Category: News

Hiring Faculty in the College of Engineering at Michigan Tech

(We’re in the Beautiful Upper Peninsula of Michigan)

With near record-breaking enrollment of first-year engineering students in Fall 2021, and with research accomplishments approaching an all-time high, the College of Engineering is actively seeking leaders, tenure-track faculty, and instructional faculty across many different fields of engineering. 

“In terms of leaders—we seek the next Chair of Electrical and Computer Engineering, and also the next Chair of Mechanical Engineering – Engineering Mechanics,” states Dean Janet Callahan. “In addition, with this year’s enrollment growth, and to prepare for future growth in graduate enrollment at Michigan Tech, we are substantially adding to our future research portfolio by adding faculty across five departments.” 

Faculty openings include positions in Chemical Engineering, Electrical and Computer Engineering, Civil Environmental and Geospatial Engineering, Materials Science and Engineering, and Mechanical Engineering-Engineering Mechanics. In addition, there are openings across the rest of the University, including Computer Science.

“We are building a culturally-diverse faculty committed to teaching and scholarship in a multicultural and inclusive environment, and we seek faculty members and academic leadership who share these values,” adds Callahan.

Alan Turnquist: Sustainability and Resilience at Michigan Tech—Where We Are and Where We Might Go

Michigan Tech is ranked by the Advancement of Sustainability in Higher Education (AASHE) as a STARS Silver campus.
What will it take to reach STARS Gold, or STARS Platinum?

Alan Turnquist shares his knowledge on Husky Bites, a free, interactive webinar this Monday, October 25 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 10/25 at 6 ET? Grab a bite on Zoom with Dean Janet Callahan and Alan Turnquist, director of Sustainability and Resilience at Michigan Tech. 

Alan Turnquist

Sustainability and resilience are buzzwords that cut across individual choice, corporate culture, and policy at all levels of government. But how do they impact higher education? During Husky Bites, we’ll learn some fresh perspectives on what these issues mean for the future of higher education and how faculty, staff and students at Michigan Tech are integrating sustainability and resilience into our core goals. 

Joining in will be Chelsea Schelly, associate professor of sociology, as well as Larry Hermanson, Michigan Tech’s director of Energy Management. 

“I work side by side with Larry and Chelsea on the Tech Forward Initiative for Sustainability and Resilience,” says Turnquist. “We all come from different places and have different perspectives, but we share the same passion for working together for the future of Michigan Tech.

Turnquist came to Michigan Tech in 2019 from the University of Wisconsin-Madison, where he managed the Agroecology graduate program with faculty from over 20 different academic departments. He also led a team at UW Madison managing the GreenHouse Learning Community, an undergraduate residential program focused on sustainability, environment, food systems and social justice. 

Upon arriving at Michigan Tech Turnquist joined the Waino Wahtera Center for Student Success, where he designed, implemented and led orientation programs for incoming students. He moved into his current position as director of Sustainability and Resilience just last month, in September 2021. 

“Much of my work has a thematic focus on sustainability and social justice,” adds Turnquist. “Regardless of the theme, my professional passion and greatest skill is collaborating and connecting with people while working for a common cause.”

Prof. Chelsea Schelly

Associate Professor Chelsea Schelly joined Michigan Tech’s Department of Social Sciences in 2013. She earned a BS in Social Sciences at the University of Wisconsin-Madison, an MS in Social Sciences at Colorado State, then returned to Madison for her PhD. Schelly researches and writes about energy practices, consumption behaviors, energy conservation, and the adoption of alternative technology in a wide variety of contexts—from solar electric technology and policy, off-grid living and intentional communities to Rainbow Gatherings and 3-D printers for distributive manufacturing. 

“We’re all three committed to seeing positive change that creates a more sustainable and resilient University,” says Schelly. “That includes more opportunities at Michigan Tech for leadership, research, and education in resilience and sustainability.”

Larry Hermanson

Larry Hermanson joined Michigan Tech in 2015 as Director of Energy Management. Hermanson oversees all aspects of energy management across Michigan Tech’s 3-million square foot campus. He is also an alum—Hermanson earned a BS in Mechanical Engineering in 1992, and secondary education certification in 2012, both at Michigan Tech. He’s had a diverse career with over 20 years of experience in HVAC, construction, and industrial plant operations and maintenance, worked at iron ore and copper mining operations, and also spent a few years teaching high school science and math. Hermanson earned his certification with support from an NSF Robert Noyce Scholarship, and worked as a STEM teacher for Washington Island School in Wisconsin. 

Michigan Tech aims to be a leader in demonstrating sustainability through the campus experience. The university is a member of the EPA Green Power Partnership and, through the student-led Green Campus Enterprise, actively accounts for its campus carbon footprint each year. Michigan Tech is a member of the Association for the Advancement of Sustainability in Higher Education (AASHE) and is ranked by AASHE as a STARS Silver campus. Many student organizations on campus focus on sustainability activities; and we’ll learn about Michigan Tech’s sustainable electricity, trash, water, and wastewater systems, too.

Sami and Lila

Alan, how did you first get into Sustainability? What sparked your interest?

Growing up in the forests and lakes of northern Wisconsin and the Upper Peninsula of Michigan gave me a deep appreciation for the natural world. Reading Aldo Leopold from an early age taught me the importance of being intentional about the way we interact with the land on which we live. Finally, studying international development and living in Central America brought home the amazing ingenuity of the human spirit, and the challenges we face in working across different perspectives in balancing individual freedoms and collective action.

Hometown, family?

I was raised in Phillips, Wisconsin, a small northern town surrounded by the Chequamagon National Forest. I eventually moved to Madison, where I spent 25 years studying and working before moving to Houghton in 2019. I earned a JD in Environmental and Administrative Law, an MS in Agriculture and Applied Economics, and BA in Latin American and Caribbean Studies, all at UW-Madison. My wife, Erin and I have two young children, Sami and Lila, ages 3 and 6.

