Category: Engineering Fundamentals

Q&A with Xin Xi: Uncovering Global Dust-Climate Connections

Dr. Xin Xi: “Surface weather observations are worth a refreshed look and can be used for improving our dust-climate modeling capability.”

GMES Assistant Professor Xin Xi’s new open-source dataset, duISD, is featured in Michigan Tech’s Unscripted Research blog. Here, he tells us more about it.

Q: How did you get started studying dust and desertification? 

XX: I grew up in humid southern China and had no experiences with dust storms when I was young. When I started college in Beijing, I had personal encounters with the “yellow dust” or Kosa (in Korea and Japan). The sky turned murky yellow every spring, while the whole city was shrouded in a cloud of dust blown from northwestern China. 

When I started graduate school at Georgia Tech, atmospheric aerosols emerged as a central theme in climate research, largely because they are capable of counteracting the warming effect of greenhouse gasses and play a crucial role in the hydrological cycle. Like many others, I became interested in my research due to the positive influence of my Ph.D. advisor, an expert in atmospheric aerosols, particularly mineral dust. 

Q: Why did you decide to revisit the use of horizontal visibility? 

XX: Primarily because of the long timespan of the visibility record from surface weather stations. It is by far the longest instrumental data record of dust, including regions near the dust source where modern-day satellites have difficulties providing reliable observations. 

Long-term, uninterrupted data records are paramount for understanding the variability of dust in response to climate and land use changes. I believe the visibility record has not been used to its full potential, so I took on the effort to develop a homogenized dust-climate record.

Q: Who do you imagine will get the most use from your new dataset? How would a researcher make use of it, and why? 

XX: This new dataset is an initial version of the dust-climate dataset I have been working on. Currently it consists of monthly records of the ambient dust burden at more than 10,000  weather stations worldwide. It is presented in an easy-to-read format, so anyone familiar with spreadsheets can use it. Dust researchers may find it useful, because they can avoid the tedious preprocessing steps with the raw data and are presented with summary statistics to help them pick the stations for their region of interest.

Dr. Xi used the dataset to characterize dust variability and climate connections around the world. The results of his study are featured in an article in the Journal of Geophysical Research: Atmospheres

Q: Do you intend to update with future versions? 

XX: Definitely. I plan to conduct data fusion by combining the surface observations with additional climate and land information from satellites or models.

Q: What are the most unique and noteworthy aspects of this research? 

XX: It is a climate data record development project, and the ultimate goal is to create a quality-controlled dataset for the climate community to study trends, variability and relationships about dust and climate. In addition, I believe the dataset can offer other insightful information about the deficiency of current climate models. 

Q: What do you plan to research next? 

XX: I plan to take on the next step of updating the initial dataset I created, and develop new analytic results, which can convince myself — and, hopefully, the climate community — that surface weather observations are worth a refreshed look and can be used for improving our dust-climate modeling capability.

Xi’s open-source dataset, duISD, can be accessed online

Research links continents to key transitions in Earth’s oceans, atmosphere and climate

Mountain peaks, glaciers, and prayer flags near the Kunzum La Pass, a high mountain pass connecting the Lahaul and Spiti valleys in the Indian Himalaya. Credit: Timothy Paulsen, UW Oshkosh

A recent study led by University of Wisconsin Oshkosh geologist Timothy Paulsen advances the understanding of the role continents have played in the chemical evolution of Earth’s oceans, with implications for understanding atmospheric oxygenation and global climate oscillations. The research team includes Chad Deering and Snehamoy Chatterjee, Dept. of Geological and Mining Engineering and Sciences at Michigan Technological University, and Jakub Sliwinski and Olivier Bachman, Institute of Geochemistry and Petrology, ETH Zurich.

Tim Paulsen

The team’s research article, Continental Magmatism and Uplift as the Primary Driver for First-Order Oceanic 87Sr/86Sr Variability with Implications for Global Climate and Atmospheric Oxygenation, is featured on the cover of the February issue of GSA Today, published by the Geological Society of America.

The team analyzed a global database of the chemistry of tiny zircon grains commonly found in the Earth’s continental rock record. “We use zircon because it is very resistant to weathering and breakdown over a wide span of environmental conditions and can be dated accurately,” Deering explains. Zircon grains are about the size of the width of human hair; typically around 150microns.

Chad Deering

“Oceans cover 70% of Earth’s surface, setting it apart from the other terrestrial planets in the solar system,” said Paulsen, the lead author on the paper. “Geologists have long recognized that there have been profound changes in ocean chemistry over time.”

Yet there are significant questions about the drivers for changes in ocean chemistry in Earth’s past, especially associated with the ancient rock record leading up to the Cambrian explosion of life approximately 540 million years ago.

“Continents tend to be worn down by weathering and rivers tend to transport this sediment to the oceans, leaving scattered puzzle pieces for geologists to fit together,” said Deering, associate professor of Geological and Mining Engineering and Sciences at Michigan Tech, and coauthor on the paper. “There is increasing evidence that important pieces of the puzzle are found in the ancient beach and river sediments produced through continental weathering and erosion.”

The researchers’ findings, based on an analysis of an exceptionally large zircon data set from sandstones recovered from Earth’s major continental landmasses, may signify key links in the evolution of the Earth’s rock cycle and its oceans.

GSA Today highlights articles that appeal to a broad geoscience audience. On the cover:

“Our results suggest that two major increases in continental input from rivers draining the continents were related to the break-up and dispersal of continents, which caused increased weathering and erosion of a higher proportion of radiogenic rocks and high-elevation continental crust,” Paulsen said.

“Both episodes are curiously associated with snowball Earth glaciations and associated steps in oxygenation of the atmosphere-ocean system. Geologists have long recognized that oceans are required to make continents. It would appear based on our analyses that the continents, in turn, shape the Earth’s oceans, atmosphere and climate.”

This study was funded by University of Wisconsin Oshkosh’s Faculty Development Program.

This news story written by Natalie Johnson, UW Oshkosh Today

For Immediate Release
Contact:
Natalie Johnson, UW Oshkosh
Kim Geiger, Michigan Tech

Reimagining the Possible! Happy Engineer’s Week 2022!

