Category: Mechanical and Aerospace Engineering

Graduate School Announces Fall 2022 Finishing Fellowship Award Recipients

Students walking on campus in the fall.

The Graduate School proudly announces the recipients of our Fall 2022 Finishing Fellowships. Congratulations to all nominees and recipients.

Finishing fellowship recipients in engineering graduate programs are:

  • Vishnu Chakrapani Lekha — Geological Engineering
  • Emily Shaw — Environmental Engineering
  • Jiachen Zhai — Mechanical Engineering-Engineering Mechanics
  • Rasoul Bayaniahangar — Mechanical Engineering-Engineering Mechanics
  • Xuebin Yang — Mechanical Engineering-Engineering Mechanics

Read more about the awardees on the Graduate School Newsblog.

Paul van Susante: Multiplanetary INnovation Enterprise (MINE)

Dr. Paul van Susante’s Planetary Surface Technology Development Lab (PSTDL) at Michigan Tech, home of the Dusty Thermal Vacuum Chamber. It’s about as close to moon conditions as one can get on Earth!

Paul van Susante shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 10/3 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Paul van Susante

What are you doing for supper this Monday night 10/3 at 6 pm ET? Grab a bite with Dean Janet Callahan and Paul van Susante, Assistant Professor, Mechanical Engineering—Engineering Mechanics at Michigan Tech. Joining in will be several of his current Michigan Tech students, all members of MINE, the Multiplanetary INnovation Enterprise: electrical engineering majors Brenda Wilson and Gabe Allis; and mechanical engineering major Parker Bradshaw.

Wilson, Allis and Bradshaw—along with about 50 other student members of the MINE team—design, test, and implement robotic technologies for extracting (and using) local resources in extreme environments. That includes Lunar and Martian surfaces, and flooded subterranean environments here on Earth. Prof. van Susante helped launch the team, and serves as MINE’s faculty advisor.

The award-winning Enterprise Program at Michigan Tech involves students—of any major—working in teams on real projects, with real clients. Michigan Tech currently has 23 different Enterprise teams on campus, working to pioneer solutions, invent products, and provide services.

“As an engineer, I’m an optimist. We can invent things that allow us to do things that now seem impossible.”

Paul van Susante
Students in the Huskyworks Lab at Michigan Tech work on the T-REX rover (Tethered permanently-shadowed Region Explorer). The T-REX lays down lightweight, superconducting cable connected to a lander, and it won NASA’s top prize—the Artemis Award.

MINE team members build and test robotic vehicles and technologies for clients in government and the private sector. They tackle construction and materials characterization, too. It all happens in van Susante’s Planetary Surface Technology Development Lab (PSTDL) at Michigan Tech, a place where science fiction becomes reality via prototyping, building, testing—and increasing the technology readiness and level of tech being developed for NASA missions. The PSTDL is also known as Huskyworks.

Prior to coming to Michigan Tech, Prof. van Susante earned his PhD and taught at the Colorado School of Mines, and also served as a NASA Faculty Fellow. He has been involved in research projects collaborating with Lockheed Martin, Northrop Grumman, SpaceX, TransAstra, DARPA, NASA Kennedy Space Center, JPL, Bechtel, Caterpillar, and many others.

Prof. van Susante created the PSTDL’s Dusty Thermal Vacuum Chamber himself, using his new faculty startup funding. It’s a vacuum-sealed room, partially filled with a simulated lunar dust that can be cooled to minus 196 degrees Celsius and heated to 150 degrees Celsius—essentially, a simulated moon environment. In the chamber, researchers can test surface exploration systems (i.e., rovers) in a box containing up to 3,000 pounds of regolith simulant. It’s about as close to moon conditions as one can get on Earth.

Students in the PSTDL move a testbox into position for testing in the Dusty Thermal Vacuum Chamber.

The NASA Artemis program aims to send astronauts back to the moon by 2025 and establish a permanent human presence. Building the necessary infrastructure to complete this task potentially requires an abundance of resources because of the high cost of launching supplies from Earth. 

“An unavoidable obstacle of space travel is what NASA calls the ‘Space Gear Ratio’, where in order to send one package into space, you need nearly 450 times that package’s mass in expensive rocket fuel to send it into space,” notes van Susante. “In order to establish a long-term presence on other planets and moons, we need to be able to effectively acquire the resources around us, known as in-situ-resource utilization, or ISRU.”

“NASA has several inter-university competitions that align with their goals for their up-and-coming Artemis Missions,” adds van Susante. 

Huskyworks and MINE have numerous Artemis irons in the fire, plus other research projects, too. We’ll learn a lot more about them during Husky Bites.

