Category: Materials Science and Engineering

Then There Were Three: Stratus Nanosatellite Launch for MTU’s Aerospace Enterprise

Michigan Tech’s students designed Auris. It has been selected for launch by the University Nanosatellite Program, sponsored by AFRL.

The Aerospace Enterprise, under the direction of Dr. Brad King, is launching satellites as well as student careers. At the University Nanosatellite Program, sponsored by the Air Force Research Lab (AFRL) in August, ten students from the Enterprise team presented their latest satellite application, Auris, to judges from several space-related agencies.

The challenge for the competition was to develop a satellite mission that is relevant to both industry and the military. Students conceived of the idea for Auris, a ‘listening satellite,’ through discussions with Enterprise alumni working in industry and their interest in monitoring communication from other satellites to estimate bandwidth utilization.

Dr. L. Brad King, Richard and Elizabeth Henes Endowed Professor (Space Systems), Mechanical Engineering-Engineering Mechanics

“Ten university teams were in attendance and of the teams, we were among three of the schools to be selected to move forward. We now move on to ‘Phase B’ of the program and have a guaranteed launch opportunity with substantial funding to complete the design and integration of our spacecraft,” says Matthew Sietsema, Chief Engineer for the Aerospace Enterprise.

As a result of this award, the Aerospace Enterprise will soon have three satellites in space. Stratus, a climate monitoring satellite that determines cloud height and cloud top winds, was set for a March 2021 launch date. However, it was delayed due to the pandemic and is planned for launch in 2022. Oculus, an imaging target for ground-based cameras for the Department of Defense, was launched in June 2019.

“The Enterprise has remained on the same trajectory and has been very successful by all measures,” remarks King. “Students do a great job managing themselves and the leadership to replace themselves as they graduate and new members move up. It’s a challenge to juggle more than one satellite, but our students have remained focused and hard working while managing several projects and it’s a testament to their tenacity.”

Creating real-world, hands-on learning opportunities for around 100 students per semester, the Enterprise serves as a stepping stone for many as they launch their careers.

“Our students, even if they aren’t in leadership roles, do well securing positions in the aerospace industry. We tend to perform well because we offer a three-year, long-term program, which allows our students to maintain the situational knowledge required to solve complex problems.”

—Dr. Brad King

Paul Sanders: Tiny House Design—Weather, Watts, and Materials

This green, sustainable, net zero Tiny House was designed and built by Michigan Tech students. It sits on a foundation near the shores of Lake Superior. And it’s comfortable and enjoyable year-round, even during a harsh winter.

Paul Sanders shares his knowledge on Husky Bites, a free, interactive webinar this Monday, October 18 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 10/18 at 6 ET? Grab a bite with Dean Janet Callahan and Paul Sanders, Professor of Materials Science and Engineering at Michigan Tech. 

Prof. Paul Sanders holds the Patrick Horvath Endowed Professorship of Materials Science and Engineering at Michigan Tech. He’s also an alum—he earned his BS in Metallurgy and Materials Engineering in 1991.

Tiny houses are springing up all over the US. But in the Upper Peninsula of Michigan, where Michigan Tech is located, total snowfall can exceed 200 inches during the winter. Designing a tiny house for Michigan’s UP involves several extra layers of complexity. Especially if you want that tiny house to be carbon-neutral.

Last spring, a group of students in the Green Campus Enterprise at Michigan Tech took on the challenge: design and build a sustainable and affordable tiny house for cold climates—one that would serve as a model for green, energy-efficient (tiny) housing.

Michigan Tech’s Green Campus Enterprise was created in 2008, part of the Higher Learning Commission’s Academic Quality Improvement Program (AQIP) project. Under the AQIP project, Green Campus is charged with estimating the University’s carbon footprint and suggesting ways to reduce it. The team is advised by Chris Wojick, senior researcher at Michigan Tech’s Great Lakes Research Center, and Rob Handler, operations manager/senior research engineer at Michigan Tech’s Sustainable Futures Institute. Students taking part in Green Campus Enterprise annually measures the carbon footprint of Michigan Tech, and also design and implement projects to improve sustainability.

The Green Campus team began by working with their client, Sanders, to design the Tiny House with his family’s checklist and the team’s sustainable goals in mind. They researched and developed innovative solutions for making common building practices more sustainable. Next, the team modeled the thermal and energy performance of their preliminary tiny house designs. Once the best option was modeled, they worked directly with Sanders to create construction drawings and bring the house from idea to reality. 