Reimagine what seems impossible –  to become the Possible! It’s National Engineers Week Feb 20-26.

This week, we’re celebrating National Engineers Week (Feb. 20-26). Everyone’s invited to special events on campus sponsored by Tau Beta Pi, the Engineering Honor Society student chapter at Michigan Tech.

Founded by the National Society of Professional Engineers in 1951, Eweek is celebrated each February around the time of George Washington’s birthday (February 22) because Washington is considered by many to be the first US engineer. Engineers create new possibilities all the time. From green buildings to fuel-efficient cars to life-saving vaccines, engineers work together to develop new technologies, products and opportunities that change how we live for the better.

At Michigan Tech, the week is organized by Tau Beta Pi, and celebrated with special events on campus, many hosted by student organizations. Everyone is welcome! Please feel free to stop by and check out Eweek events as your schedule allows:

Monday, Feb. 21

5pm to 6pm
Tau Beta Pi Alumni Panel
Contact Jacob Stewart, Tau Beta Pi, for details (jacstewa@mtu.edu).

Dr. Zhanping You shares his methods and results on building new roads from recycled waste tires and old pavement rubble!

6 pm to 7 pm
Where the Rubber Meets the Road
Husky Bites Zoom Webinar
Join Professor Zhanping You and PhD student Kobe Jin to learn how old tires + pavement rubble are becoming new recycled, better roads!

Tuesday, Feb. 22

3:30pm to 5:30pm
Egg Drop Design Challenge
Makerspace in the MUB Basement
Some may remember this activity from past years. Experts and novices alike are welcome to give it a try. Mind Trekkers adds their own twist!

Are you up for the (egg drop) challenge?

Wednesday, Feb. 23

11am to 2pm
Eweek Cake
112 Dillman
Delicious cake from Roy’s Bakery, hosted by the Department of Engineering Fundamentals, it’s a longtime Eweek tradition at Michigan Tech!

Come grab your piece of cake!

5pm to 6pm
Spaghetti Towers
Fisher 129
Test your engineering skills with SSC and Built World Enterprise: Who can build the tallest spaghetti and marshmallow skyscraper?!?

Thursday, Feb. 26

2pm to 4pm
Metal Foundry in a Box

M&M room U109
Never been in a foundry before? The students at Materials United will help you feel right at home. Make something small. Let it cool, then come pick it up later.

Not an MSE, but still want try your hand at making something in the foundry at Michigan Tech? Here’s your chance!

Friday, Feb. 25

4 pm to 7 pm
Escape Room
MUB Ballroom A2
Join Mind Trekkers for an engineering Escape Room that is truly above and beyond!

Tau Beta Pi Inducts 15 New Members at Michigan Tech

Congratulations to our Fall 2021 Tau Beta Pi Initiates! (Not pictured here: Andrew Scott and Dr. Mary Raber)

The College of Engineering recently inducted 14 students and one eminent engineer into the Michigan Tech chapter of Tau Beta Pi.

Tau Beta Pi is a nationally recognized engineering honor society and is the only one that recognizes all engineering professions. Students who join are the top 1/8th of their junior class, top 1/5th of their senior class, or the top 1/5th of graduate students who have completed 50% of their coursework. The society celebrates those who have distinguished scholarship and exemplary character, and members strive to maintain integrity and excellence in engineering.

Fall 2021 Initiates

Undergraduate Students: Dom Bianchi, Mechanical Engineering; Sean Bonner, Civil Engineering; Sam Breuer, Computer & Electrical Engineering; Sophia Brylinski, Materials Science & Engineering; Spencer Crawford, Computer Engineering; Jacqui Foreman, Chemical Engineering; Stephen Gillman, Computer Engineering; Michael Kilmer, Materials Science & Engineering; Emerald Mehler, Chemical Engineering; Ben Stier, Computer Engineering; Alex Stockman, Computer Engineering; and Jordan Zais, Biomedical Engineering

Graduate Students: Tonie Johnson, MS, Biomedical Engineering; and Andrew Scott, MS Electrical & Computer Engineering

Eminent Engineer

Mary Raber is Chair of Michigan Tech’s Department of Engineering Fundamentals

Dr. Mary Raber

Michelle Jarvie-Eggart: The Land Owns Us—EWB-AU

Cape York, Australia

Michelle Jarvie-Eggart shares her knowledge on Husky Bites, a free, interactive webinar this Monday, October 4 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

portrait of Michelle Jarvie-Eggart
Assistant Professor Michelle Jarvie-Eggart

What are you doing for supper this Monday night 10/4 at 6 ET? Grab a bite with Civil, Environmental, and Geospatial Engineering department Chair Audra Morse and Michelle Jarvie-Eggart, assistant professor of Engineering Fundamentals. Jarvie-Eggart will tell us about a unique engineering design challenge conducted in partnership with Engineers Without Borders Australia (EWB-AU)

Instead of the concept of land ownership, Aboriginal Australians believe “the land owns us,” Jarvie-Eggart explains. “It’s not even a sense of stewardship of the land. The belief is that we’re a part of the land.” 

Working via Zoom last spring, first-year engineering students at Michigan Tech designed innovative structures for Aboriginal and Torres Strait Islanders in Cape York, Australia: shelters; keeping places for artifacts; and mobile amenities for campsites. During Husky Bites, Prof. Jarvie-Eggart will tell us all about this unique design challenge. She’ll also show us some of the resulting, creative student designs.

Joining in will be Michigan Tech environmental engineering alumna Amanda Singer. While at Tech Singer spent four years working as an undergraduate teaching assistant, aka “LEAP Leader,” and stayed on to earn her Master’s in Environmental Engineering with an emphasis on engineering education. Prof. Jarvie-Eggart was one of her advisors. Singer is now pursuing a PhD in Engineering Education at Ohio State. 

“It’s like picking up a piece of dirt and saying this is where I started and this is where I’ll go. The land is our food, our culture, our spirit and identity.”