LUNABOTICS

A peek at the integrated system of MINE’s Lunabotics rover.
Six members of the Michigan Tech Astro-Huskies (plus Dr. van Susante) at NASA Kennedy Space Center Visitor Center, during the 2021-22 Lunabotics competition

Electrical engineering undergraduate student Brenda Wilson serves as the hardware sub-team lead of the Astro-Huskies, a group of 25 students within MINE who work on an autonomous mining rover as part of NASA’s Lunabotics competition. It’s held every year in Florida at the Kennedy Space Center with 50 teams in attendance from universities across the nation. This is the Astro-Huskies’ third year participating in the competition, coming up in May 2023. 

This year the Astro-Huskies are designing, building, testing, and competing with an autonomous excavation rover. The rover must traverse around obstacles such as mounds, craters, rocks; excavate ice to be used for the production of rocket fuel, then return to the collection point. By demonstrating their rover, each team in the competition contributes ideas to NASA’s future missions to operate on and start producing consumables on the lunar surface. 

DIVER

Mechanical engineering undergraduate student Gabe Allis is manager of the MINE team’s DIVER project (Deep Investigation Vehicle for Energy Resources). The team is focused on building an untethered ROV capable of descending down into the Quincy mine to map the flooded tunnels and collect water samples. The team supports ongoing research at Michigan Tech that aims to convert flooded mine shafts into giant batteries, or Pumped Underground Storage for Hydropower (PUSH) facilities.

What it looks like beneath the Quincy Mine in Hancock, Michigan. Illustration courtesy of Michigan Tech’s Department of Geological and Mining Engineering and Sciences.

“Before a mine can be converted into a PUSH facility it must be inspected, and most mines are far deeper than can be explored by a conventional diver,”Allis explains.

“This is where we come in, with a robust, deep-diving robot that’s designed for an environment more unforgiving than the expanse of outer space, and that includes enormous external pressure, no communication, and no recovery if something goes wrong,” he says.  

“Differences in water temperature at different depths cause currents that can pull our robot in changing directions,” adds Allis. “No GPS means that our robot may have to localize from its environment, which means more computing power, and more space, weight, energy consumption, and cooling requirements. These are the sort of problems that our team needs to tackle.”

TRENCHER

During Husky Bites, Bradshaw will tell us about the team’s Trencher project, which aims to provide proof-of-concept for extracting the lunar surface using a bucket ladder-style excavator. “Bucket ladders offer a continuous method of excavation that can transport a large amount of material with minimal electricity, an important consideration for operations on the moon,” Bradshaw says. “With bucket ladders NASA will be able to extract icy regolith to create rocket fuel on the moon and have a reliable method to shape the lunar surface.” Unlike soil, regolith is inorganic material that has weathered away from the bedrock or rock layer beneath.

Parker Bradshaw, also a mechanical engineering student, is both a member of MINE and member of van Susante’s lab, where he works as an undergraduate researcher. “Dr. van Susante is my boss, PI, and Enterprise advisor. I first worked with him on a MINE project last year, then got hired by his lab (the PSTDL) to do research over the summer.”

Bradshaw is preparing a research paper detailing data the team has gathered while excavating in the lab’s Dusty Thermal Vacuum Chamber, with a goal of sharing what was learned by publishing their results in an academic journal.

The PSTDL’s field-rover HOPLITE gets ready for field-test last winter.

“An unavoidable obstacle of space travel is what NASA calls the ‘Space Gear Ratio’, where in order to send one package into orbit around Earth, you need nearly 10 times that package’s mass in expensive rocket fuel to send it into space, and even more for further destinations,” van Susante explains. “So in order to establish a long-term presence on other planets and moons, we need to be able to effectively acquire the resources around us, known as in-situ-resource utilization, or ISRU.”

In the world-class Huskyworks lab (and in the field) van Susante and his team work on a wide variety of projects:

Paul van Susante served as a mining judge during the 2018 Regolith Mining Competition at the NASA Kennedy Space Center Visitor Center

NASA Lunar Surface Technology Research (LuSTR)—a “Percussive Hot Cone Penetrometer and Ground Penetrating Radar for Geotechnical and Volatiles Mapping.”

NASA Breakthrough Innovative and Game Changing (BIG) Idea Challenge 2020—a “Tethered permanently shaded Region EXplorer (T-REX)” delivers power and communication into a PSR, (also known as a Polarimetric Scanning Radiometer).

NASA Watts on the Moon Centennial Challenge—providing power to a water extraction plant PSR located 3 kilometers from the power plant. Michigan Tech is one of seven teams that advanced to Phase 2, Level 2 of the challenge.

NASA ESI Early Stage Innovation—obtaining water from rock gypsum on Mars.

NASA Break the Ice—the latest centennial challenge from NASA, to develop technologies aiding in the sustained presence on the Moon.

NASA NextSTEP BAA ISRU, track 3—”RedWater: Extraction of Water from Mars’ Ice Deposits” (subcontract from principal investigator Honeybee Robotics).

NASA GCD MRE—Providing a regolith feeder and transportation system for the MRE reactor

HOPLITE—a modular robotic system that enables the field testing of ISRU technologies.

Dr. van Susante met his wife, Kate, in Colorado.