Michigan Tech alumna Sierra Braun ’21 works as as an architectural drafter for S.C. Swiderski, LLC in Mosinee, Wisconsin, while pursuing an MS in Architecture. While on campus, she led the Green Campus Enterprise.

The team constructed sections of the tiny house on campus. Then Sanders, along with a lot of help from his son Caleb, assembled the home on their property in Bete Gris, Michigan, on Lake Superior. The result: a very sustainable (and cute and cozy) tiny house, which will hopefully be sided before the Keweenaw winter!

During Husky Bites we’ll meet the team, see the house, and find out just how they did it. Joining in will be Michigan Tech’s Tiny House team leader Sierra Braun, who graduated from Michigan Tech in May 2021 with a BS in Civil Engineering. While on campus, she led Green Campus Enterprise. Dave Bach, the team’s consultant and mentor to Sierra, will be at the session, too. Bach is an expert on sustainable building design and a Michigan Tech alum. Last but not least, environmental engineering undergraduate Nick Kampfschulte will be at the session, too, to tell us about the tiny house thermal modeling/sensing system he helped design.

Sanders, a six-sigma black belt engineer during his employment with Ford Motor Company, has led Michigan Tech’s highly successful MSE senior design program since 2010. Sanders has been successful in securing industry sponsorship for 100 percent of all MSE senior design projects since 2011. This time, however, he decided to sponsor and fund a student project of his own: A two-story tiny house. Instead of seeking out a senior design team for the Tiny House project, however, he sought help from Michigan Tech’s Green Campus Enterprise. Sanders knows a thing or two about Michigan Tech’s award-winning Enterprise Program. He previously served as an advisor to another Enterprise team, the Advanced Metalworks Enterprise.

Enterprise is a program unique to Michigan Tech, open to students of any major. Teams operate like companies, serving clients in a business-like setting to create products, deliver services, and pioneer solutions. There are currently 24 Enterprise teams on campus. Students in Green Campus Enterprise design and implement projects to improve the sustainability of the Michigan Tech campus, and measure its carbon footprint each year. The team was started in

A great view from the Tiny House!
Green Campus Enterprise artist rendering of the Tiny House, with a footprint of 200 square feet, it follows passive house principles. It’s also a net-zero energy building. Credit: Sierra Braun

Prof. Sanders, how did you first get into engineering? What sparked your interest?

As a kid I liked to build structures (play houses, cars) out of wood. I also liked chemistry, math, and physics in school.

Hometown, family? 

I grew up in Pulaski, Wisconsin as the oldest of three. My father was a high school chemistry teacher, and my mother was an elementary school teacher.

Sections of the Tiny House were built on campus, then transported to Bete Gris.

What do you like to do in your spare time?

I enjoy building and remodeling. I also enjoy meeting new people and living (not traveling) in different places around the world.

Did you know?

Dr. Sanders is one of Michigan Tech’s most prolific and creative researchers. Check out the website of his research lab, Alloy Research Central, at http://alloyresearch.mtu.edu.

Sierra, how did you first get into engineering? What sparked your interest?

I’ve always enjoyed thinking through problems, and designing and building things as a kid. Growing up, my family did some fun construction projects, too, from building dog houses and bookshelves to a cabin and a treehouse.

Hometown, family? 

I’m from Stratford, Wisconsin, currently living with my boyfriend and our two cats.

Nick Kampfschulte—and PeeWee

Nick, how are you involved with the Tiny House project?

My role was to aid in the overall design and modular construction. I also worked on designing and implementing its thermal modeling/sensing system.

Hometown?

I grew up in Grand Rapids, Michigan.

What do you do in your spare time?

I repair, build, and restore automobiles. I’m also into metal fabrication.

Dave, how are you involved with the Tiny House project?

Dave Bach is an alum, too. He earned both his BS in Mechanical Engineering and an MS in Biological Science at Michigan Tech.

I served as the team’s design and building advisor and mentor. I’ve been a professional sustainable builder and designer for the past 42 years. 

A dozen years ago, as a construction management instructor at Michigan Tech, Bach worked with Michigan Tech students on a design project to re-use two semi-trailer bodies and convert them to a single-family home.