What do you like to do in your spare time?

The Schelly farmstead. Note the solar panels on the roof of the barn.

So many hobbies, so little time!  I love to be outside skiing, biking, paddling, and foraging. One big appeal of Houghton is that we have actual winter, with real snow that stays on the ground.  It’s like we live in a giant playground.

My wife and I both like riding bicycles. We have commuted by bike pretty much every day for the past 20 years or so. Our “claim to fame” in the biking world is that we strapped our tandem bike to the top of an old volvo 240 wagon and drove it as far north as we could, to where the road ends in Inuvik, Northwest Territories—a small indigenous community in the Canadian Arctic where the Mackenzie River empties into the Arctic Ocean. We gave away the car and rode our tandem bicycle all the way to Ushuaia, Argentina, which is the southernmost point in South America. It took us just over 18 months to cover the 17,000 or so miles, with lots of down time to get to know some amazing people and places along the way. It’s been almost 10 years since we finished that ride, and it’s hard to believe that we actually did it. Just goes to show what a little persistence can accomplish!

 Alan Turnquist once took a 550-day tandem bike trip with his wife, Erin, from the Arctic Circle to Ushaia, the southern-most city in South America.

Prof. Schelly, How did you first get into social sciences? What sparked your interest in sustainability?

I grew up in suburbia, and spent my childhood wondering why anyone would want to live in that setting. Learning about sustainability provided an opportunity for me to see other ways of organizing human life. 

I am motivated by a belief: when humans learn to live in ways that are more respectful of the ecological systems upon which we all depend, we’ll learn to be more respectful of differences across human systems—and be more kind to one another. 

Life on the farm!
Tight squeeze!

Hometown, family, hobbies?

I graduated from high school in Oklahoma and ended up going to college in Madison, Wisconsin. I am now a mom in many ways (biological, step, foster, exchange) and share a farmstead with my husband, our (currently 6) children, 3 dogs and a cat, ducks, chickens, goats, horses, and often a tiny house or van dweller or two. We’re outside—and on the go—a lot! 

Larry is a volunteer firefighter/EMT with the Chassell, Michigan Volunteer Fire Department, formed in 1947.

Larry, how about your family? What do you like to do in your spare time?

Teddy!

I have two teenage daughters and enjoy spending time outdoors. I’m a volunteer firefighter/EMT with the Chassell Volunteer Fire Department. I also have a great dog, Teddy.

Larry with daughter, Kristen and friend Denice, enjoying the fall colors at Copper Peak, near Ironwood.

Read more

Michigan Tech Sustainability Website

Innovators in Industry: Future of Autonomous Vehicles and Mobility

Michigan Tech is excited to launch Innovators in Industry: a project connecting students with MTU alumni who are industry experts, leaders, and influencers.

The initial three-part series kicks off on Monday, October 25 at 7 pm with a session titled, “The Future of Autonomous Vehicles and Mobility.”

Featured alumni for the session will be Sean Kelley ‘86 of the Mannik & Smith Group, Inc., an engineering and environmental sciences consulting firm; Mark Rakoski ‘95, of Mitsubishi Electric Automotive America Inc.; and Birgit Sorgenfrei ’91 of Ford Motor Company.

Janet Callahan, Dean of the College of Engineering, will host the first session. Jeremy Bos, assistant professor of Electrical and Computer Engineering (and also an alum) will serve as co-moderator. Bos earned a BS in Electrical Engineering at Michigan Tech in 2000 and a PhD in Electrical Engineering and Optics in 2012. He serves as advisor to Michigan Tech students taking part in the SAE AutoDrive Challenge.

The featured alumni will make short presentations with time for Q&A from the audience. All Michigan Tech students, faculty, and staff are invited to join the Zoom session.

During the session Sorgenfrei, Kelley, and Rakoski will discuss the future of autonomous automobiles and their design, and the design of the infrastructure with which those automobiles will need to communicate.

If the three alums could each go back in time, what would they have strived to learn while at Michigan Tech? They’ll share those insights with us, and provide valuable advice for students—those due to graduate soon, and in the next few years.

“Cars are some of the most complicated things out there, more complicated than jets or commercial aircraft. They’re basically really smart computers that move and let people get inside them.”

Sean Kelley

Sean Kelley is senior vice president and principal with the Mannik & Smith Group, Inc., a 370-person engineering and environmental sciences consulting firm with 15 offices in Michigan, Ohio and West Virginia. He earned a BS in Civil Engineering at Michigan Tech, and an MBA at Eastern Michigan University. He’s a registered Professional Engineer in both Michigan and Ohio.

Sean Kelley (’86 Civil Engineering), Mannik & Smith Group, Inc.

Kelley has led the development of infrastructure for closed-system test facilities to advance smart mobility technology, including three of the most significant facilities in the Midwest: University of Michigan’s Mcity in Ann Arbor; the American Center for Mobility located 30 minutes west of Detroit and the Transportation Research Center located at Honda’s North American test center in Central Ohio.  

He’s a recognized leader in the engineering consulting industry in Michigan. His focus on both the public and private sectors allows him to understand and appreciate the challenges associated with creating and maintaining a well-functioning and sustainable infrastructure to support a high quality of life for everyone. Kelley is often a featured speaker at conferences related to transportation and smart mobility. He has two grown children—Morgan and Aaron—who share his passion for learning and helping to advance humanity and a healthier planet.  

“Today there seems to be a huge disruption in the deeply embedded culture of the automotive industry: in order to get a common platform for smart mobility, there really has to be a lot more sharing and working together.”

Mark Rakoski

Mark Rakoski is VP, Advanced Engineering at Mitsubishi Electric. He joined the company in 1996 as an application engineer, soon after earning his BS in Mechanical Engineering at Michigan Tech. Over the course of his career, he has served the company in various capacities, including as senior account manager for Fiat Chrysler Automobiles (FCA) and director and executive director for both the FCA and Ford accounts. 