Dr. van Susante, how did you first get into engineering? What sparked your interest?

Helping people and making the world a better place with technology and the dream of space exploration. My interest came from sci-fi books and movies and seeing what people can accomplish when they work together.

Hometown and Hobbies?

I grew up in The Netherlands and got my MS in Civil Engineering from TU-Delft before coming to the USA to continue grad school. I met my wife in Colorado and have one 8 year old son. The rest of my family is still in The Netherlands. Now I live in Houghton, Michigan, not too far from campus. I love downhill and x-country skiing, reading (mostly sci-fi/fantasy), computer and board games, and photography.

Dr. van Susante has been a huge help—not just with the technical work, but with the project management side of things. We’ve found it to be one of the biggest hurdles to overcome as a team this past year.

Brenda Wilson

Brenda, how did you first get into engineering? What sparked your interest?

My dad, who is a packaging engineer, would explain to me how different machines work and how different things are made. My interest in electrical engineering began with the realization that power is the backbone to today’s society. Nearly everything we use runs on electricity. I wanted to be able to understand the large complex system that we depend so heavily upon. Also, because I have a passion for the great outdoors, I want to take my degree in a direction where I can help push the power industry towards green energy and more efficient systems.

Hometown, family?

My hometown is Naperville, Illinois. I have one younger brother starting his first year at Illinois State in general business. My Dad is a retired packaging engineer with a degree from Michigan State, and my mom is an accountant with a masters degree from the University of Chicago.

Any hobbies? Pets? What do you like to do in your spare time?

I am an extremely active person and try to spend as much time as I can outside camping and on the trails. I also spend a good chunk of my time running along the portage waterfront, swing dancing, and just recently picked up mountain biking.

I got involved in the DIVER project in MINE, and have enjoyed working with Dr. van Susante. He’s a no nonsense kind of guy. He tells you what you need to improve on, and then helps you get there.

Gabe Allis
Gabe Allis

Gabe, how did you first get into engineering? What sparked your interest?

I first became interested in engineering when my great-uncle gave me a college text-book of his on engineering: Electric Circuits and Machines, by Eugene Lister. I must have been at most 13. To my own surprise, I began reading it and found it interesting. Ever since then I’ve been looking for ways to learn more.

Hometown, family?

I’m from Ann Arbor, Michigan, the oldest of nine. First in my family to go to Tech, and probably not the last. 

Any hobbies? Pets? What do you like to do in your spare time?

I like to play guitar, read fiction, mountain bike, explore nature, and hang out/worship at St. Albert the Great Catholic Church.

“Doing both Enterprise work and research under Dr. van Susante has been a very valuable experience. I expect to continue working in his orbit through the rest of my undergrad degree.”

Parker Bradshaw
Parker Bradshaw

Parker, how did you first get into engineering? What sparked your interest?

I was first introduced to engineering by my dad, who manufactured scientific equipment for the University of Michigan Psychology department. Hanging around in his machine shop at a young age made me really want to work with my hands. What I do as a member of MINE is actually very similar to what my dad did at the U of M. I create research equipment that we use to obtain the data we need for our research, just for me it’s space applications (instead of rodent brains).

Hometown, family?

I grew up in Ann Arbor Michigan, and both of my parents work for the University of Michigan Psychology department. My dad is now retired.

Any hobbies? Pets? What do you like to do in your spare time?

I have a variety of things to keep me busy when school isn’t too overbearing. I go to the Copper Country Community Art Center Clay Co-Op as often as I can to throw pottery on the wheel. I also enjoy watercolor painting animals in a scientific illustration style. Over the summer I was working on my V22 style RC plane project.

Michigan Tech MINE team photo (taken last year). The constraints of the pandemic complicated some of their efforts, yet brought out the best in all of them.

Read more

To the Moon—and Beyond

Watch

Mine Video for Michigan Tech 2022 Design Expo

SWE, Aerospace Enterprise Represent MTU at Women in Aviation Day

Women in Aviation Day banner with image of Amelia Earhart.

On September 17, 2022, eight students from the Aerospace Enterprise and Society of Women Engineers represented Michigan Tech at the first annual Women in Aviation Day in Wausau, Wisconsin.

Participating students were:

From Aerospace: Heather Goetz, Seth Quayle and Nolan Pickett (mechanical engineering); and Zoe Knoper (cybersecurity).

From SWE: Sophie Stewart and Katherine Rauscher (mechanical engineering); Kathryn Krieger (environmental engineering); and Cailyn Koerber (engineering management).

This event was hosted by the Learn Build Fly organization, which does incredible volunteer work in engaging their community in aviation. As summarized by Wausau’s WSAW-TV News Channel 7, “The event aimed to get more women involved in recreational and professional aviation. Children had the chance to participate in ‘Young Eagle Flights’ by going for airplane rides, while other aviation organizations gave information about their programs.”