What do you like to do in your spare time?

I’ve lived in the Copper Country since 1979, and in Houghton since 1999. I participate in all outdoor silent sports, especially mountain biking and cross-country skiing.

Graduate School Announces Fall 2021 Finishing Fellowship Award Recipients

Campus vista in hazy light showing the canal bending.

The Graduate School proudly announces the recipients of its Fall 2021 Finishing Fellowships. Congratulations to all nominees and recipients.

Finishing fellowship recipients in engineering graduate programs are:

ACMAL: New Remote Teaching and Research Capabilities

The Applied Chemical and Morphological Analysis Laboratory (ACMAL) is a shared facility located in the Minerals and Materials building on Michigan Tech’s campus. ACMAL has a wide range of electron microscope and x-ray analysis instruments available to the Michigan Tech community and guest researchers.

Over the past year, several ACMAL labs have been equipped with new software and cameras for improved remote teaching and research! These new remote capabilities allow for live/recorded demonstrations to be shared with large classes or for research clients and to view live data collection. 

Below are descriptions of these instruments and laboratories affected:

FEI 200kV Titan Themis Scanning Transmission Electron Microscope (STEM)

ACMAL STEM

The STEM is Michigan Tech’s newest electron microscope addition that has atomic resolution imaging capabilities. The instrument has the following capabilities and modes: conventional TEM mode, scanning TEM mode, electron energy loss spectroscopy, energy filter TEM, high angle annular dark field, ChemiSTEM, Super-X Energy Dispersive X-Ray, and nanometer scale tomography. 

New remote capabilities include:

  • Zoom screen-share from both the TEM laboratory web camera and instrument control monitors
  • Huskycast (Panopto) recording of lab space, TEM lab camera, and instrument control monitors

Learn more about the STEM: ACMAL – FEI 200kV Titan Themis STEM

Contact Elizabeth Miller (eafraki@mtu.edu) for more information.

FEI Philips XL 40 Environmental Scanning Microscope (ESEM)

ACMAL ESEM

The ESEM can be used to image a wide range of material types at a microscale including hydrated, contaminated, organic, or inorganic samples. This microscope itself has several modes and features that make it a flexible instrument for any research needs: SE/BSE imaging, thin window EDAX EDS, electron backscatter diffraction, high and low vacuum modes, and hot or cold stage options.

New remote capabilities include:

  • New laboratory web camera
  • Zoom screen-share abilities from both the microscope control and AzTEC analysis computers
  • Remote technical assistance with Raritan DKX4-101 KVM-over-IP
  • Remote operation with Raritan DKX4-101 KVM-over-IP

Learn more about the ESEM: ACMAL – FEI Philips XL 40 ESEM

Contact Elizabeth Miller (eafraki@mtu.edu) for more information.

X-Ray Facilities: Scintag XDS2000 Powder Diffractometer and Scintag XDS-2000 PTS

XRD Powder

ACMAL’s X-ray facilities (XRF) has instruments capable of performing x-ray diffraction (XRD) analyses on both powder and solid samples. Sample data such as present phases, lattice parameter, percent crystallinity, and texture analysis can all be found using MTU’s Scintag XDS2000 Powder Diffractometer and Scintag XDS-2000 PTS XRD instruments. These instruments have the following features to expand the types of samples that can be analyzed: zero background sample holder, custom powder sample holders, custom irregular shaped solid holder, custom liquid holder, ICDD-JCPDS database, and Anton-Paar high temperature stage.

New remote capabilities include:

  • New cameras installed in both the instrument lab and sample preparation lab.
  • Huskycast (Panopto) recording for both cameras and lab computer monitors.
  • Zoom sharing available in both labs and computer monitors.

Learn more about X-ray facilities: ACMAL – X-Ray Facilities

Contact Dr. Edward Laitila (ealaitil@mtu.edu) for more information.

Tau Beta Pi Honor Society at Michigan Tech initiates 39 new members

Each chapter of Tau Beta Pi has its own bent statue. On campus at Michigan Tech campus it is located between Rekhi Hall and the Van Pelt and Opie Library.

The College of Engineering inducted 38 students and one eminent engineer into the Michigan Tech Michigan Beta chapter of Tau Beta Pi this academic year.