S. Knight, Our Land Our Life, Aboriginal and Torres Strait Islander Commission, Canberra, Australia

During their second semester at Michigan Tech, all first-year engineering students choose a design project. It’s all part of a required course called ENG 1102. “In a typical semester, we have sections doing brewery designs, adaptive bike designs, alternative power, and other projects,” says Jarvie-Eggart.

“We started the EWB-partnered project in my section of ENG 1102 in the spring of 2019, with about 100 students. Soon after that, the pandemic began. One of the first things I started doing was evening Zoom office hours, after my kids went to bed. That’s when my Michigan Tech students are doing their homework, “ she says.

A word spoken by Indigenous Australians, Kanyini, means responsibility and unconditional love for all of creation, including the land. Pictured here: Cape York, the most northerly point of mainland Australia

“I met with EWB Australia folks over Zoom, too. In my mining engineering days, I routinely worked with iron mines in Australia, so I was used to conference calls late at night. If clients are halfway around the Earth, I’ll make sure to be the one at my computer at an odd time. People are more willing to take meetings with me if it happens within the bounds of their normal work day. If I inconvenience them, or take them away from their family, they are less likely to give me their time.”

The Stanford d. School’s Design Thinking model guides the process in all sections of ENG1102, Jarvie-Eggart explains. “Working cooperatively to solve problems, the key elements are empathy, prototyping and feedback. When we say empathy, though, it’s not what you might think. It’s not about emotions, or feelings, but about putting ourselves in our clients’ shoes. We’re careful not to impose our own definition of what might be a problem, either. Instead we try to see the problem as the client sees it.” It’s a vital first step, says Jarvie-Eggart.

Michigan Tech Environmental Engineering Alumna Amanda Singer ’19

“We also expect students to do a lot of their own research for their projects,” she says. “This can feel odd at first. It can be a challenge to become comfortable with the ambiguity of problem-based learning. What are the important things to consider? What assumptions need to be made and how can you justify them? Why is your design a valid one? This is what we are asking our first-year students to do.” 

Jarvie-Eggart couldn’t have all 100 students contacting EWB volunteers and Aboriginal and Torres Strait Islanders in Australia. “That would have been a hot mess,” she admits. Instead they followed a typical RFI (request for information) process one might use in consulting. “Often, project engineers don’t have contact with the client, but the project manager does. So, we organized all our questions. EWB AU had gathered all sorts of resources and information from the host community, which our students reviewed before forming questions to clarify the design purpose or scope, or share initial ideas. I sent those on to EWB staff, who provided answers.” 

Once EWB-AU was ready, the Michigan Tech class took part in a Zoom interview Q&A. “We did that so students could see me asking questions and hear answers in real time from EWB staff. We also recorded it for students who couldn’t stay up late to watch. It looked candid—but many of the questions took some time and research to answer.”

Each year EWB-AU hosts a different first-year engineering challenge.

And the resulting designs? Jarvie-Eggart will share them during Husky Bites. One shelter design uses low-cost, repurposed items. Another has one open side, but is able to rotate depending on the direction of the wind during a storm.

“For me, the best part is seeing my students become excited about the impact engineers can make on a global scale,” she adds. “Many of them now express interest in doing international work, or using their professional skills to volunteer or give back to society once they become engineers.” 

During the class, Singer, with four years of experience as a first-year engineering LEAP leader, collected data to asses the impact of ENG 1102 course on the students. What did they take away? “In their responses, most of the students mentioned words and phrases such as ’empathy’, ‘working on a global scale’, ‘humanitarian’, ‘community’, and ‘sustainability,’” Singer notes. “Students became more community-minded and aware of the cultural context of their designs.”

Dr. Jarvie-Eggarts and Amanda Singer in cap and gown
On campus outside on Amanda’s MS graduate day!

“Amanda is now a PhD student at Ohio State and I couldn’t be more proud of her,” adds Jarvie-Eggart. “She is going to be a really great faculty member some day, maybe even at Tech if we are lucky.”

Each year EWB-AU hosts a different first-year engineering challenge. “Although, this semester, due to COVID, we will work with the same Cape York community,” says Jarvie-Eggart.

Michigan Tech is only the second university in the US to take part in the EWB AU Challenge. “I saw a paper at an American Society of Engineering Education conference, written by the first school to implement the project in the US, in Colorado. So I tracked down the authors, asked them about it, and they offered to get me in contact with the EWB AU folks,” Jarvie-Eggart recalls.

“EWB USA is working on developing their own design challenge for first-year engineering students, too. Once they get that up and rolling, we look forward to working with them, as well.”

Jarvie Eggart knows a meaningful educational opportunity when she sees one. She earned her BS in Environmental Engineering at Michigan Tech, then an MS in Environmental Policy. After working in industry, she returned to Michigan Tech to earn a PhD in Environmental Engineering and a certificate in Sustainability, then returned to industry again. All in all, Jarvie-Eggart has over a decade of work experience in compliance, permitting, and sustainability issues for mining, as well as the municipal water and wastewater industries.

“I’m very passionate about sustainability,” she says. My goal by working in industry was to help make a difference for the corporations that needed it the most, namely the extractive industries like mining, and oil and gas,” she says.

Now she’s found another important place to make an impact. “I have experience teaching graduate students online as an adjunct faculty member,” she says. “But first-year students are an entirely different ball of wax. The first year of college is when students learn the essential skills they’ll carry with them for life,” she says. That’s huge!”

younger child at kitchen table wearing white hard hat
“I spent about ten years in industry before coming back to Tech to teach,” says Jarvie-Eggart. “One of my favorite things as a mom is watching the kids roam around the house wearing my old hardhats. Here is one of them doing their homeschool last year.”

Prof. Jarvie-Eggart, how did you first get into engineering?

My father was an electrical engineer (and a Michigan Tech grad). He sparked my love of engineering at an early age. I always loved math and science, and I knew about engineering as a career path because I had one in the house. The hard part for me was deciding upon which type of engineering. When I hit high school chemistry, I narrowed it down to either chemical or environmental engineering. Ultimately, I settled on environmental engineering. 

The Jarvie-Eggart kids, ages 5 and 7, visit the Husky dog statue on campus.