Visitors to the event had the opportunity to see a 3D model of the newest Aerospace Enterprise satellite design and learn how these students were designing and building satellites to go into space, while the SWE team worked with visitors on an outreach activity, Paper Circuits.

Participants’ comments included:

Nolan Pickett: “Our Enterprise was given the opportunity to not only celebrate the women in our program, but also promote STEM to the next generation of college students — and fly in a WWII era B-25!”

Kathryn Krieger: “I loved being able to see so many young girls getting excited about STEM. It was really inspiring to see the many ways kids are getting involved with aviation and other STEM disciplines from such a young age.”

Both SWE and the Aerospace Enterprise teams enjoyed volunteering at Women in Aviation, learning more about the history of aviation and meeting with folks interested in aviation careers. This was a unique outreach opportunity and they appreciated the support they received from Admissions and the College of Engineering.

By Gretchen Hein, SWE Advisor.

Beyond Measure: Nucor Metrology Center at MTU Hosts Donor Appreciation Event

“We want to see our students use their hands for physical engineering, and that happens in measurement,” said Rachel Store, Michigan Tech research engineer and head of the Nucor Metrology Center. The new center is located on campus in the RL Smith Building. Photo credit: Matt Monte

09/20/2022

Michigan Technological University’s Department of Mechanical Engineering-Engineering Mechanics (ME-EM) officially opened the Nucor Metrology Center on Tuesday, Sept. 20, with a donor appreciation event recognizing Nucor Corporation for its generous support of the Center.

University and department officials also recognized Milwaukee Tool and Nexteer for their equipment donations to the Center.

“We thank Nucor for their very generous donation of $100,000 to establish the Nucor Metrology Center in the ME-EM department here at MTU,” said Jason Blough, interim department chair. “We would also like to thank Milwaukee Tool, Nexteer and Richard Crosby for their assistance in enhancing the capabilities of the facility. Industry support has always allowed us to offer outstanding experiences to our students and to grow our research portfolio and capacity in ways that would not otherwise be possible.”

“Huskies are ready to tackle the next problem and help create the future with innovative solutions.”

Kate Amar-Fox, melt shop metallurgist, Nucor

“Nucor is excited to be a part of expanding the on-hand and lab experiences with the funds for the metrology lab,” said Kate Amar-Fox, melt shop metallurgist at Nucor. “We believe that powerful partnerships create powerful results and are looking forward to these partnerships for years to come.”

The Nucor Metrology Center provides students with the resources to make highly accurate measurements for their project components, advancing the Michigan Tech College of Engineering’s objective to provide world-class undergraduate and graduate education to support a diverse workforce and societal needs. 

“We want to see our students use their hands for physical engineering, and that happens in measurement,” said Rachel Store, Michigan Tech research engineer and head of the Nucor Metrology Center. “The students will take data to document their product performance, all while better understanding their product quality through metrics.”

The lab features both traditional and leading-edge, industry-standard equipment, including calipers, micrometers, a flexible arm coordinate-measurement machine (CMM), optical microscope, microhardness testers, tachometers, strobometers, and infrared and thermal scanners.

“Nucor’s donation allowed us to purchase a Leica DVM6 motorized digital microscope and a Hexagon Metrology absolute measurement arm, giving us the ability to do high-quality metrology measurements for part inspection,” said Blough. “We are already using this technology in one of our research programs and in one of our undergraduate courses.”

Store says the Center gives students exposure to the equipment they will see in industry when they graduate. “We know familiarity and fluency strengthen their hands-on, intensive experience,” she said. “Confidence is built on reality.”

Pamela Rogers Klyn to Deliver First Year Engineering Series Lecture

Pam Klyn ’93 is Senior Vice President, Corporate Relations and Sustainability at Whirlpool Corporation

Pamela Rogers Klyn, Senior Vice President, Corporate Relations and Sustainability at Whirlpool Corporation, will deliver the First-Year Engineering Series Lecture to more than 1,000 Michigan Tech’s incoming engineering majors on Monday, September 26 at 6 pm on campus at the Rozsa Center Auditorium.

The title of Klyn’s lecture: “Effort Creates Opportunities.”

“The First-Year Engineering Series Lecture provides an exciting opportunity for our students to learn how they can use their new technological education to positively impact the world, by hearing from some of the nation’s most innovative engineering leaders,” says Mary Raber, chair of the Department of Engineering Fundamentals. “We look forward to learning more about Pam’s engineering journey as our students begin creating their own.”

“Pam’s dedication to continuous learning and developing others as a part of her own career journey are important keys to her own success and the success of many others. Her words of wisdom will be especially helpful to our new students,” adds Janet Callahan, Dean of the College of Engineering.

Klyn grew up in Auburn, Michigan and joined Whirlpool soon after graduating in 1993 with a bachelor of science degree in Mechanical Engineering from Michigan Tech.

“I chose engineering because it provided a strong foundation of problem-solving skills for whatever it was I would choose to explore in the future,” Klyn says. “I originally thought I would pursue medical school. Instead I decided to enter the professional world.”