A nationally-recognized engineering honor society, Tau Beta Pi is the only one that recognizes all engineering professions. Members are selected from the top eighth of their junior class, top fifth of their senior class, or the top fifth of graduate students who have completed 50 percent of their coursework.

Tau Beta Pi celebrates those who have distinguished scholarship and exemplary character and members strive to maintain integrity and excellence in engineering. The honor is nationally recognized in both academic and professional settings. Alumni embody the principle of TBP: “Integrity and Excellence in Engineering.”

The new Tau Beta Pi logo in blue, with Tau Beta Pi symbol, "the bent" which resembles an old watch winding key.

Fall 2020 Initiates:

Undergraduate students
Evan DeLosh, Mechanical Engineering
Nolan Pickett, Mechanical Engineering
Ben Holladay, Electrical Engineering
Jacob Stewart, Civil Engineering
Malina Gallmeyer, Environmental Engineering
Caleigh Dunn, Biomedical Engineering
Mikalah Klippenstein, Electrical Engineering
Savannah Page, Biomedical Engineering
Katie Smith, Chemical Engineering
Cole Alpers, Mechanical Engineering
Ben Pokorny, Mechanical Engineering
Kyrie LeMahieu, Mechanical Engineering
Anna Hildebrandt, Materials Science & Engineering

Graduate students
Shankara Varma Ponnurangam, Mechanical Engineering
Koami Soulemane Hayibo, Electrical Engineering
Kaled Bentaher, Chemical Engineering
Nicholas Hendrickson, Mechanical Engineering

Spring 2021 Initiates:

Undergraduate students
Anders Carlson, Mechanical Engineering
Brian Geiger, Mechanical Engineering
Emily Street, Mining Engineering
Jacob Lindhorst, Mechanical Engineering
John Benz, Mechanical Engineering
John Hettinger, Computer Engineering
Joshua King, Materials Science & Engineering
Laurel Schmidt, Mechanical Engineering & Theatre Technology
Matthew Fooy, Chemical Engineering
Matthew Gauthier, Mechanical Engineering
Max Pleyte, Biomedical Engineering
Nick McCole, Engineering
Nick Niemi, Biomedical Engineering
Tom Morrison, Chemical Engineering
Zach Darkowski, Mechanical Engineering

Graduate Students
Aiden Truettner, Chemical Engineering
Iuliia Tcibulnikova, Geological & Mining Engineering & Sciences
Rajat Gadhave, Mechanical Engineering
Ranit Karmakar, Electrical & Computer Engineering
Sreekanth Pengadath, Mechanical Engineering
Fnu Vinay Prakash, Electrical & Computer Engineering

Professor Tony Rogers, Michigan Tech

Eminent Engineer
Dr. Tony Rogers, Department of Chemical Engineering

Award Results for Design Expo 2021

PPE Project

As we’ve come to expect, the judging for Design Expo 2021 was very close, but the official results are in. More than 1,000 students in Enterprise and Senior Design showcased their hard work on April 15 at Michigan Tech’s second-ever, fully virtual Design Expo.

Teams competed for cash awards totaling nearly $4,000. Judges for the event included corporate representatives, community members and Michigan Tech staff and faculty. The College of Engineering and the Pavlis Honors College announced the award winners below on April 15, just after the competition. Congratulations and a huge thanks to all the teams for a very successful Design Expo 2021.

Last but not least, to the distinguished judges who gave their time and talents to help make Design Expo a success, and to the faculty advisors who generously and richly support Enterprise and Senior Design—thank you for your phenomenal dedication to our students.

Please check out the Design Expo booklet and all the team videos.

ENTERPRISE AWARDS

(Based on video submissions)

  • First Place—Husky Game Development (Team 115) Advisor Scott Kuhl, (CC)
  • Second Place—Aerospace Enterprise (Team 106) Advisor L. Brad King, (ME-EM)
  • Third Place—Innovative Global Solutions (Team 116) Advisors Radheshyam Tewari (ME-EM) and Nathan Manser (GMES)
  • Honorable Mention—Consumer Product Manufacturing (Team 111) Advisor Tony Rogers (ChE)

SENIOR DESIGN AWARDS

(Based on video submissions)