Mark Rakoski (Mechanical Engineering ’95), Mitsubishi Electric

In his current position Rakoski is responsible for leading product development engineering teams for vehicle connectivity, autonomous sharing and electric solutions, and Mobility-as-a-Service—with specific focus on infotainment and advanced driver-assistance systems (ADAS). 

In 2020, Rakoski was appointed to the Mitsubishi Electric Mobility Ventures (MEMO Ventures) Board. MEMO Ventures explores and funds ideas to create new business opportunities for the company’s Automotive Equipment Group (AEG) in the rapidly evolving mobility sector.

Rakoski is also responsible for Silicon Valley new ventures team management, contract negotiations, marketing and global strategic accounts management. He resides in South Lyon, Michigan. 

“The auto industry has been assisting our customers while behind the wheel for years, starting with the introduction of cruise control in 1948. Working in Driver Assist Technology is exciting, as the technologies leading to self-driving vehicles are available to customers now to increase safety and convenience.”

Birgit Sorgenfrei (EE ’91) Ford Motor Company
Birgit Sorgenfrei (Electrical Engineering ’91) Ford Motor Company

Birgit Sorgenfrei is currently a Driver Assist Technology Applications Lead at Ford Motor Company. She was previously Electrical Lead for Lincoln & Ford Programs, as well as a systems manager responsible for Autonomous Vehicle integration and advanced features for electrified vehicles. Her more than 20-year career at Ford includes research on sensors for electrical power assist steering systems, component and system radio design, vehicle planning, hybrid battery software delivery, fuel cell technology development, and the introduction of StartStop Technology to North America. Previously, she worked for General Electric, Johnson Controls Inc., IBM, General Motors, and internationally for Schlumberger Industries in France, the University of Hanover in Germany, and Ford Motor Company in England and Germany. Sorgenfrei earned her BS in Electrical Engineering at Michigan Tech in 1991, graduating summa cum laude. She then earned a MSEE degree from MIT, and later an MBA from the University of Michigan.


Other upcoming sessions of Innovators in Industry include:

Monday, November 1 – The Computing Revolution (hosted by the College of Computing)

Monday, November 8 – Entrepreneurship: Startups & Venture Capital (hosted by the College of Business)

All sessions will begin at 7 p.m. on Zoom.

The series is organized by the Office of Advancement and Alumni Engagement, Innovators in Industry aims to give students direct access to industry leaders to help shape their paths. Future plans for the Innovators in Industry series include in-person sessions and on-location visits for students to industry hubs.

Then There Were Three: Stratus Nanosatellite Launch for MTU’s Aerospace Enterprise

Michigan Tech’s students designed Auris. It has been selected for launch by the University Nanosatellite Program, sponsored by AFRL.

The Aerospace Enterprise, under the direction of Dr. Brad King, is launching satellites as well as student careers. At the University Nanosatellite Program, sponsored by the Air Force Research Lab (AFRL) in August, ten students from the Enterprise team presented their latest satellite application, Auris, to judges from several space-related agencies.

The challenge for the competition was to develop a satellite mission that is relevant to both industry and the military. Students conceived of the idea for Auris, a ‘listening satellite,’ through discussions with Enterprise alumni working in industry and their interest in monitoring communication from other satellites to estimate bandwidth utilization.

Dr. L. Brad King, Richard and Elizabeth Henes Endowed Professor (Space Systems), Mechanical Engineering-Engineering Mechanics

“Ten university teams were in attendance and of the teams, we were among three of the schools to be selected to move forward. We now move on to ‘Phase B’ of the program and have a guaranteed launch opportunity with substantial funding to complete the design and integration of our spacecraft,” says Matthew Sietsema, Chief Engineer for the Aerospace Enterprise.

As a result of this award, the Aerospace Enterprise will soon have three satellites in space. Stratus, a climate monitoring satellite that determines cloud height and cloud top winds, was set for a March 2021 launch date. However, it was delayed due to the pandemic and is planned for launch in 2022. Oculus, an imaging target for ground-based cameras for the Department of Defense, was launched in June 2019.

“The Enterprise has remained on the same trajectory and has been very successful by all measures,” remarks King. “Students do a great job managing themselves and the leadership to replace themselves as they graduate and new members move up. It’s a challenge to juggle more than one satellite, but our students have remained focused and hard working while managing several projects and it’s a testament to their tenacity.”

Creating real-world, hands-on learning opportunities for around 100 students per semester, the Enterprise serves as a stepping stone for many as they launch their careers.

“Our students, even if they aren’t in leadership roles, do well securing positions in the aerospace industry. We tend to perform well because we offer a three-year, long-term program, which allows our students to maintain the situational knowledge required to solve complex problems.”

—Dr. Brad King

Paul Sanders: Tiny House Design—Weather, Watts, and Materials

This green, sustainable, net zero Tiny House was designed and built by Michigan Tech students. It sits on a foundation near the shores of Lake Superior. And it’s comfortable and enjoyable year-round, even during a harsh winter.

Paul Sanders shares his knowledge on Husky Bites, a free, interactive webinar this Monday, October 18 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 10/18 at 6 ET? Grab a bite with Dean Janet Callahan and Paul Sanders, Professor of Materials Science and Engineering at Michigan Tech. 

Prof. Paul Sanders holds the Patrick Horvath Endowed Professorship of Materials Science and Engineering at Michigan Tech. He’s also an alum—he earned his BS in Metallurgy and Materials Engineering in 1991.

Tiny houses are springing up all over the US. But in the Upper Peninsula of Michigan, where Michigan Tech is located, total snowfall can exceed 200 inches during the winter. Designing a tiny house for Michigan’s UP involves several extra layers of complexity. Especially if you want that tiny house to be carbon-neutral.

Last spring, a group of students in the Green Campus Enterprise at Michigan Tech took on the challenge: design and build a sustainable and affordable tiny house for cold climates—one that would serve as a model for green, energy-efficient (tiny) housing.