“The engineering education I received at MTU was a strong stepping stone to my career success at Whirlpool Corporation.”

Pam Klyn ’93, Senior Vice President, Corporate Relations and Sustainability at Whirlpool Corporation

Klyn has held advancing roles in engineering, product development, global innovation, and marketing at Whirlpool. Its vision: “Be the best kitchen and laundry company, in constant pursuit of improving life at home.” World-class Manufacturing, IoT (Internet of Things), environmental and social responsibility, leading-edge design, craftsmanship, and digital technologies all drive innovation at Whirlpool.

Whirlpool reported approximately $19 billion in annual sales in 2020, with 78,000 employees and 57 manufacturing and technology research centers. Its iconic brand portfolio includes Whirlpool, KitchenAid, Maytag, Consul, Brastemp, Amana, Bauknecht, JennAir, Indesit and Yummly. The company had 472 patents awarded in 2020 alone. (Klyn was named on one that same year).

The Whirlpool Corp. site in Cassinetta, northern Italy, reached its zero waste to landfill goal a year ahead of schedule, and reduced its carbon emissions by 38 percent in just four years. Whirlpool is aiming for carbon neutrality at all of its 54 sites around the world by 2030. Photo credit: Whirlpool Corporation.

After her first year at Whirlpool, Klyn earned a master’s degree in engineering at the University of Michigan. Later she earned an executive MBA from Bowling Green State University.

Klyn is now a member of the Executive Leadership team at Whirlpool, and reports directly to the company’s chairman and chief executive officer, Marc Bitzer. 

“Pam has been an outstanding leader at Whirlpool. She brings not only a strong technical understanding of the products and the types of purposeful innovation that exceed our customer’s expectations, but also a commitment to bettering the communities around her,” Bitzer said.

Klyn describes herself as hardworking and focused—while being grateful for the support she was given throughout her youth and early in her career. “This has fueled my strong desire to give back and leave things better than I found them in everything I do,” she says.

Klyn has excelled in a number of business and engineering leadership roles at the company. She lived in Milan, Italy as vice president, products and brands for Whirlpool EMEA (Europe, Middle East and Africa), then led all washer, dryer and commercial laundry platforms globally as senior vice president of global product organization. Klyn was accountable for developing the product plans and long-term strategy to drive profitable growth in all regions.

In 2011, the Wall Street Journal profiled Klyn in an article, “Finding Their Way to the Fast Track, Rising Stars to Senior Managers,” about the initiatives that saved her company $854 million. “Be confident in your approach,” states Klyn in the WSJ article. “Look your senior leaders in the eye and say, ‘Here’s my plan, and here’s why it will work.’”

As the first female technology director for Whirlpool, Klyn has made it a point to serve as mentor to a number of individuals, seeking to provide tools and guidance for emerging female leaders. “I want to support their career growth and to give them the confidence to pursue roles at the highest levels of the organization,” she says.

She was elected to the Michigan Tech Presidential Council of Alumnae in 2012. Last year she was welcomed into the Michigan Tech Academy of the Department Mechanical Engineering-Engineering Mechanics Academy. Selection into the Academy recognizes excellence and leadership in engineering and civic affairs. 

Klyn also serves on the College of Engineering Advisory Board as part of her ongoing connection to Michigan Tech. 

Closer to home in Benton Harbor, Michigan, Klyn is a member of the Boys and Girls Clubs Board of Directors. She has served as the co-lead of the Whirlpool United Way Campaign for multiple years in support of her community. She’s also a trustee on the Whirlpool Foundation Board. Klyn is also a member of the Board of Directors for Patrick Industries, a $5 billion-plus publicly traded company. 

In her spare time, Klyn is an avid runner (24 marathons and counting) and a devoted landscaper. She lives with her husband, Steve, near Lake Michigan. She has two step-children, Parker and Cara.

Read more:

Providing the best leadership: Pam Klyn takes on new communications role at Whirlpool

Dr. Yongchao Yang Awarded 2022 Achenbach Medal

Dr. Yonchao Yang, assistant professor of Mechanical Engineering-Engineering Mechanics, Michigan Tech

Yongchao Yang, an assistant professor of Mechanical Engineering – Engineering Mechanics at Michigan Technological University, is the recipient of the 2022 Achenbach Medal. This international award recognizes a young investigator, within 10 years of earning their PhD, who has made an outstanding contribution to the field of structural health monitoring. This includes the monitoring of bridges, aircraft, pipelines, buildings and other infrastructure and engineering systems. Each year a single individual worldwide is selected for the honor.

The Achenbach medal is named in honor of Jan Achenbach, professor emeritus and Walter P. Murphy Professor and Distinguished McCormick School Professor at Northwestern University. The medal was presented to Dr. Yang in the International Workshop on Structural Health Monitoring (IWSHM) on July 6 at the European Workshop on Structural Health Monitoring (EWSHM 2022) in Palermo, Italy. The workshop is held each year, rotating between Stanford University and a location in Europe.