Hometown?

I am originally from Green Bay, Wisconsin. But I have lived in the UP for over 25 years. I met my husband, Brian, at Michigan Tech while we were in grad school. He works at the Advanced Power Systems Research Center. We have two children (5 and 7 years old). My Dad, who will be 86 in October, also lives with us half the year. He normally splits his time between our home and my sister’s in Madison. Due to COVID, he stayed with us all last winter. It is a full house, but there is a lot of love. 

What do you like to do in your spare time?

We have two large dogs—one Shepard-mix and one King Shepherd—and a freshwater aquarium. I love to knit, play ukulele, and jog. This summer, I coached a just-pedaling group in the Single Track Flyers mountain bike program. It was a lot of fun. The kids kept picking flowers for me when we were out on rides. I’d tuck them in my ponytail. 

Amanda stands by a huge waterfall
Amanda Singer will be getting married next summer! Right now she’s earning her PhD in Engineering Education at Ohio State.

Amanda, how did you first get into engineering? What sparked your interest?

I first became interested in engineering as a high school student. I had always loved math and science and had several teachers encourage me to explore engineering as a potential career path. My decision to pursue engineering as my major in college, though, happened during Preview Day at Michigan Tech. I enjoyed hearing the faculty and students talk about the projects they had worked on. I loved the fact that you could pursue a wide range of opportunities with the degree. I started my first year at Michigan Tech as an general engineering major. Ultimately, I decided on Environmental Engineering, which I pursued for both my bachelor’s and master’s degrees. 

Hometown, family?

Meet Kronk. He loves to go camping and hiking with Amanda!

While I currently reside in Columbus, Ohio, I was born and raised in St. Clair, Michigan. My fiancé, who graduated with a chemical engineering degree from Michigan Tech, currently works as a plant engineer in Phoenix. He’s in the process of transferring to his company’s location in Columbus. We spend much of our free time planning our 2023 wedding in the Keweenaw! My parents now spend most of their weekends traveling either to visit me, or my younger sister who is attending Virginia Tech while pursuing a PhD in Human Development. While we all miss the Keweenaw, we love being able to explore some new places!

“Kronk has a backpack that he can ride in but he prefers being able to explore on his leash. Here is a picture of him in the Porcupine Mountains.”

What do you like to do in your spare time?

I enjoy hanging out with my friends and family, traveling, reading, biking, and crocheting. I have a cat named Kronk, (adopted from the Copper Country Humane Society). He likes to join me when camping and hiking. Recently, I began training for the Door County triathlon (in Wisconsin). My mom and I will be competing together next summer!

Read more:

EWB: Bridging Barriers

Design Thinking: Solving Wicked Problems

Jeremy Bos: Annual First-Year Engineering Lecture at Michigan Tech

ECE Professor Jeremy Bos (right) and ME-EM Professor Darrell Robinette (left) at the Michigan Tech Rozsa Center in August. Today Bos will be back on stage at the Rozsa with Prometheus Borealis to deliver the annual First-year Engineering Lecture to incoming students.

“We have a tradition at Michigan Tech of having a first-year lecture that helps students see how their technological education can help make a difference in the world,” says Janet Callahan, Dean of the College of Engineering. This year, 1,010 first year engineering students will be in attendance, the largest incoming class since 1982.

Jeremy Bos, assistant professor of electrical and computer engineering will deliver that lecture today, Thursday, September 9 at 6 pm.

Bos is also an alum. He earned a BS in Electrical Engineering at Michigan Tech in 2000, then returned to earn his PhD in Electrical Engineering and Optics in 2012. On campus he teaches a range of robotics courses, and serves as advisor and manager of several student groups. One of those is the Robotics Systems Enterprise (RSE). “Imagine an industry-driven team of students, seeking to seamlessly integrate exceptional knowledge in electronics, robotics, and programming to solve real world engineering problems,” he says.

ECE Assistant Professor Jeremy Bos

RSE’s projects come in many shapes and sizes, from designing a vision system for work with a robotic arm, to an automatic power management system for weather buoys. Clients include Ford Motor Company and Michigan Tech’s Great Lakes Research Center. “We use more than just the skills and talents of computer science, electrical engineering, and mechanical engineering majors in RSE,” adds Bos. “All majors are welcome, just like in any Enterprise.”

Enterprise at Michigan Tech is when students work in teams on real projects, with real clients, in an environment that’s more like a business than a classroom. With coaching and guidance from faculty mentors, 25 Enterprise teams on campus work to invent products, provide services, and pioneer solutions.

Bos also serves as advisor to students taking part in the SAE AutoDrive Challenge. It all started four years ago, back when Michigan Tech was selected along with seven other universities to participate in the collegiate competition hosted by GM. Each was tasked with designing, building and testing a fully autonomous vehicle. 

The Michigan Tech team started with a Chevy Bolt, outfitting it with sensors, control systems and computer processors so that it could successfully navigate an urban driving course in automated driving mode. They named their vehicle “Prometheus Borealis” after Prometheus, the Greek deity responsible for bringing technology to people, and Boreas, the purple-winged god of the north wind.

The entire team is made up of 40 students and two faculty advisors: Bos and co-advisor Darrell Robinette, an assistant professor of mechanical engineering-engineering mechanics. Their impressive expertise in autonomous vehicles and vehicular networks—and industrial automation and controls—combines for exceptional student mentoring.

The four-year challenge wrapped up this summer on June 14, with Michigan Tech earning 3rd place overall and bringing home the second-most trophies. Soon after, SAE International and General Motors (GM) announced the 10 collegiate teams selected to compete in the next competition, AutoDrive Challenge II. Michigan Tech was on the list.

“My own contribution to this effort is called ‘Autonomy at the End of the Earth,’ says Bos. “My research focuses on the operation of autonomous vehicles in hazardous weather. Specifically, the ice and snow we encounter on a daily basis between November and April.”

“I ended up in engineering because I like to build things (even if only on a computer) and I like to solve problems (generally with computers and math).”