Michigan Tech’s Green Campus Enterprise was created in 2008, part of the Higher Learning Commission’s Academic Quality Improvement Program (AQIP) project. Under the AQIP project, Green Campus is charged with estimating the University’s carbon footprint and suggesting ways to reduce it. The team is advised by Chris Wojick, senior researcher at Michigan Tech’s Great Lakes Research Center, and Rob Handler, operations manager/senior research engineer at Michigan Tech’s Sustainable Futures Institute. Students taking part in Green Campus Enterprise annually measures the carbon footprint of Michigan Tech, and also design and implement projects to improve sustainability.

The Green Campus team began by working with their client, Sanders, to design the Tiny House with his family’s checklist and the team’s sustainable goals in mind. They researched and developed innovative solutions for making common building practices more sustainable. Next, the team modeled the thermal and energy performance of their preliminary tiny house designs. Once the best option was modeled, they worked directly with Sanders to create construction drawings and bring the house from idea to reality. 

Michigan Tech alumna Sierra Braun ’21 works as as an architectural drafter for S.C. Swiderski, LLC in Mosinee, Wisconsin, while pursuing an MS in Architecture. While on campus, she led the Green Campus Enterprise.

The team constructed sections of the tiny house on campus. Then Sanders, along with a lot of help from his son Caleb, assembled the home on their property in Bete Gris, Michigan, on Lake Superior. The result: a very sustainable (and cute and cozy) tiny house, which will hopefully be sided before the Keweenaw winter!

During Husky Bites we’ll meet the team, see the house, and find out just how they did it. Joining in will be Michigan Tech’s Tiny House team leader Sierra Braun, who graduated from Michigan Tech in May 2021 with a BS in Civil Engineering. While on campus, she led Green Campus Enterprise. Dave Bach, the team’s consultant and mentor to Sierra, will be at the session, too. Bach is an expert on sustainable building design and a Michigan Tech alum. Last but not least, environmental engineering undergraduate Nick Kampfschulte will be at the session, too, to tell us about the tiny house thermal modeling/sensing system he helped design.

Sanders, a six-sigma black belt engineer during his employment with Ford Motor Company, has led Michigan Tech’s highly successful MSE senior design program since 2010. Sanders has been successful in securing industry sponsorship for 100 percent of all MSE senior design projects since 2011. This time, however, he decided to sponsor and fund a student project of his own: A two-story tiny house. Instead of seeking out a senior design team for the Tiny House project, however, he sought help from Michigan Tech’s Green Campus Enterprise. Sanders knows a thing or two about Michigan Tech’s award-winning Enterprise Program. He previously served as an advisor to another Enterprise team, the Advanced Metalworks Enterprise.

Enterprise is a program unique to Michigan Tech, open to students of any major. Teams operate like companies, serving clients in a business-like setting to create products, deliver services, and pioneer solutions. There are currently 24 Enterprise teams on campus. Students in Green Campus Enterprise design and implement projects to improve the sustainability of the Michigan Tech campus, and measure its carbon footprint each year. The team was started in

A great view from the Tiny House!
Green Campus Enterprise artist rendering of the Tiny House, with a footprint of 200 square feet, it follows passive house principles. It’s also a net-zero energy building. Credit: Sierra Braun

Prof. Sanders, how did you first get into engineering? What sparked your interest?

As a kid I liked to build structures (play houses, cars) out of wood. I also liked chemistry, math, and physics in school.

Hometown, family? 

I grew up in Pulaski, Wisconsin as the oldest of three. My father was a high school chemistry teacher, and my mother was an elementary school teacher.

Sections of the Tiny House were built on campus, then transported to Bete Gris.

What do you like to do in your spare time?

I enjoy building and remodeling. I also enjoy meeting new people and living (not traveling) in different places around the world.

Did you know?

Dr. Sanders is one of Michigan Tech’s most prolific and creative researchers. Check out the website of his research lab, Alloy Research Central, at http://alloyresearch.mtu.edu.

Sierra, how did you first get into engineering? What sparked your interest?

I’ve always enjoyed thinking through problems, and designing and building things as a kid. Growing up, my family did some fun construction projects, too, from building dog houses and bookshelves to a cabin and a treehouse.

Hometown, family? 

I’m from Stratford, Wisconsin, currently living with my boyfriend and our two cats.

Nick Kampfschulte—and PeeWee

Nick, how are you involved with the Tiny House project?

My role was to aid in the overall design and modular construction. I also worked on designing and implementing its thermal modeling/sensing system.

Hometown?

I grew up in Grand Rapids, Michigan.

What do you do in your spare time?

I repair, build, and restore automobiles. I’m also into metal fabrication.

Dave, how are you involved with the Tiny House project?

Dave Bach is an alum, too. He earned both his BS in Mechanical Engineering and an MS in Biological Science at Michigan Tech.

I served as the team’s design and building advisor and mentor. I’ve been a professional sustainable builder and designer for the past 42 years. 

A dozen years ago, as a construction management instructor at Michigan Tech, Bach worked with Michigan Tech students on a design project to re-use two semi-trailer bodies and convert them to a single-family home.

What do you like to do in your spare time?

I’ve lived in the Copper Country since 1979, and in Houghton since 1999. I participate in all outdoor silent sports, especially mountain biking and cross-country skiing.

Challenging Structure: $15M US-COMP Now in Year Five

Professor Greg Odegard is the John O. Hallquist Endowed Chair in Computational Mechanics, Mechanical Engineering-Engineering Mechanics, Michigan Tech

Leading the charge in developing a new lighter, stronger, tougher polymer composite for human deep space exploration, the Ultra-Strong Composites by Computational Design (US-COMP) institute under the direction of Dr. Greg Odegard has pivoted with agility during their final year of a five-year project. 

The NASA-funded research project brings together academia and industry partners with a range of expertise in molecular modeling,manufacturing, material synthesis, and testing.