  • First Place —Advanced PPE Filtration System (Team 240) Team Members: Matthew Johnson, Electrical Engineering; Bryce Hudson, Mary Repp, Carter Slunick, Mike Stinchcomb, Braeden Anex, Brandon Howard, Josh Albrecht, and Hannah Bekkala, Mechanical Engineering Advised by: Jaclyn Johnson and Aneet Narendranath, Mechanical Engineering-Engineering Mechanics Sponsored by: Stryker
  • Second Place—ITC Cell Signal Measurement Tool (Team 204) Team Members: Reed VandenBerg and Andrew Bratton, Electrical Engineering; Noah Guyette and Ben Kacynski, Computer Engineering Advised by: John Lukowski, Electrical and Computer Engineering Sponsored by: ITC Holdings Corp.
  • Third Place—Development of a Beta Brass Alloy for Co-Extrusion (Team 234) Team Members: Anna Isaacson, Sidney Feige, Lauren Bowling, and Maria Rochow, Materials Science and Engineering Advised by: Paul Sanders, Materials Science and Engineering Sponsored by: College of Engineering
  • Honorable Mention—EPS Ball Nut Degrees of Freedom Optimization (Team 236) Team Members: Brad Halonen, Rocket Hefferan, Luke Pietila, Peadar Richards, and David Rozinka, Mechanical Engineering Advised by: James DeClerck, Mechanical Engineering- Engineering Mechanics Sponsored by: Nexteer
  • Honorable Mention—Electric Tongue Jack Redesign (Team 230) Team Members: Jack Redesign and Brandon Tolsma, Mechanical Engineering; Collin Jandreski, Christian Fallon, Warren Falicki, and Andrew Keskimaki, Electrical Engineering Advised by: Trever Hassell, Electrical and Computer Engineering Sponsored by: Stromberg Carlson
  • Honorable Mention—Bone Access and Bone Analog Characterization (Team 212) Team Members: Sarah Hirsch, Mechanical Engineering; Elisabeth Miller and Christiana Strong, Biomedical Engineering; Morgan Duley, Electrical Engineering; Katelyn Ramthun, Biomedical Engineering Advised by: Hyeun Joong Yoon and Orhan Soykan, Biomedical Engineering Sponsored by: Stryker Interventional Spine Team
  • Honorable Mention—Blubber Only Implantable Satellite Tag Anchoring System (Team 221) Team Members: Quinn Murphy, Lidia Johnson, Joshua Robles, Katy Beesley, and Kyle Pike, Biomedical Engineering Advised by: Bruce Lee, Biomedical Engineering; Sponsored by: NOAA

DESIGN EXPO IMAGE CONTEST

(Based on image submitted by the team)

  • First Place—Blizzard Baja (Team 101): “Our current vehicle, Hornet, after a race.” Credit: Blizzard Baja team member
  • Second Place—WAAM Die Components (Team 237): “MIG welding robot printing a steel part.” Credit: Mike Groeneveld
  • Third Place—Aerospace Enterprise (Team 106): “Team photo, pre-Covid.” Credit: Aerospace Enterprise team member

DESIGN EXPO INNOVATION AWARDS

(Based on application)

  • First Place—Consumer Product Manufacturing Enterprise, Shareable Air project (Team 101) Advised by: Tony Rogers, (ChE)
  • Second Place—ITC Cell Signal Measurement Tool (Team 204) Advised by: John Lukowski (ECE) 
  • Third Place—Hospital Washer Autosampler Implementation (Team 218) Advised by: Sang Yoon Han and Houda Hatoum (BioMed)

DESIGN EXPO PEOPLE’S CHOICE AWARD

(Based on receiving most text-in voting during Design Expo)

ENTERPRISE STUDENT AWARDS

  • Rookie Award—Jack Block, CFO – Supermileage Systems Enterprise
  • Innovative Solutions—Cody Rorick, Alternative Energy Enterprise
  • Outstanding Enterprise Leadership—Andy Lambert, CEO – Supermileage Systems Enterprise and Daniel Prada, Spark Ignition (SI)
  • Team Lead—Clean Snowmobile Enterprise

ENTERPRISE FACULTY/STAFF AWARDS

  • Behind the Scenes Award—Kelly Steelman, Associate Professor and Interim Chair, Dept. of Cognitive and Learning Sciences, nominated by Built World Enterprise.