Dr. Jeremy Bos

More about Dr. Jeremy Bos, in his own words:

“I was born in Santa Clara, California just as Silicon Valley was starting to be a thing. I grew up in Grand Haven, Michigan where I graduated high school and moved to Michigan Tech for my undergraduate degree. I liked it so much I came back twice. The second time was from Maui, Hawaii, where I worked for the US Air Force Research Lab. I now live in Houghton with my wife, and fellow alumna, Jessica (STC ’00). We have a boisterous dog Rigel, named after a star in the constellation Orion, that bikes or skis with me on the Tech trails nearly every day. When I have time I bike, ski, hike, kayak, and stargaze. I have even tried my hand at astrophotography at Michigan Tech’s AMJOCH Observatory. (A telescope, hopefully, soon to be another robot).”

Advice for First Year Engineering Students, from Dean Janet Callahan:

“You are part of a community. It’s all about connecting, and reconnecting. I’d like to encourage you to join a student organization or club. The friendships you form in college are important. The people you meet end up being part of your lifelong community. So, be hands-on. Be sure to make time to do extra things, besides studying…but also make sure you go to class and do all your homework, because you will learn by doing.”

“This year, due to the pandemic, in-person attendance is limited. Attend via Zoom using this direct link. No registration required. Visit mtu.edu/ef for more information.”

Michigan Tech Part of $15M Great Lakes Innovation Hub

In an effort to nurture a regional innovation ecosystem and move more discoveries from the research lab to the real world, the National Science Foundation (NSF) has established a Great Lakes Innovation Corps Hub and Michigan Technological University plays a key role.
 
The 11-university Hub is led by the University of Michigan (U-M), and it’s one of five Hubs across the country announced Aug. 26 as NSF continues to evolve the I-Corps program. Launched in 2011, the NSF Innovation Corps, or I-Corps, trains scientists and engineers to carry their promising ideas and technologies beyond the university and into the marketplace to benefit society.
 
In addition to Michigan Tech and U-M, the Great Lakes Hub includes Purdue University, the University of Illinois Urbana-Champaign, the University of Toledo, the University of Minnesota, Iowa State University, Missouri University of Science and Technology, the University of Akron, the University of Chicago, and the University of Wisconsin-Milwaukee.

The Impact of I-Corps

Each university in the Great Lakes Hub already has a successful I-Corps program. Michigan Tech has been part of the NSF I-Corps Site program since 2015. Over the past five years, Michigan Tech’s I-Corps Site has helped introduce the entrepreneurial mindset to over 300 researchers, faculty, staff and students, and helped teams assess the commercial potential of nearly 150 technologies.

Mary Raber is Chair of the Department of Engineering Fundamentals at Michigan Tech

The Great Lakes I-Corps Hub aims to connect people at a large scale to increase the “effective density” of the Midwest’s innovation ecosystem. Mary Raber, Michigan Tech I-Corps principal investigator and chair of the Department of Engineering Fundamentals, said Michigan Tech researchers will be able to engage with the other members of the Hub and benefit from the extensive resources available throughout the Great Lakes region.
 
“Being invited to join the Great Lakes Hub is reflective of the success of Michigan Tech’s I-Corps Site program and the number of teams that have been selected to attend the National I-Corps program,” said Raber.
 
Other members of the Michigan Tech I-Corps team include Lisa Casper (Pavlis Honors College), Jim Baker (Office of the Vice President for Research), Michael Morley and Nate Yenor (Office of Innovation and Commercialization), and Jonathan Leinonen (College of Business).
 

“Michigan Tech is an integral part of the Great Lakes I-Corps Hub.”

Dr. Mary Raber


“The Great Lakes region is home to many of the world’s leading research institutions, and many of our nation’s critical industries. Our goal with this I-Corps Hub is to leverage this intellectual depth to create a lasting economic impact on the region,” said Alec D. Gallimore, the U-M Robert J. Vlasic Dean of Engineering, the Richard F. and Eleanor A. Towner Professor, an Arthur F. Thurnau Professor, and a professor of aerospace engineering.
 
“We’ll do this by creating new businesses, by keeping our existing companies globally competitive and on the leading edge of technology, and by developing talent that not only has technical and cultural expertise, but also an entrepreneurial mindset,” he said.
 
The new Great Lakes Hub has set a goal of training 2,350 teams in the next five years and sending an additional 220 teams to a more in-depth National NSF I-Corps program.
 
In this way, I-Corps is helping to fill what Jonathan Fay, executive director of the U-M Center for Entrepreneurship, calls the “widening gap” between the cutting-edge research being done at universities and the development work of industry to turn research into societal benefit and economic gain.

Read the full story on Michigan Tech News.

Michigan Tech’s Department of Mechanical Engineering-Engineering Mechanics Academy Inducts Class of 2021

R.L. Smith Building, Michigan Technological University

05/14/2021—Michigan Technological University’s Department of Mechanical Engineering-Engineering Mechanics (ME-EM) held its 2021 ME-EM Academy induction ceremony May 14 via Zoom.

Eleven ME-EM alumni were welcomed into the academy by JS Endowed Department Chair William W. Predebon. 

“This year’s inductees have made a significant impact in their professions,” said Predebon. “They include alumni who have risen to the top levels of major corporations, professional societies and universities, and those who are successful entrepreneurs.”

Portraits and brief biographies of academy members are prominently displayed in the R. L. Smith ME-EM Building to serve as inspiration for future students.

The full ME-EM Academy now includes 88 members — less than 1 percent of all ME-EM alumni. 

“They indeed honor us through their accomplishments,” said Predebon. “It’s a fantastic leadership group.”

The Class of 2021 ME-EM Academy inductees are:

Brett R. Chouinard, BSME 1988
President and Chief Operating Officer — Altair Engineering Inc.

Brett R. Chouinard

As president and chief operating officer of Altair Engineering, Chouinard is responsible for worldwide sales, consulting, and field operations in 25 countries. His team supports users across diverse industries, including automotive, aerospace, electronics, defense, banking, and financial services.  

During his time at Altair, the company has become a market leader in the areas of physics-based simulation, high performance computing, optimization, and machine learning. Chouinard was a senior member of the executive team that executed Altair’s successful IPO in 2017. 