“When we began developing these ultra-strong composites, we weren’t sure of the best starting fibers and polymers, but over time we started to realize certain nanotubes and resins consistently outperformed others,” says Odegard. “Through this period of development, we realized what our critical path to maximize performance would be, and decided to focus only on that, rather than explore the full range of possibilities.”

US-COMP PARTNERS

  • Florida A&M University
  • Florida State University
  • Georgia Institute of Technology
  • Massachusetts Institute of Technology
  • Pennsylvania State University
  • University of Colorado
  • University of Minnesota
  • University of Utah
  • Virginia Commonwealth University
  • Nanocomp Technologies
  • Solvay
  • US Air Force Research Lab

For the past 21 years, scientists around the world have invested time, money, and effort to understand carbon nanotubes. But the islands of knowledge remain isolated in a vast sea of unknown behavior.

“When we started the project, we were confident we were going to put effort into getting the polymers to work well. The last thing we expected was the need to focus so much on the carbon nanotubes—but we’re putting effort there, too, using modeling and experimental methods,” Odegard notes.

The challenge when working with carbon nanotubes is their structure. “Under the most powerful optical microscope you see a certain structure, but when you look under an SEM microscope you see a completely different structure,” Odegard explains. “In order to understand how to build the best composite panel, we have to understand everything at each length scale.” 

The US COMP Institute has created dedicated experiments and computational models for the chosen carbon nanotube material at each length scale. “We can all see the different parts in our sub-groups and then we communicate that to the rest of the team, building a more complete picture from the little pictures at the individual scales,” he says. “We found the hierarchical modeling approach is hard to make work and what works best is a concurrent approach. We each answer questions at our own length scales, feed our findings to manufacturing, and then see how they in turn tweak the processing parameters.”

“We’ve achieved a remarkable workflow and a new model for collaboration.”

—Michigan Tech ME-EM Professor Greg Odegard

Achieving their Year Four goal to understand the internal structure of the carbon nanotube material, the institute has shifted focus to surface behaviors. As part of the project, they are tasked with bringing the carbon nanotube material together with the final selected polymer.

“We are looking at the surface treatment and how to get it to best work with the polymer of choice. We are excited to expand our scope of machine learning methods to better understand the carbon nanotube material. This accelerates our understanding of how processing parameters impact the structure, and how that ultimately impacts the bulk material properties.”

While machine learning has been part of the project scope from the beginning, the computational team is using their collected data to build a series of training sets. “The training sets will allow us to perfect our algorithms, learn from them, and hopefully influence product performance—potentially illuminating patterns we didn’t even see,” Odegard explains.

As the project draws to a close this year, the team continues to analyze their objectives set by NASA, which focus on producing a material that offers triple the strength and stiffness of the current state-of-the-art. As Odegard puts it, “The objectives set on this project are difficult to achieve. We knew that when we started. Regardless of whether we meet the numbers, as a group we have been able to push the envelope way beyond where we started in 2017—expanding the performance in a very short time period. This was made possible through remarkable collaboration across the institute.”

Amlan Mukherjee: Net Zero—How Do We Get There?

Forest fires, warmer summers, storms and floods: global warming is compounding the frequency and intensity of extreme weather events, causing disruptions, costing us resources—and lives.

Amlan Mukherjee generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan, back on Monday, October 11. You can view the YouTube recording of his session to learn something new in just 30 minutes (or so). Here’s the link to watch. Register for future sessions of Husky Bites at mtu.edu/huskybites. Grab some supper, or just flop down on your couch. Everyone’s welcome! It’s BYOC (Bring Your Own Curiosity).

Michigan Tech Professor Amlan Mukherjee: “As stewards of this planet we owe it to ourselves, and to every species we share this home with, to ensure that we build to sustain.”

Michigan Tech CEGE Department Chair Audra Morse and Amlan Mukherjee, Professor of Civil, Environmental, and Geospatial Engineering at Michigan Tech got together on Zoom to talk about Net Zero. 

The United States has set the ambitious target of reaching Net Zero emissions economy-wide by no later than 2050, and roughly halfway to zero by 2030. “Reducing our atmospheric greenhouse gas emissions is crucial to reducing the long-term rise in average global temperatures,” says Mukherjee. “Given the carbon intensive nature of our economy, it seems unlikely that we can reduce our emissions to zero. However our shared goal of Net Zero—balancing the net amount of greenhouse gas emissions that are being emitted, versus that which is being absorbed back from the atmosphere—will result in promising new methods and technologies.” 

During Husky Bites, Mukherjee will explore Net Zero implications for engineering practice. Joining in will be Dr. Heather Dylla, Mukherjee’s good friend and longtime professional collaborator. Dylla is the VP of Sustainability and Innovation at Construction Partners Inc.

green round zero emission carbon neutral rubber stamp print vector illustration

“There’s a product component and a process component to reaching Net Zero,” adds Mukherjee. “It is daunting. But I think we can do this. There are various approaches we can use.”

Mukherjee has extensive background and experience in life cycle assessment for the construction materials industries. His focus: integrated data, rich workflows, and model-based processes—the digital transformation of construction. 

Dr. Heather Dylla, advises on engineering policy at the US House of Representatives

Early on as a civil engineering professor and researcher, Mukherjee recognized the need to consider energy efficiency and life cycle environmental impacts of construction materials and processes when designing our infrastructure. He set out to lay the foundation for best practices. “I wanted to inform design and construction using life cycle thinking to optimize project cost and performance with an eye on reducing environmental impacts,” he says.

Fast forward 15 years. Mukherjee’s hard work has resulted in important project management tools to help government agencies and construction firms consider reductions in life cycle CO2 emissions of their projects—in addition to cost and project duration—as they develop strategies that improve the sustainability of their projects.