Yang came to Michigan Tech from Argonne National Lab in August 2019, where he worked as a staff scientist. He earned a bachelor’s degree in Engineering at Harbin Institute of Technology in 2010, and a PhD in Structural Engineering at Rice University in 2014. He was a Director’s Postdoctoral Fellow at Los Alamos National Laboratory from 2015 to 2018.

“The process of implementing a damage identification strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring, or SHM,” says Yang, quoting the definition proposed by one of the pioneering SHM researchers, Dr. Charles Farrar at Los Alamos National Laboratory. Yang worked with Farrar during his postdoctoral research.

Dr. Yang works with a laser Doppler vibrometer system, coupled with an AI-based algorithm for full-field scanning and detection of metal structures, in this case, aluminum plates. In the back far right, PhD student Faraz Azad works at the computer on the measurement software and AI detection algorithm.

Yang’s research centers around structural dynamics in the broad areas of cyber-physical systems. “I hope to better understand the dynamic behaviors of structures and systems, in order to enable intelligent engineering systems–including software applications for structural health monitoring, and less invasive and non-destructive evaluations. That includes inferring and detecting any abnormal change in the dynamic features indicative of damage in the system.”

Yang leads the Dynamics & Intelligent Systems Group at Michigan Tech, consisting of postdocs, doctoral, master’s and undergraduate students. The group’s specific research includes sensing, modeling, analysis, and control of dynamic structures and systems.

“Our work in the lab spans the broad areas of system identification and control. We leverage approaches from experimental and computational mechanics, computer vision and machine learning—deep learning—with optical and acoustical tools,” Yang explains. “We seek to develop novel computational sensing tools and ‘physics-guided’ machine learning methodology. Our goal is to enable high-fidelity modeling and characterization of complex structural, material, and system behaviors.”

Sponsors of Yang’s research include the US Department of Energy, US Federal Highway Administration, Argonne National Lab, Los Alamos National Lab, Hyundai Corp., the MTRAC Innovation Hub for Advanced Computing at Wayne State University, and DARPA, the Defense Advanced Research Projects Agency.

Dr. William Predebon Retires Today After 47 Years at Michigan Tech

Dr. Bill Predebon is retiring today after a stellar career as professor and chair. He will remain always a mentor, advisor, colleague, and friend.

Today at Michigan Technological University, it feels like the end of an era.

But for Dr. William W. Predebon, J.S. Endowed Department Chair and Professor, it is the beginning of something absolutely new. Dr. Predebon will retire today after 25 years as the chair of the Department of Mechanical Engineering-Engineering Mechanics, and nearly 47 years at Michigan Tech.

“As I look back on all those years as department chair, I want to acknowledge that the progress we made was on the shoulders of those that came before us and the great faculty, staff, students and alumni who have been a part of this journey with me,” he says.

“If there was a hall-of-fame for mechanical engineering department chairs, Bill would get in on the first ballot,” says Greg Odegard, the John O. Hallquist Endowed Chair in Computational Mechanics. “Bill is a tremendous mentor. He worked hard to help young faculty develop into world-class researchers and teachers. He has a very calm, non-dramatic approach to leadership. He is simply honest and straight-forward.”

Under Predebon’s respectful and brilliant watch, the ME-EM department made great strides in conducting interdisciplinary research, growing the doctoral program, expanding research funding, and updating the curriculum and laboratories. He also brought diversity to both the faculty and student body.

Predebon joined the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech in 1976. He served as the department’s director of graduate studies, and then, in 1997 he became chair of the department.

“The world is changing, and we need to respond to its challenges and opportunities.”

Dr. Bill Predebon

“I’ve been fortunate to work with Bill on many projects over the past 25 years,” says Gordon Parker, the John and Cathi Drake Endowed Chair in Mechanical Engineering. “Bill brought a level of positivity that exceeded the circumstances in every case. This, along with his unwavering focus and kindness, resulted in success.”

“Bill has had a profound and lasting impact on the careers of many students, faculty, and staff,” adds Parker. “He’s a ‘true believer’ in Michigan Tech and the people that define it.”

“Bill made great effort on the development and retention of minority and women faculty members,” says ME-EM Professor Bo Chen. “When I joined Michigan Tech, he assigned two mentors for me, including a woman mentor. Bill has always been supportive of my teaching and research. He always tried his best to accommodate my requests for teaching assistants and research space. I greatly appreciate his help on my career journey at Michigan Tech.”

“Bill is the reason I came to Michigan Tech, and the reason I am still here today,” says Brad King, Richard and Elizabeth Henes Endowed Professor of Space Systems. “When I interviewed 22 years ago, Bill convinced me of his vision to broaden MEEM into new areas, which could include aerospace, and I jumped at the chance to be a part of that change.”