He began his career at General Electric Aircraft Engines as a structural engineer on the GE90 high bypass commercial engine program—at the time, the largest commercial aircraft engine in the world. 

Chouinard is a member of the ME-EM External Advisory Board, and supports STEM education in the community as a trustee of the Ann Arbor Hands-on Museum and Leslie Science and Nature Center. 

M. Margaret Cobb, BSME 1983
President — The Cobb Foundation, NW

M. Margaret Cobb

Early in her career after earning her degree at Michigan Tech, Cobb worked as a mechanical engineer in a number of industries: Wisconsin Electric Power and Snohomish County PUD; the Boeing Company, Sundstrand Data Control, then Microsoft and Apple.

During her 20-plus years at Microsoft, Cobb worked on Windows, Xbox, and PC design in a variety of leadership roles. She led a multi-billion-dollar technical sales/engineering team responsible for designing, engineering and producing PCs worldwide, and received Microsoft’s annual Circle of Excellence award for her exceptional work with independent software vendors. 

As a recipient of Michigan Tech’s Board of Control scholarship, Cobb has made it a career mission to give back to the community, serving on the board of directors for numerous organizations including The Epilepsy Foundation Northwest, and Minds Matter Seattle—a non-profit dedicated to helping low-income high school students get into college. 

Cobb and her family established The Cobb Foundation Northwest, dedicated to helping low-income students to ensure all have access to life-changing educational experiences not provided by public schools, including music lessons, book clubs, athletic lessons, robotic workshops, and more.

Juan Dalla Rizza, PE, BSME 1971
President & Principal Engineer — Dalla-Rizza & Associates Consulting Engineers, Inc.

Juan Dalla Rizza

Dalla Rizza was born in Havana, Cuba and immigrated to the United States in 1962, as part of the Catholic Relief Program known as Peter Pan. He grew up in Marquette, Michigan.

After earning his degree at Michigan Tech, Dalla Rizza moved to Miami in order to be closer to family members. He started work for H.J. Ross, a consulting engineering firm. In 1978 he obtained registration as a Professional Engineer. A few years later, he started his own firm.

Dalla Rizza & Associates today is a Miami-based engineering firm serving the commercial construction industry, involved in engineering projects throughout Florida and the Southeast. Projects include The Biltmore Hotel and Convention Center, and The Colonnade Complex (both in Coral Gables), The Freedom Tower in Miami, and The King and Prince Hotel Complex, Phase I, II, III in St. Simons Island, Georgia. Rizza’s firm offers engineering services to large management companies, as well, based on a solid relationship that spans many years. 

Dr. Kimberly L. Foster, BSME 1994
Dean, School of Science & Engineering — Tulane University 

Kimberly L. Foster

Foster was born in Cincinnati, Ohio, but spent her formative years growing up in Houghton, Michigan. While earning her BSME degree at Michigan Tech, she worked as a research assistant in the lab of MSE professor Walt Milligan, and as a tutor in the Mechanics Learning Center, where she realized how much she enjoyed teaching. 

Foster continued her education at Cornell, earning a PhD in Theoretical & Applied Mechanics, becoming fascinated by microelectromechanical systems. From there she headed to UC Santa Barbara, where she became full professor and chair of her department. In 2018 Foster became Dean of the School of Science & Engineering at Tulane University.

Foster is active in her professional community as a member of the Transducer Research Foundation, and fellow of ASME. She holds 12 US patents. She is married to John Foster, a physicist turned serial entrepreneur. Their co-inventions led to the development of Owl Biomedical, an exclusive cell sorting MEMS technology for cell therapy, cancer diagnostics and basic research.

Pamela Rogers Klyn, BSME 1993
Senior Vice President, Global Product Organization — Whirlpool Corporation

Pamela Rogers Klyn

Klyn joined Whirlpool soon after graduating from MIchigan Tech, with advancing roles in engineering, product development, global innovation, and marketing. She now leads all of the Washer, Dryer and Commercial Laundry platforms globally.

As the first female technology director for Whirlpool Corporation, Klyn is passionate about mentoring other women at the company, providing them with the tools, confidence and encouragement to pursue roles at the highest levels of the organization.

Klyn serves on the Board of Directors for the Boys and Girls Clubs of Benton Harbor, Michigan, and as co-leader of the Whirlpool United Way Campaign in support of her local community. She is also a member of the Board of Directors for Patrick Industries, a publicly traded company serving the RV, Marine, and Industrial and Manufactured Housing industries.

Klyn earned an MS in Mechanical Engineering from the University of Michigan and an Executive MBA from Bowling Green State University. She serves as a member of Michigan Tech’s ME-EM External Advisory Board and also serves on Michigan Tech’s College of Engineering External Advisory Board.

Karl E. LaPeer, BSME 1985
Partner — Peninsula Capital Partners, LLC 

Karl E. LaPeer

LaPeer is a partner at Peninsula Capital Partners, LLC, a Detroit-based $1.9 billion private equity firm. In 1995 LaPeer and his partners began with $20 million in capital and they have since invested over $1.5 billion in more than 140 small and mid-sized companies with operations in North America and throughout the world.

LaPeer began his career at Fanuc Robotics serving in engineering and operations roles both in the U.S. and Europe, then earned an MBA from the University of Michigan. He has served on dozens of small business boards of directors, helping these businesses succeed. He is an ordained pastor and evangelist.

LaPeer met his wife, Christine (BSMT, 1985) on their second day of classes at Michigan Tech. Together they were recipients of the 2019 Michigan Tech Humanitarian Award. 

The LaPeer family volunteers around the world. They have opened four orphanages in India, installed water wells and large water purification systems in Peru, Nicaragua, and Ghana, served in medical clinics and provided humanitarian aid in Central and South America, and served as leaders of missions teams large and small. 

Robert S. Messina, BSME 1993
Senior Vice President, Global Product Development and Product Management — JLG Industries, Inc.

Robert S. Messina

At JLG Industries, Oshkosh Corporation’s Access Equipment segment, Messina is responsible for a team of engineers and product strategists in R&D facilities located in North America, Europe, China and India. His team develops world class mobile elevating work platforms, telescopic material handlers and towing and recovery equipment, focused on bringing operators home safely from work each day.  