One size does not fit all, he says. “For agencies involved in horizontal infrastructure—such as roads, bridges, highways—we developed separate guidelines for construction, rehabilitation and maintenance projects. Incorporating Net Zero by 2050 will involve many of the same types of solutions,” adds Mukherjee. “We need data tools to enable improved decision making, recognizing that the solutions for one project may not apply to another.”

penguins on a beach with mother and chick
“Personally, I worry about how life on this planet—home to many different species—will adapt to warmer temperatures,” says Mukherjee. “As stewards of this planet we owe it to ourselves, and to every species we share this home with, to ensure that we build to sustain.”

At Michigan Tech, Mukherjee completed the National Science Foundation I-Corps program, created to reduce the time and risk associated with translating promising ideas and technologies from the lab to the marketplace. His involvement not only led to starting his own business but it also revamped the way he teaches his classes, with a focus on lean start-up practices and design thinking—a methodology for creative problem solving from the Stanford d.school.

“A design thinking mindset changes your approach to everything you do,” Mukherjee says. “You start looking at the world not just as a problem-solver, but also as a value creator. Once you identify the client’s needs, the math is the easy part, but being able to do the right math for the right project—that’s where the design-thinking mindset comes in. Are you solving a problem that matters, and are you creating value out of it? As the American Society of Civil Engineers reminds us, it’s not enough to build the project right, it’s also important to build the right project.”

Mukherjee formed his company, Trisight Engineering, in 2013. Trisight provides life cycle assessment services, data analyses, and data interface tools for sustainability assessment of horizontal infrastructure. He brought on Michigan Tech Alums Lianna Miller (’06) and Dr. Benjamin Ciavola (’14) as full-time managing partners.

“There’s a product component and a process component to reaching Net Zero,” adds Mukherjee. “It is daunting. But I think we can do this. There are various approaches we can use.”

Prof. Amlan Mukherjee
Presenting together at the Euroasphalt and Eurobitume Conference in Prague in 2016. Back then, Dylla served as director of sustainable engineering for the National Asphalt Pavement Association.

“In academia, Dr. Heather Dylla has been my collaborator for the past 8 years,” notes Mukherjee. “We’ve developed several protocols and practices together that are now in the process of becoming industry standards.” Some of their most recent collaborations took place while Dylla was with Federal Highway Administration (FHWA), working as a Sustainable Pavement Engineer. Dylla managed the FHWA Sustainable Pavements Program and the Pavement Policy, leading an effort to incorporate principles of life cycle thinking into the design and decision-making process. “That includes the three pillars of sustainability: economic, environmental, and social impacts,” she says. She earned her doctorate from Louisiana State University where she focused on quantifying the environmental impacts of photocatalytic “smog-eating” concrete pavements.

Prof. Mukherjee, how did you first get into engineering? What sparked your interest?

“Here I am on a concrete paving job on I-496 in Lansing, Michigan.”

As a child my favorite toy was a model of a Boeing 707. I imagined all the places I could fly to on it, and that started my early love for all things transportation—highways, airports, and trains. I liked tinkering with stuff and putting things together, whether it was jigsaw puzzles or robots involving simple circuitry. I also enjoyed math and science in school, so engineering was the logical direction. 

During my undergraduate experience, as I began to understand the science behind climate change and appreciate its challenges, I was drawn to investigating ways to engineer functioning systems while also reducing environmental impacts. 

A few years ago, Prof. Mukherjee helped facilitate the development of the ISO-compliant environmental product declaration program for the asphalt industry in North America. Here, on an asphalt paving job on I-69 near Charlotte, Michigan.

A love for all things transportation and the many new worlds our transportation assets provide us access to—along with a growing concern for the environment—largely shape what I do.”

Hometown, family?

I was born in the northeastern state of Assam in India, but left before I was a year old and never returned. Hence, I have found home in many different cities, chief of them Kolkata and Seattle. Now I call Houghton home, having lived here the longest of any place.

Cheeky, indeed: that’s Oscar in the front, and Zoey.

What do you like to do in your spare time?

I enjoy singing in community choirs, volunteering for service-oriented community organizations, and getting trained to be a better version of myself by my two cheeky dachshunds.

Did you know?

Prof. Mukherjee serves on the Federal Highway Administration (FHWA) Sustainable Pavements Technical Working Group. He’s on the board of both the Green Buildings Initiative and the Greenroads Foundation. And he recently co-authored guidelines for sustainable highway construction practices for the National Academies’ National Cooperative Highway Research program (NCHRP).

Dr. Dylla, how did you decide to become an engineer?

I had already applied to many schools to study environmental science, geology, or international studies, (though not engineering). Later in my senior year of high school, my Physics teacher introduced me to a mentor from the Society of Women Engineers. I was unaware of the opportunities in engineering and she explained all the options to me. Civil engineering piqued my interest since it covered many of the topics I was interested in: architecture, math, and environment. I decided to apply to one engineering school, Bradley University in Peoria, Illinois. It all worked out from there.

Heather and her family live in Minnesota.

Hometown, family? 

I grew up in Eden Prairie, Minnesota. I have a younger brother and sister. I am close to both. I never thought I would live in Minnesota and always dreamt of living abroad. In fact, my husband is from Brazil. However, after having a kid, we got tired of always using our vacation to see family and the busy life of DC with long commutes, so we moved to Minnesota to be near my family. My son Lucas is now 4 years old. He’s always by my side. 

Any hobbies?

After having Lucas, I feel my spare time is limited. Generally, he keeps me busy every free moment I have. We enjoy playing cars, puzzles, games, traveling, spending time with family and friends, watching movies such as Harry Potter, dancing, and swimming at one of the many beaches in Minnesota.

Graduate School Announces Fall 2021 Finishing Fellowship Award Recipients

Campus vista in hazy light showing the canal bending.

The Graduate School proudly announces the recipients of its Fall 2021 Finishing Fellowships. Congratulations to all nominees and recipients.

Finishing fellowship recipients in engineering graduate programs are:

Michigan Tech: Driving Change with $4.5M NextCar II Award

After accomplishing the mission of NEXTCAR I, Mechanical Engineering Professor Jeff Naber and his team are looking to continue shaping the future of connected and autonomous vehicles through participation in NEXTCAR II.