Dean’s Teaching Showcase: Paul Sanders

Paul Sanders
Paul Sanders

College of Engineering Dean Janet Callahan has selected Professor Paul Sanders of the Materials Science and Engineering Department for this week’s Dean’s Teaching Showcase. Sanders coordinates MSE’s curriculum-critical capstone design course sequence, as well as the pre-capstone preparation course. Callahan notes, “Dr. Sanders has built MSE’s capstone program into a highly effective sequence that not only teaches critical design skills, but prepares his students to become highly sought-after employees.”

A six-sigma black belt engineer during his prior association with Ford Motor Co, Sanders has developed this sequence into a professionally-relevant, and sustaining experience for the department and its students. Subjects and approaches included in the MSE student preparatory course and later in capstone projects include hypothesis development, simulation and prediction, designed experiments, laboratory experiences, measurement system analysis, analysis of results, and communication skills. The amount of personal contact time and dedication that he provides the students far exceeds that which is normally expected or expended on coursework. He remains active and dedicated to its continuous improvement. In addition to and in support of these classroom duties, Sanders has been successful in securing 100% sponsorship of all capstone projects since he began leading these courses in 2010.

Sanders’ reputation as an effective and innovative educator is well known across the discipline and external to Michigan Tech. Michigan Tech’s MSE senior design teams have placed in the ASM International Undergraduate Design Competition in eight of the last nine years, taking first place in the last three; this level of success is unmatched by any other university nationwide in this international competition that began in 2008. Not surprisingly, yearly assessment and feedback from project sponsors and MSE’s external advisory board (EAB) underscore the relevance of his classroom activities to the duties of a practicing engineers, and the edge that these courses give our students. Tied to this success, Sanders delivered an invited presentation in the Materials Design Symposium at a TMS conference to summarize the successful implementation of the implementation of Integrated Computational Materials Engineering (ICME; aka the “digitalization” of MSE via the federally-advocated Materials Genome Initiative) into an undergraduate curriculum, for which Michigan Tech has been recognized as a leading example and model program.

To make his accomplishments in the classroom all the more significant and impressive, Dr. Sanders is one of Michigan Tech’s most prolific and creative researchers. He holds the Patrick Horvath Endowed Professorship of Materials Science and Engineering, and leads and supports a large, externally funded research team; typically comprised of about 8 graduate students, several undergraduate interns and co-op engineers, and four technical staff members. His research focuses on alloy development, and in particular on alloy design using computational simulation which is followed up with subsequent processing, calibration, and optimization in MSE’s materials processing facilities.

MSE Department Chair Steve Kampe said, “Paul is an amazingly dedicated teacher and an effective mentor to our students at this formative and defining time in their educational experience at Michigan Tech. He is really able to capture and nurture the essence of what makes Michigan Tech students unique and valued as engineers and scientists.”

Sanders will be recognized at an end-of-term event with other showcase members, and is also a candidate for the CTL Instructional Award Series (to be determined this summer) recognizing introductory or large-class teaching, innovative or outside the classroom teaching methods, or work in curriculum and assessment.

By Michael R. Meyer, Director William G. Jackson CTL.

Written by Stephen Kampe, Department Chair, Materials, Sciences and Engineering

Tiny Nanoindentations Make a Big Difference for Prasad Soman

microphoto of nanoindentations seen near the grain boundary of iron, seen at 20 microns
Nanoindentations performed near or away from the grain boundary of iron, made to study their effect on deformation. Photo credit: Prasad Soman

Prasad Soman will graduate soon with his MSE PhD. But instead of walking down the aisle and tossing his cap in Michigan Tech’s Dee Stadium, this year he’ll take part in Michigan Tech’s first-ever outdoor graduation walk.

“My PhD research goal was to better understand how the addition of carbon affects the strengthening mechanism of iron—by looking to see what happens at the nanoscale,” he explains.

Soman studied the mechanisms of grain boundary strengthening by using an advanced and challenging technique known as nanoindentation to get “up close and personal” to the interfaces between individual crystals within a material. Just last week Soman successfully defended his PhD dissertation: “Study of Effects of Chemistry and Grain Boundary Geometry on Materials Failure.” The research was sponsored by the US Department of Energy.

photo of Prasad Soman
“My experience at Tech has been exciting and fulfilling: study, teaching, and research amidst the beauty of the Upper Peninsula of Michigan,” says Prasad Soman, who will graduate from Michigan Tech on April 30 with a PhD in Materials Science and Engineering.