Messina has served in various leadership roles across Oshkosh, including technology development in electrification, mobility systems, autonomy, active safety and connected products. During his tenure in Oshkosh Defense, he was instrumental in multiple strategic programs.

Messina sponsors STEM-related activities to foster tomorrow’s engineering community. He serves on the Oshkosh Corporation Foundation, the Oshkosh Venture Capital Investment Committee, and the advisory board for Construction Robotics.

Messina started his career at Chrysler soon after graduating from Michigan Tech, with roles in the design, development, and calibration of rear-wheel drive automatic transmissions and torque converters, including launching new production facilities. He earned an MS in Mechanical Engineering from Oakland University.

Douglas L. Parks, BSME 1984
Executive Vice President, Global Product Development, Purchasing & Supply Chain — General Motors Company

Douglas L. Parks

Parks began his career with GM as a tooling engineer soon upon graduation from Michigan Tech. He earned an MBA from the University of Michigan through the GM Fellowship Program.

Parks has served in numerous positions at GM. As Global Chief Engineer for Electric Cars, he was in charge of the Chevy Volt, among others. He was also Global Vehicle Chief Engineer for GM’s compact vehicles. 

As GM’s Vice President of Autonomous and Electric Vehicle Programs, Parks launched Super Cruise, the industry’s first hands-free driving technology for compatible highways on the 2018 Cadillac CT6. He was the leader of several engineering teams at GM that achieved major milestones in a few years’ time: one was the team for the Cruise AV, a production-intent autonomous vehicle built from the ground up. Without driver controls, it has all the hardware necessary to operate safely on its own. Another team led by Parks produced three self-driving test vehicle generations in approximately 16 months. Yet another developed GM’s all-new electric vehicle architecture, increasing the 2020 Chevrolet Bolt EV’s range to 259 miles per gallon with improvements in battery chemistry.

Gordon W. Renn, BSME 1982
President, CEO & Chairman — Fox Converting, Inc. and Accuracy Machine, LLC / Chairman – Loyality, Inc.

Gordon W. Renn

Renn is an entrepreneur who has made a career of pursuing and developing higher risk opportunities. Agile and effective loss control management is one of his key strengths.

He is a multiple small business owner. One of his companies, Fox Converting, Inc. manufactures FDA Class II Medical Devices, certified safe quality food packaging, and antiviral coated paper for consumer products. Another, Accuracy Pharmaceutical Machine, LLC, manufactures ultra clean, ultra-precise tooling for the pharmaceutical industry, to assist the industry to ultimately produce cures beyond conventional treatments. Loyality, Inc. affordably and effectively delivers sophisticated IT solutions typically beyond the budget of small and medium sized businesses. It also assists in large, enterprise company niches.

Renn has served higher education as a board member, donor, advisor, consultant and speaker at Michigan Tech and the University of Wisconsin Platteville. His community leadership is centered on youth organizations, including a Christian shelter serving homeless children and their families, a favorite of Renn’s for over 30 years. 

Renn enjoys time with his family, the great outdoors, a dog that regularly rescues him, and working with great people pursuing excellence. Renn credits his loving parents for guiding him to engineering and Michigan Tech. 

Dr. Sheryl A. Sorby, MSEM 1986, PhD ME-EM 1991

Sheryl A. Sorby

Professor of Engineering Education — University of Cincinnati / President of American Society for Engineering Education (ASEE)

Sorby graduated from Hastings High School in downstate Michigan, but spent every summer in the Upper Peninsula with her family. Just a few hours away was Michigan Tech, where Sorby earned a BS in Civil Engineering, an MS in Engineering Mechanics, and a PhD in Mechanical Engineering.

Sorby became a longtime faculty member at Michigan Tech: associate dean of engineering for academic programs and founding chair of the Department of Engineering Fundamentals, responsible for the development and delivery of the first-year engineering program, a legacy effort that remains in support of first-year engineering students to this day. 

At the National Science Foundation in Washington, DC, Sorby served as program director in the Division of Undergraduate Education and then became a Fulbright Scholar, conducting research at the Dublin Institute of Technology. 

In 1993 Sorby received her first grant to develop a course for helping engineering students develop their 3-D spatial skills—the abilities to translate 2-D objects to 3-D and to mentally rotate 3-D objects. She has received numerous follow-up grants to further this work, over $13 million. To advance spatial research and training worldwide, Sorby founded the nonprofit Higher Education Services (HES), an educational consulting firm.

Sorby is current President of the American Society for Engineering Education (ASEE). She is a Fellow of ASEE, and also received the Society’s Sharon Keillor award as an outstanding female engineering educator. In 2005 she received the Betty Vetter award for Research on Women in Engineering through the Women in Engineering Pro-Active Network (WEPAN) for her work in improving the 3-D spatial skills of engineering students. She has published more than 150 papers in journals and conference proceedings and is the author of seven textbooks.

Christopher K. Yakes, BSME 1995
Vice President, Global Engineering — Oshkosh Corporation

Christopher K. Yakes

At Oshkosh Corporation, Yakes designs and manufactures products that build, serve and protect communities around the world. 

He is responsible for matrix teams that support the company with wide subject matter expertise in advanced controls, data analytics, telematics, autonomy and active safety, advanced suspensions, powertrains, material and processes, and numerous other advanced efforts, tools and techniques. 

Yakes holds 29 patents related to hybrid systems, autonomous vehicles, vehicle architectures and components. He was part of the Oshkosh team awarded the SAE/Magnus Hendrickson Innovation Award in 2018.

Yakes led the development and capture efforts of various key production and research programs: MRAP All-terrain Vehicles (MATV), Joint Light Tactical Vehicle (JLTV), various DARPA activities, the Oshkosh® TerraMax™ unmanned ground vehicle system, a variety of Department of Defense and Department of Energy Research and Development programs, and most recently was instrumental in providing strategic direction on the USPS Next Generation Delivery Vehicle.