With funding from the Department of Energy’s Advanced Research Projects-Energy (ARPA-E), the team will shift their focus from a 20 percent reduction in energy consumption in light-duty hybrid electric vehicles to a broader application of vehicles with level 4 and 5 of autonomy.

Jeff Naber, the Richard and Elizabeth Henes Endowed Professor (Energy Systems), Mechanical Engineering—Engineering Mechanics, and
Director of Michigan Tech’s Advanced Power Systems Research Center.

Before being awarded inclusion to NEXTCAR II, the team developed and demonstrated their energy reduction technologies on a fleet of eight Gen II Chevy Volts on a 24-mile test loop, showcasing their energy optimization, forecasting, and controls including vehicle-to-vehicle communications, location mapping, and thorough data management.

“We met our goals for energy reduction on the Chevy Volt, which set us up for NEXTCAR II now in partnership with GM on the Bolt electric vehicle (EV) and with Stellantis for an evaluation on the RAM 1500 and the Chrysler plug-in hybrid electric vehicle (PHEV) Pacifica,” says Naber.

Naber and the team will seek to reduce energy consumption by 30 percent in the hybrid Chrysler Pacifica and further apply the savings to the RAM 1500 and the Chevy Bolt, while also considering level 4 and 5 autonomy to gain efficiencies. 

“The impact of this program through our $4.5 million grant is greater because of the diversity in vehicle and propulsion systems technology that can be influenced by our developments,” explains Naber. 

The first challenge the group faces is developing three autonomous vehicles integrated with in-vehicle energy controls to meet their goals. “We have Drs. Jeremy Bos and Darrell Robinette on the team to leverage the work they have done in the SAE AutoDrive Challenge and are bringing in external suppliers to achieve level 4 autonomy functions,” he adds. “With NEXTCAR I, we didn’t have autonomy functions in the picture, so now we have the added instrumentation, intelligence, and all of the vehicle integration that comes along with autonomy.” 

A key component of NEXTCAR II is the conversion and deployment of the NEXTCAR I technologies in these three new vehicles, with further expansions enabled by the higher levels of vehicle automation and autonomy. 

“At the end of the project, we will have all three vehicle systems operating as fully autonomous— with LIDAR, sensors, integrated controls, and actuation of steering, braking, and acceleration.” 

Dr. Jeff Naber

The group will maintain vehicles in multiple locations, both on the Michigan Tech campus and for road testing at the American Center for Mobility (ACM). ACM is a partner in the project, along with Stellantis and GM. The team is lead by Naber, with Co-PIs Drs. Jeremy Bos, Darrell Robinette, Bo Chen, Grant Ovist, and Basha Dudekula along with several graduate students. 

“We will be conducting the baseline testing here and controls development in the labs at the APSRC and then we’ll conduct closed track testing at ACM to implement our defined controls and autonomy specifications,” replies Naber. “There are many teams working on autonomous vehicles, but with NEXTCAR we get the opportunity to combine that with energy reduction objectives.” 

The NEXTCAR team is delivering engineering solutions as they move from abstracted technology to direct implementation within the realities of on-road conditions.

“We are combining theory, simulation, and real-world implementation on three different vehicle platforms that will have a true impact on our roadways. We know the energy to run the computers and the sensors in today and tomorrow’s vehicles will be a significant penalty especially for EVs. Everyone has different solutions, but we get to zero in on it further,” Naber explains.

The NEXTCAR II project is enhanced by the University’s Tech Forward initiative in Autonomous and Intelligent Systems, led by Naber. Efforts over the last two years include developing the RAM and simultaneously a Great Lakes Research Center watercraft for the purposes of extending research and education in these areas across campus.

Michelle Jarvie-Eggart: The Land Owns Us—EWB-AU

Cape York, Australia

Michelle Jarvie-Eggart shares her knowledge on Husky Bites, a free, interactive webinar this Monday, October 4 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

portrait of Michelle Jarvie-Eggart
Assistant Professor Michelle Jarvie-Eggart

What are you doing for supper this Monday night 10/4 at 6 ET? Grab a bite with Civil, Environmental, and Geospatial Engineering department Chair Audra Morse and Michelle Jarvie-Eggart, assistant professor of Engineering Fundamentals. Jarvie-Eggart will tell us about a unique engineering design challenge conducted in partnership with Engineers Without Borders Australia (EWB-AU)

Instead of the concept of land ownership, Aboriginal Australians believe “the land owns us,” Jarvie-Eggart explains. “It’s not even a sense of stewardship of the land. The belief is that we’re a part of the land.” 

Working via Zoom last spring, first-year engineering students at Michigan Tech designed innovative structures for Aboriginal and Torres Strait Islanders in Cape York, Australia: shelters; keeping places for artifacts; and mobile amenities for campsites. During Husky Bites, Prof. Jarvie-Eggart will tell us all about this unique design challenge. She’ll also show us some of the resulting, creative student designs.

Joining in will be Michigan Tech environmental engineering alumna Amanda Singer. While at Tech Singer spent four years working as an undergraduate teaching assistant, aka “LEAP Leader,” and stayed on to earn her Master’s in Environmental Engineering with an emphasis on engineering education. Prof. Jarvie-Eggart was one of her advisors. Singer is now pursuing a PhD in Engineering Education at Ohio State. 

“It’s like picking up a piece of dirt and saying this is where I started and this is where I’ll go. The land is our food, our culture, our spirit and identity.”

S. Knight, Our Land Our Life, Aboriginal and Torres Strait Islander Commission, Canberra, Australia

During their second semester at Michigan Tech, all first-year engineering students choose a design project. It’s all part of a required course called ENG 1102. “In a typical semester, we have sections doing brewery designs, adaptive bike designs, alternative power, and other projects,” says Jarvie-Eggart.

