sciences and Arts, praised Giusarma’s commitment to both undergraduate and graduate education: “Faculty like Dr. Giusarma have a tremendous impact on the success of Michigan Tech students. From inspiring young, prospective students to come to our campus to study astronomy and astrophysics to mentoring graduate students, Dr. Giusarma’s commitment to excellence in teaching is an important contribution to our College, and we are pleased to recognize her achievements.”

About the Physics Department

Physicists at Michigan Technological University help students apply academic concepts to real-world issues. Our physicists take on the big questions to discover how the universe works—from the smallest particles to the largest galaxies. The Physics Department offers three undergraduate degrees and three graduate degrees. Supercharge your physics skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at physics@mtu.edu. Follow us on FacebookTwitter, and YouTube for the latest happenings. Or read more at the Physics Newsblog.

Wil Slough Selected for Deans’ Teaching Showcase

Jackson Center for Teaching and Learning

Director of First-Year Programs, Wil Slough
Director of First-Year Programs, Wil Slough

College of Sciences and Arts Dean David Hemmer has selected Wil Slough as a featured instructor in the Deans’ Teaching Showcase.

Slough, director of first-year programs and laboratory director in the Department of Physics, will be recognized at an end-of-term event with other showcase members and is a candidate for the CTL Instructional Award Series.

Slough has made substantial contributions to teaching calculus-based physics courses and labs at Michigan Tech. Over the past decade, he anchored one of the very large physics courses during spring semesters, with enrollments often exceeding 650 students. In this capacity, he successfully maintained the learning management system, online homework system, classroom response system, examinations and accommodations, and popular office hours. His efforts have served a crucial role in ensuring the quality, consistency and effectiveness of these foundational courses over time.

Illustrative of Slough’s dedication to helping students succeed and improving the experiences of first-year students at Michigan Tech, he took the initiative to engage the department in a deeper examination of PH2100. This led to campus-wide discussions and, finally, the development of a supplementary instruction course for students needing additional support. “Student success in our large introductory science courses is critical to Michigan Tech’s overall success, and our students are fortunate to have faculty as dedicated as Wil Slough,” commented Hemmer.

The physics department also offers over 100 introductory physics lab sections for approximately 2,000 students each year. As the laboratory director, Slough supervises all lab courses, oversees equipment, manages the operational budget and supports 60 employees. Over the years, he has developed and implemented a robust and fully integrated approach to the physics labs, with resulting courses that have received high student satisfaction in evaluations. He has led the continuous improvement efforts for junior-level capstone lab courses based on assessments, further demonstrating his commitment to enhancing the quality of the lab offerings to benefit student learning. His efforts have also helped the department identify and remedy impediments to student retention.

Physics Chair Ravindra Pandey has strong praise for Slough’s impact within the department. “Wil is an exceptional teacher who cares about engaging students in their learning and has made a meaningful contribution to improving the quality of education and student outcomes in the physics department,” said Pandey.

John Jaszczak, chair of the department’s undergraduate studies committee, has worked with Slough for many years. “Not only is Wil remarkable in his capacity to effectively manage and teach the large lectures and laboratories, but I am also most impressed with his continuous personal touch with students,” said Jaszczak. “He proactively connects with them via email and in person to ensure they are keeping up with assignments and taking advantage of office hours and other resources. He also regularly checks with his student employees in a friendly and supportive manner to ensure they thrive in the physics department. He is a role model as a supervisor.”

Faculty Position

Image of Michigan Tech campus from above
Michigan Technological University
Est. 1885

This position has been filled, thank you for your interest.

Detailed information about research and educational programs in the department can be found at mtu.edu/physics. Information about open positions and the application process can be found at https://www.employment.mtu.edu/.

MTU attracts world-class faculty and staff who enrich the educational experience of smart, motivated, and adventurous students. Applicants who are committed to promoting a sense of belonging and contributing to an equitable and inclusive learning environment for all are strongly encouraged to apply (https://www.mtu.edu/diversity-inclusion/).

Physicists develop a linear response theory for open systems having exceptional points


Linear analysis plays a central role in science and engineering. Even when dealing with nonlinear systems, understanding the linear response is often crucial for gaining insight into the underlying complex dynamics. In recent years, there has been a great interest in studying open systems that exchange energy with a surrounding reservoir. In particular, it has been demonstrated that open systems whose spectra exhibit non-Hermitian singularities called exceptional points can demonstrate a host of intriguing effects with potential applications in building new lasers and sensors.


