Day: January 11, 2018

Lisa Hitch Goes Above and Beyond

Lisa Hitch
Lisa Hitch

ECE Business Manager and Technical Communications Specialist Lisa Hitch was recognized at the 2017 Making a Difference Awards reception on January 10, 2018.

“During our recent ABET visit, our department chair was suddenly called away from our department at a critical moment in the evaluation process. Without hesitation, Lisa organized the details of the department meetings between our ABET visitors and more than 50 students, staff, and faculty in a matter of hours. As a result of her intervention, the visit proceeded without interruption. When our chair returned, he found a department visit so smoothly tuned and ready that it went forward flawlessly. Without her initiative the meetings would have been hopelessly uncoordinated and left a terrible impression on our visitors. She saved the day for all of us.”

A total of 47 Michigan Tech staff members were nominated for 2017 Making a Difference Awards. Hitch received an award in the “Above and Beyond” category. The awards are organized by Michigan Tech Staff Council.

Congratulations to Lisa!

NSF CAREER Award for Sumit Paudyal

Sumit Paudyal
Sumit Paudyal

Sumit Paudyal (ECE) is the principal investigator on a project that has received $500,000 from the National Science Foundation. The project is entitled “CAREER: Operation of Distribution Grids in the Context of High-Penetration Distributed Energy Resources and Flexible Loads.”

This is a five-year project.

Abstract

The number of distributed energy resources (DERs) and flexible loads such as photovoltaic (PV) panels, electric vehicles (EVs), and energy storage systems (ESSs) are rapidly growing at the consumer end. These small distributed devices connect to low voltage power distribution grids via power electronic interfaces that can support bi-directional power flows. Despite being small in size, if aggregated, these devices a provide significant portion of the energy and ancillary services (e.g., reactive power support, frequency regulation, load following) necessary for reliable and secure operation of electric power grids. In future distribution grids, with numerous such small active devices, real-time control and aggregation will entail computational challenges. The computational challenges further increase when the aggregation requires coordination with legacy grid control actions which involve integer decision variables, such as load tap changers, capacitor banks, and network switches. This CAREER project concentrates around solving operational and computational issues for distribution grids with large penetration of DERs and flexible loads.

Read more at the National Science Foundation.