“True to his word, Bill always made room for new ideas and encouraged and rewarded innovation,” adds King. “As a result, there are now hundreds of Michigan Tech alumni in leadership positions within the commercial and government space industry, one Michigan Tech satellite orbiting the Earth, and two more in development. Just last week I saw a commuter bus driving around Houghton with a big satellite graphic on the side. Because of Bill, space and satellites are now an integral part of Michigan Tech’s identity.”

“By hiring talented faculty and staff, together with our great students, our generous and supportive alumni, and with the support of the university administration, we have been able to innovate, push boundaries, be creative, take risks, and be entrepreneurs,” Predebon says.

Over the past 10 years he led the ME-EM Department to rapidly evolve its educational methods, infusing into undergraduate and graduate curriculum the knowledge and critical skills to use big data, machine learning and artificial intelligence in the solution of engineering design problems.

“Bill is the master of the long game.”

John Drake ‘64, ‘69, Michigan Tech mechanical engineering and business alumnus
Dr. Predebon’s early days at Michigan Tech

Predebon grew up in New Jersey, then earned his bachelor’s degree from the University of Notre Dame in 1965 and his master’s and doctorate from Iowa State University in 1968 and 1970, respectively. After he graduated, Predebon held summer appointments at Argonne National Laboratory, Southwest Research Institute, and Honeywell Inc./Alliant Techsystems Inc.

Predebon’s research in ceramics, computational modeling and simulation of impact phenomena, and explosive fragmentation has involved experimental, analytical, and computational elements and has been supported by the National Science Foundation, the Department of Defense, and other government agencies and industrial partners. He has over forty publications and two US patents.

A Fellow of the American Society of Mechanical Engineers (ASME), Predebon has received numerous honors, including the Outstanding Service Award for his work with the student chapter of the Society of Automotive Engineers. At Michigan Tech he earned the first annual Martin Luther King Award by Michigan Tech’s Black Student Organizations; and the Michigan Tech Distinguished Teaching Award. He received the Distinguished Faculty Award from the Michigan Association of Governing Boards of Colleges, and the Michigan Tech Honorary Alumni Award. He also gained membership in Michigan Tech’s Academy of Teaching Excellence.

In 2015 Predebon was recipient of the Michigan Tech Diversity Award, which recognizes the accomplishments of a faculty or staff member who contributes to diversity and inclusion through exemplary leadership and actions. Predebon stood out for his long-term persistence in working on issues of diversity.

“Bill has been known for his willingness to try out-of-the-box strategies for recruiting underrepresented minorities and female faculty and students,” said Carl Anderson, ME-EM professor emeritus and former associate dean of research in the College of Engineering. “He recognized the importance of a diverse workforce well before it became part of the common expectation of a department chair. He led the way.”

“My observations, from over 20 years of Dr. Bill Predebon’s leadership:

Passionate
Resourceful
Enthusiastic
Dedicated
Energetic
Balanced
Optimistic
Notable

Gerald Haycock ‘68, mechanical engineering alumnus

Predebon also led efforts to create the Michigan Tech Learning Resource Center for Self-Paced Programmed Instruction, the ME-EM Engineering Learning Center, as well as a distance learning doctorate degree in mechanical engineering, and a Design Engineer Certificate program with General Motors in 2000. More than six hundred GM employees earned the certificate.

In 2010 Predebon started a Peace Corps Master’s International program in mechanical engineering at Michigan Tech, the first and only one of its kind in the nation.

Predebon is a captain in the US Army Reserves and is a member of four honor societies: Tau Beta Pi (engineering), Phi Kappa Phi (academic excellence), Omicron Delta Kappa (leadership), and Theta Tau (engineering).

In 2019 he was inducted into the Pan American Academy of Engineering, which brings together engineers from across the continent of North America, South America and Mexico—a total of 18 countries.

At Michigan Tech he advised both the Nordic and Alpine ski teams and Delta Sigma Phi fraternity, and chaired building committees for both the Dow Environmental Sciences and Engineering Building and the Great Lakes Research Center.

“The ME-EM department and Michigan Tech are better as a result of Bill’s hard efforts. I only wish I had an opportunity to be one of his students!”

Geoff Weller ‘75, mechanical engineering alumnus

So what are Dr. Predebon’s next steps after retirement? He plans to keep working—this time in development and outreach activities for Michigan Tech, as a Professor and Chair Emeritus.

“Bill is a pioneer at Michigan Tech in advancement. He showed the university how it could be done successfully,” notes Parker.

And Dr. Predebon just might journey with his family to Italy at some point, in order to meet relatives there for the very first time.

“ I thank all of you from the bottom of my heart.

Dr. Bill Predebon

Michigan Tech Wins ASME/IEEE Heat Sink Design Challenge

Michigan Tech’s Heat Sink team. Undergraduate students are Gracie Brownlow and Kelsey Brinks. Graduate students are Behzad Ahmadi, Masoud Ahmadi, and Behnam Ahmadi.