At an exceptional point, two or modes become exactly identical. To better understand this, let us consider how drums produce sound. The membrane of the drum is fixed along its perimeter but free to vibrate in the middle. As a result, the membrane can move in different ways, each of which is called a mode and exhibits a different sound frequency. When two different modes oscillate at the same frequency, they are called degenerate. Exceptional points are very peculiar degeneracies in the sense that not only the frequencies of the modes are identical but also the oscillations themselves. These points can exist only in open, non-Hermitian systems with no analog in closed, Hermitian systems.


Over the past years, ad-hoc analysis of the scattering coefficients of non-Hermitian systems having exceptional points has revealed a puzzling result, namely that sometimes their frequency response (the relation between an output and input signals after interacting with the system as a function of the input signal’s frequency) can be Lorentzian or super Lorentzian (i.e. a Lorentzian raised to an integer power). In contrast, the response of a standard linear, isolated oscillator (excluding situations where Fano lineshapes can arise) is always Lorentzian.


Now, an international team of physicists led by Prof. Ramy El-Ganainy from Michigan Technological University, along with several collaborators from Penn State, the Humboldt University in Berlin, and the University of Central Florida, has tackled this problem in their recent Nature Communications article titled “Linear response theory of open systems with exceptional points”. In that work, the team presents a systematic analysis of the linear response of non-Hermitian systems having exceptional points. Importantly, they derive a closed-form expression for the resolvent operator quantifying the system’s response in terms of the right and left eigenvectors and Jordan canonical vectors associated with the underlying Hamiltonian.

A schematic representation of a complex non-Hermitian open system with many degrees of freedom made of coupled optical microdisk cavities. The linear response theory developed in this work provides a full characterization of the relation between output and input signals (indicated by green and yellow arrows, respectively) in terms of the eigenmodes and the canonical states of the underlying non-Hermitian Hamiltonian.


“In contrast to previous expansions of the resolvent operator in terms of the Hamiltonian itself, the formalism developed here provides direct access to the linear response of the system and demonstrates exactly when and how Lorentzian and super-Lorentzian responses arise” says Prof. El-Ganainy. “As it turned out, the nature of the response is determined by the excitation (input) and collection (output) channels” says Amin Hashemi, the first author of the manuscript. The presented theory describes this behavior in detail and is generic enough to apply to any non-Hermitian systems having any number of exceptional points of any order, which makes it instrumental for studying non-Hermitian systems with large degrees of freedom.


Yap named University Professor

Yoke Khin Yap, a professor in the Department of Physics, was selected to become Michigan Tech’s newest University Professor during the 2019-2020 academic year, through a highly selective process. Yap joined the Department of Physics in 2002 and was promoted to full professor in 2011. Ravi Pandey, chair of physics, said “Dr. Yap is enthusiastic about both teaching and research and treats the two as inseparable.”

Read more in Tech Today.

The Building Blocks for Gamma-Ray Astronomy for High School

This summer a Research Experience for Teachers (RET) was hosted by the Department of Physics at Michigan Technological University and the High-Altitude Water Cherenkov (HAWC) research group at Michigan Tech. The six-week experience involved learning about the HAWC observatory and Gamma-Ray astronomy, developing five related lesson plans, and constructing a website to share the 2018 and 2019 RET lesson plans. Please join the 2019 teachers, Matt Laird and Heather Murphy, on (Friday) August 9 in Rekhi Hall Room 214 at 10:00 a.m. for a presentation/demonstration highlighting the following lesson plans: Celestial Navigation, Modeling Gamma-Ray Data, Observations of the Electromagnetic Spectrum, SS433 A Journey with the Scientific Method, and Star Evolution and Gamma-Ray Sources.

Heather Murphy is a high-school science teacher at Hancock High School, in Hancock Michigan. A Michigan Tech alumni graduating with a BS 2002 (major Biology minor General Science), and MSASE 2017, with Secondary Education Teaching Certificates in Biology (DA) 6-12, Science (DX) 6-12, Physics (2500), A.P. Physics- College Board, and A.P. Biology- College Board.

Matt Laird is a high-school science teacher at Lake Linden – Hubbell High School. A Michigan Tech alumni graduating in 2014 with a BS in Applied Geophysics and 2016 with a MS in Geophysics and a Science (DX) 6-12 certification.