He’ll soon be moving to California to take a position with Amazon, the culmination of many years of hard work. “My journey into the field of metallurgy and materials science began in India, way back in high school, when I was thinking of choosing a major for my undergraduate studies in engineering. I had developed a great interest in Physics and Chemistry, then discovered I could pursue my interest even further by choosing metallurgical engineering as my major,” he says. Though his new position will not utilize his metallurgical expertise in a direct way, Amazon was drawn to Prasad’s ability to independently carry out and complete a detailed research project that required a high level of attention to detail, data collection, and advanced analysis and physical modeling.

“I attended College of Engineering Pune, one of the top tier schools for metallurgy in India. Upon graduation, I went on to work in the steel industry for a while, and then decided to pursue higher education in the US.

Soman arrived at Michigan Tech with the intention of earning a Master’s in MSE. Professor Yun Hang Hu advised Soman towards that degree, involving him in research focused on the fabrication and characterization of Molybdenum Disulfide (MoS2)-based electrodes (aka Moly) for supercapacitor applications. The experience prompted Soman to continue on in his studies and earn a PhD.

For his MS degree, Soman worked with Yun Hang Hu, Charles and Carroll McArthur Professor of MSE at Michigan Tech

Two MSE faculty members, Assistant Professor Erik Herbert and Professor Stephen Hackney, served as Soman’s PhD co-advisors. “Prasad analyzed the effect of grain boundary segregation on the strengthening and deformation mechanism in metals and alloys,” says Herbert. “To do this Prasad intensively used small-scale mechanical testing, including nanoindentation and in-situ TEM experiments.”

“The most exciting part of this work involved utilizing various material characterization techniques,” says Soman. “The Advanced Chemical and Morphological Analysis Laboratory (ACMAL) facility, located in the Michigan Tech M&M building near the MSE department, is one of the best materials characterization facilities in the world. Characterization of the materials response to mechanical indentation was essential for my PhD work, so having access to the many techniques available in ACMAL was both revealing and fulfilling.”

‘The work was painstaking, but thanks to Prasad’s incredible hard work, skill, and dedication, he was able to make significant inroads to improve our understanding.” 

Dr. Erik Herbert, Assistant Professor, Materials Science & Engineering

Soman used a variety of characterization methods in his research, including nanoindentation, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron backscatter diffraction spectroscopy (EBSD). “All help examine materials behavior at the nanometer scale,” he adds.

In particular, Soman used nanoindentation to study local grain boundary deformation in metals and alloys. “Using nanoindentation we can measure hardness at a very small length scale. The indentation impression size is on the order of a couple of microns—smaller than the width of a human hair,” Soman explains.

Two MSE faculty members, Professor Stephen Hackney (l) and Assistant Professor Erik Herbert (r) served as Soman’s PhD co-advisors.

“Performing a nanoindentation was challenging at first. The goal is to get the indentation very close to the grain boundary. The task is done using a simple optical microscope, yet accuracy on the order of a couple of microns must be achieved. That kind of accuracy is essential for the proper positioning of the indent relative to the boundary. But just as for any other thing, the more you practice (and learn from mistakes) the better you perform. It’s been a great achievement for me to consistently get the indentation accurately placed.”

PhD Candidate Prasad Soman hard at work in Michigan Tech’s ACMAL Lab

“Instrumented indentation experiments allow us to measure materials properties—including hardness and elastic modulus—as a function of depth,” says Soman. “We also examine how different microstructural features—grain boundary vs. grain interior—respond to a very localized deformation at nanometers length scale.”

Soman says he decided to join Michigan Tech’s MSE program due to its strong emphasis on metallurgical engineering. “While here at Tech, however, I was exposed to a variety of domains within materials science—energy storage materials, semiconductors, polymers, and more. So, while I focused on my passion for fundamental science in metallurgy, I also developed understanding and skills in these different domains,” he explains.

“That has come to fruition, as I will now be going to work in the consumer electronics industry, which requires a multidisciplinary approach.”

The large building on the far left of this campus photo is Michigan Tech’s Mineral and Materials Engineering Building (aka the “M&M”)—home to the MSE Department and the Advanced Chemical and Morphological Analysis Laboratory (ACMAL).