A student team from Michigan Tech has been awarded first place in the ASME/K16 and IEEE/EPS Student Design Challenge: Expanding the Possibilities of Heat Sink Design Using Additive Manufacturing.

The competition called upon student teams K-16 to expand the possibilities of heat sink design using additive manufacturing. The four finalist teams are Michigan Tech, Purdue University, University of Arkansas, and Berlin Institute of Technology.

Advanced heat sink designs offering augmented cooling capabilities are required for effective thermal management of high-power electronic chips. Future heat sink designs should not only offer an effective heat transfer but also be compact and cost-effective. 

Composed of Michigan Tech graduate and undergraduate students in the Department of Mechanical Engineering-Engineering Mechanics, the team was first selected as a semi-finalist in March. Now, as a finalist, one member of the team will defend their heat sink design in front of industry leaders in the form of an oral presentation, Behzad Ahmadi. That will take place during the IEEE ITherm 2022 Conference coming up in San Diego from May 31 – June 3, 2022.

Michigan Tech’s Energy-X team heat sink designs: expanding the possibilities of heat sink design using additive manufacturing.

Undergraduate students are Gracie Brownlow and Kelsey Brinks. Graduate students are Behzad Ahmadi, Masoud Ahmadi, and Behnam Ahmadi. Assistant Professor Sajjad Bigham is the team advisor. He is the director of the Energy-X Lab (Energy eXploration Laboratory) at Michigan Tech.

For the competition, all teams were asked to design, build, and validate an aluminum heat sink made with additive manufacturing techniques made available by GE Additive. Next, teams prepared a white paper that justified their designs.

The Michigan Tech team was among selected to print their heat sink with GE Additive machines. It was then sent for testing, which then helped determine the finalists, due to their top designs.

Michigan Space Grant Consortium Awardees for 2022-2023

Michigan Space Grant Consortium NASA

The University of Michigan – Michigan Space Grant Consortium has announced grant recipients. Michigan Tech faculty and staff researchers receiving grants are:

Faculty Led Fellowships for Undergraduates

Brendan Harville for “Seismic Amplitude based Lahar Tracking for Real-Time Hazard Assessment.”

Sierra Williams for “Understanding the Controls of Solute Transport by Streamflow Using Concentration-Discharge Relationship in the Upper Peninsula of Michigan.”

Graduate Fellowships

Espree Essig for “Analyzing the effects of heavy metals on vegetation hyperspectral reflectance properties in the Mid-Continent Rift, USA.”

Caleb Kaminski for “Investigation of Ground-Penetrating Radar Interactions with Basaltic Substrate for Future Lunar Missions.”

Katherine Langfield for “Structural Characteristics of the Keweenaw and Hancock Faults in the Midcontinent Rift System and Possible Relationship to the Grenville Mountain Belt.”

Tyler LeMahieu for “Assessing Flood Resilience in Constructed Streambeds: Flume Comparison of Design Methodologies.”

Paola Rivera Gonzalez for “Impacts of La Canícula (“Dog Days of Summer”) on agriculture and food security in Salvadoran communities in the Central American Dry Corridor.”

Erican Santiago for “Perchlorate Detection Using a Graphene Oxide-Based Biosensor.”

Kyle Schwiebert for “LES-C Turbulence Models and their Applications in Aerodynamic Phenomena.”

HONES Awards

Paul van Susante for “Lunabotics Competition Robot.”

Research Seed Grants

Xinyu Ye for “Analyzing the effects of potential climate and land-use changes on hydrologic processes of Maumee River Watershed using a Coupled Atmosphere-Lake-Land Modeling System.”

Pre-College Educational Programs

Jannah Tumey for “Tomorrow’s Talent Series: Exploring Aerospace & Earth System Careers through Virtual Job-Shadowing.”

Michigan Tech Represented at Midwest Growth Capital Symposium

SuPyRec logo.
ZiTechnologies logo with statement Clean Energy Pellets from Non-Recyclable Plastic-Paper.


Jim Baker (VPR) presented “Supporting Tech Companies from Pre-Launch to Investment” at the Midwest Growth Capital Symposium, held virtually and hosted by the University of Michigan’s Zell Lurie Institute for Entrepreneurial Studies.

The symposium also was attended by two Michigan Tech startup companies, SuPyRec and ZiTechnologies. Company representatives presented to prospective investors and hosted virtual booths throughout the event.

SuPyRec is led by David Shonnard (ChE) and is commercializing plastics recycling technology developed in his lab. ZiTechnologies is led by PhD graduate Stas Zinchik and is commercializing clean energy technology based on research conducted in Ezra Bar Ziv’s lab (ME-EM).

Both companies are leveraging support resources available within Michigan Tech’s Office of Innovation and Commercialization through Nate Yenor, director of technology business incubation, in close collaboration with MTEC SmartZone, the Michigan Small Business Development Center and Husky Innovate.

By Jim Baker, Vice President for Research Office.

The symposium took place May 17 and 18, 2022.