Prior to his work at Oshkosh Corporation, he was a component development engineer for various engines and their components at Detroit Diesel Corporation.

Yakes was instrumental in the implementation of the STEM program at Oshkosh, actively involved with mentoring the next generation of engineers and problem solvers within Oshkosh.

Mary Raber is the New Chair of Engineering Fundamentals at Michigan Tech

Mary Raber is the new chair of the Department of Engineering Fundamentals at Michigan Tech.

The College of Engineering at Michigan Technological University is pleased to announce that Mary Raber has accepted the position of chair of the Department of Engineering Fundamentals, beginning July 1, 2021.

“I am delighted that Dr. Raber will be chair of Engineering Fundamentals and I look forward to her joining the leadership team of the College,” states Dean Janet Callahan. “Her experience with design thinking, innovation and the principles of lean together inform her approach to solving problems. Dr. Raber’s industry background is an additional asset. Her experience will help us strongly align the engineering foundational first year with what we prepare our engineering graduates to accomplish.”

After a 14-year career in the automotive industry, Raber joined Michigan Tech in 1999 to lead the implementation and growth of the highly distinctive undergraduate Enterprise Program. She helped found the Pavlis Honors College, where she facilitated learning in leadership, human-centered design, and lean start-up and most recently served as assistant dean for academic programs.

A design-thinking and innovation enthusiast, Raber loves to help others embrace the tools and mindsets of innovation to effect positive change. She serves as co-director of Husky Innovate, Michigan Tech’s resource hub for innovation and entrepreneurship, and  she leads IDEAhub, Michigan Tech’s collaborative working group for educational innovation, as its Chief Doing Officer.

Raber earned a BS in Mechanical Engineering from The University of Michigan and an MBA from Wayne State University. Her PhD in Mechanical Engineering was earned at Michigan Tech, with a focus on engineering education.

What first brought you to Michigan Tech?

In part, it was a decision to move back to the area to be closer to family, but the timing couldn’t have been better, as the innovative Enterprise Program had just received NSF funding and Michigan Tech needed someone to get the program up and running.  It was a perfect fit for my interests and background, and with a lot of support from our industry partners who immediately saw the benefits of the program we have been able to grow it into the award-winning educational experience it is today. That experience set me on a path of educational innovation and curricular program development focused on experiential learning through high-impact practices. It’s a passion that continues today through my work with IDEAhub and the Pavlis Honors College. I look forward to bringing these experiences with me to the Department of Engineering Fundamentals.

What do you enjoy most about your research and teaching?

My interests lie at the intersection of innovation, education and learning. The connections between these three can bring about transformational change to the learning experience, and better prepare students to fulfill their personal and professional goals. Teaching allows me the opportunity to connect with students and build empathy for their challenges and hopes. In turn, these insights can lead to innovations in the classroom, so that courses and programs are designed with the needs of the students in mind. 

What are you hoping to accomplish as chair?

I look forward to working with, and learning from, the Engineering Fundamentals team, and to help continue their tradition of educational innovation. We share many of the same passions for student success with a goal to strengthen and enhance the role of the first-year engineering learning experience in order to best prepare students to meet the needs of the 21st Century. 

As a key partner in delivering the strategic mission and vision of the College and University, the Engineering Fundamentals team plays an essential role in helping students transition into their college life. It will be a privilege to work with the team that helps students begin their path toward successful careers in engineering.

Happy Engineer’s Week 2021!

Let’s imagine a better tomorrow. Join us!

This week, we’re celebrating National Engineers Week (Feb. 21-28). Everyone’s invited to special events on campus sponsored by Tau Beta Pi, the Engineering Honor Society student chapter at Michigan Tech.

Founded by the National Society of Professional Engineers in 1951, Eweek is celebrated each February around the time of George Washington’s birthday, February 22, because Washington is considered by many to be the first U.S. engineer.

At Michigan Tech, the week is celebrated with special events on campus all hosted by student organizations. Everyone is welcome! Please feel free to stop by and check out Eweek events as your schedule allows:

Monday, Feb. 22
Brainteasers—give your brain a mini-workout, courtesy of Michigan Tech’s Systems Engineering Association (SEA), 11am-2pm in the Dow Lobby.

Some founders of SEA, Michigan Tech’s relatively new Systems Engineering Association.

Tuesday, Feb. 23
Build with Built World Enterprise, 6-7 PM
Online, Zoom: https://michigantech.zoom.us/j/88350890241

Built World Enterprise at Michigan Tech

Wednesday, Feb. 24
Michigan Tech Engineering Alumni Panel, hosted by Tau Beta Pi
4-6 PMOnline, Zoom: https://michigantech.zoom.us/j/89023074247
Submit your questions in advance: https://docs.google.com/forms/d/e/1FAIpQLSdFvHtUjVrpO_iMmrQWel78S7D2BXjCNhROo4CoYLwSbJA5nw/viewform?usp=sf_link

Julia Zayan
Julia Zayan ’15, General Motors (Chemical Engineering)
Rebecca Mick
Rebecca Mick ’09, Amcor (Chemical Engineering)
Quinn Horn
Quinn Horn ’93, ’95, ’98, Exponent Consulting (Materials Science and Engineering)

Thursday, February 25
Metal foundry in a box with Materials United, 3-5 PMB, on campus, outside, between the M&M Engineering Building and Douglas Houghton Hall.

Foundry in a Box. Make something small, come pick it up later, after it cools!

Nationwide, Eweek is a formal coalition of more than 70 engineering, education, and cultural societies, and more than 50 corporations and government agencies. This year’s theme: Imagining Tomorrow. Dedicated to raising public awareness of engineers’ positive contributions to quality of life, Eweek promotes recognition among parents, teachers, and students of the importance of a technical education and a high level of math, science, and technology literacy.

One important goal: to motivate youth to pursue engineering careers in order to provide a diverse and vigorous engineering workforce.

Due to the pandemic, some E-Week events won’t be possible this year. One thing we’ll greatly miss is the traditional Michigan Tech E-Week cake, offered to all on campus by the Department of Engineering Fundamentals. The cake will be back, though: We look forward to E-Week 2022!