Soman will soon pack up and move to Sunnyvale, California. He’ll be working as a hardware development engineer at Amazon. “The team is a cool group of engineers/scientists with diverse backgrounds—mechanical, chemical, design and other disciplines, as well. We’ll develop health and wellness electronic devices, such as smart watches, smart AR/VR glasses, and more. This job will allow me to utilize some of the key skills I developed at Michigan Tech in the field of metallurgy and mechanics. More than anything, I am eager to learn from the best of the best—all the folks in my team.”

One last thing, adds Soman: “I will terribly miss Houghton. I call it my home away from home.”

Recognizing Outstanding Engineering Alumni in 2021

The Michigan Tech Alumni Board of Directors is proud to recognize outstanding alumni and friends with their 2021 awards program. The following are engineering alumni recognized this year:

Outstanding Young Alumni Award

Presented to alumni under the age of 35 who have distinguished themselves in their careers. The award recognizes the achievement of a position or some distinction noteworthy for one so recently graduated.

Kaitlyn Bunker
Kaitlyn Bunker ’10 ’12 ’14
Electrical Engineering
Megan Kreiger
Megan Kreiger ’09 ’12
Mathematics and Materials Science and Engineering

Outstanding Service Award

Presented to alumni and friends making significant contributions to the success of the Board of Directors and/or the University.

Kathy Hayrynen
Kathy Hayrynen ’86 ’89 ’93
Metallurgical Engineering

Distinguished Alumni Award

Presented to alumni who have made outstanding contributions both in their career and to Michigan Tech over a number of years.

Julie Fream
Julie Fream ’83
Chemical Engineering

Happy Engineer’s Week 2021!

Let’s imagine a better tomorrow. Join us!

This week, we’re celebrating National Engineers Week (Feb. 21-28). Everyone’s invited to special events on campus sponsored by Tau Beta Pi, the Engineering Honor Society student chapter at Michigan Tech.

Founded by the National Society of Professional Engineers in 1951, Eweek is celebrated each February around the time of George Washington’s birthday, February 22, because Washington is considered by many to be the first U.S. engineer.

At Michigan Tech, the week is celebrated with special events on campus all hosted by student organizations. Everyone is welcome! Please feel free to stop by and check out Eweek events as your schedule allows:

Monday, Feb. 22
Brainteasers—give your brain a mini-workout, courtesy of Michigan Tech’s Systems Engineering Association (SEA), 11am-2pm in the Dow Lobby.

Some founders of SEA, Michigan Tech’s relatively new Systems Engineering Association.

Tuesday, Feb. 23
Build with Built World Enterprise, 6-7 PM
Online, Zoom: https://michigantech.zoom.us/j/88350890241

Built World Enterprise at Michigan Tech

Wednesday, Feb. 24
Michigan Tech Engineering Alumni Panel, hosted by Tau Beta Pi
4-6 PMOnline, Zoom: https://michigantech.zoom.us/j/89023074247
Submit your questions in advance: https://docs.google.com/forms/d/e/1FAIpQLSdFvHtUjVrpO_iMmrQWel78S7D2BXjCNhROo4CoYLwSbJA5nw/viewform?usp=sf_link

Julia Zayan
Julia Zayan ’15, General Motors (Chemical Engineering)
Rebecca Mick
Rebecca Mick ’09, Amcor (Chemical Engineering)
Quinn Horn
Quinn Horn ’93, ’95, ’98, Exponent Consulting (Materials Science and Engineering)

Thursday, February 25
Metal foundry in a box with Materials United, 3-5 PMB, on campus, outside, between the M&M Engineering Building and Douglas Houghton Hall.

Foundry in a Box. Make something small, come pick it up later, after it cools!

Nationwide, Eweek is a formal coalition of more than 70 engineering, education, and cultural societies, and more than 50 corporations and government agencies. This year’s theme: Imagining Tomorrow. Dedicated to raising public awareness of engineers’ positive contributions to quality of life, Eweek promotes recognition among parents, teachers, and students of the importance of a technical education and a high level of math, science, and technology literacy.

One important goal: to motivate youth to pursue engineering careers in order to provide a diverse and vigorous engineering workforce.

Due to the pandemic, some E-Week events won’t be possible this year. One thing we’ll greatly miss is the traditional Michigan Tech E-Week cake, offered to all on campus by the Department of Engineering Fundamentals. The cake will be back, though: We look forward to E-Week 2022!