“We started the EWB-partnered project in my section of ENG 1102 in the spring of 2019, with about 100 students. Soon after that, the pandemic began. One of the first things I started doing was evening Zoom office hours, after my kids went to bed. That’s when my Michigan Tech students are doing their homework, “ she says.

A word spoken by Indigenous Australians, Kanyini, means responsibility and unconditional love for all of creation, including the land. Pictured here: Cape York, the most northerly point of mainland Australia

“I met with EWB Australia folks over Zoom, too. In my mining engineering days, I routinely worked with iron mines in Australia, so I was used to conference calls late at night. If clients are halfway around the Earth, I’ll make sure to be the one at my computer at an odd time. People are more willing to take meetings with me if it happens within the bounds of their normal work day. If I inconvenience them, or take them away from their family, they are less likely to give me their time.”

The Stanford d. School’s Design Thinking model guides the process in all sections of ENG1102, Jarvie-Eggart explains. “Working cooperatively to solve problems, the key elements are empathy, prototyping and feedback. When we say empathy, though, it’s not what you might think. It’s not about emotions, or feelings, but about putting ourselves in our clients’ shoes. We’re careful not to impose our own definition of what might be a problem, either. Instead we try to see the problem as the client sees it.” It’s a vital first step, says Jarvie-Eggart.

Michigan Tech Environmental Engineering Alumna Amanda Singer ’19

“We also expect students to do a lot of their own research for their projects,” she says. “This can feel odd at first. It can be a challenge to become comfortable with the ambiguity of problem-based learning. What are the important things to consider? What assumptions need to be made and how can you justify them? Why is your design a valid one? This is what we are asking our first-year students to do.” 

Jarvie-Eggart couldn’t have all 100 students contacting EWB volunteers and Aboriginal and Torres Strait Islanders in Australia. “That would have been a hot mess,” she admits. Instead they followed a typical RFI (request for information) process one might use in consulting. “Often, project engineers don’t have contact with the client, but the project manager does. So, we organized all our questions. EWB AU had gathered all sorts of resources and information from the host community, which our students reviewed before forming questions to clarify the design purpose or scope, or share initial ideas. I sent those on to EWB staff, who provided answers.” 

Once EWB-AU was ready, the Michigan Tech class took part in a Zoom interview Q&A. “We did that so students could see me asking questions and hear answers in real time from EWB staff. We also recorded it for students who couldn’t stay up late to watch. It looked candid—but many of the questions took some time and research to answer.”

Each year EWB-AU hosts a different first-year engineering challenge.

And the resulting designs? Jarvie-Eggart will share them during Husky Bites. One shelter design uses low-cost, repurposed items. Another has one open side, but is able to rotate depending on the direction of the wind during a storm.

“For me, the best part is seeing my students become excited about the impact engineers can make on a global scale,” she adds. “Many of them now express interest in doing international work, or using their professional skills to volunteer or give back to society once they become engineers.” 

During the class, Singer, with four years of experience as a first-year engineering LEAP leader, collected data to asses the impact of ENG 1102 course on the students. What did they take away? “In their responses, most of the students mentioned words and phrases such as ’empathy’, ‘working on a global scale’, ‘humanitarian’, ‘community’, and ‘sustainability,’” Singer notes. “Students became more community-minded and aware of the cultural context of their designs.”

Dr. Jarvie-Eggarts and Amanda Singer in cap and gown
On campus outside on Amanda’s MS graduate day!

“Amanda is now a PhD student at Ohio State and I couldn’t be more proud of her,” adds Jarvie-Eggart. “She is going to be a really great faculty member some day, maybe even at Tech if we are lucky.”

Each year EWB-AU hosts a different first-year engineering challenge. “Although, this semester, due to COVID, we will work with the same Cape York community,” says Jarvie-Eggart.

Michigan Tech is only the second university in the US to take part in the EWB AU Challenge. “I saw a paper at an American Society of Engineering Education conference, written by the first school to implement the project in the US, in Colorado. So I tracked down the authors, asked them about it, and they offered to get me in contact with the EWB AU folks,” Jarvie-Eggart recalls.

“EWB USA is working on developing their own design challenge for first-year engineering students, too. Once they get that up and rolling, we look forward to working with them, as well.”

Jarvie Eggart knows a meaningful educational opportunity when she sees one. She earned her BS in Environmental Engineering at Michigan Tech, then an MS in Environmental Policy. After working in industry, she returned to Michigan Tech to earn a PhD in Environmental Engineering and a certificate in Sustainability, then returned to industry again. All in all, Jarvie-Eggart has over a decade of work experience in compliance, permitting, and sustainability issues for mining, as well as the municipal water and wastewater industries.

“I’m very passionate about sustainability,” she says. My goal by working in industry was to help make a difference for the corporations that needed it the most, namely the extractive industries like mining, and oil and gas,” she says.

Now she’s found another important place to make an impact. “I have experience teaching graduate students online as an adjunct faculty member,” she says. “But first-year students are an entirely different ball of wax. The first year of college is when students learn the essential skills they’ll carry with them for life,” she says. That’s huge!”

younger child at kitchen table wearing white hard hat
“I spent about ten years in industry before coming back to Tech to teach,” says Jarvie-Eggart. “One of my favorite things as a mom is watching the kids roam around the house wearing my old hardhats. Here is one of them doing their homeschool last year.”

Prof. Jarvie-Eggart, how did you first get into engineering?

My father was an electrical engineer (and a Michigan Tech grad). He sparked my love of engineering at an early age. I always loved math and science, and I knew about engineering as a career path because I had one in the house. The hard part for me was deciding upon which type of engineering. When I hit high school chemistry, I narrowed it down to either chemical or environmental engineering. Ultimately, I settled on environmental engineering. 

The Jarvie-Eggart kids, ages 5 and 7, visit the Husky dog statue on campus.

Hometown?

I am originally from Green Bay, Wisconsin. But I have lived in the UP for over 25 years. I met my husband, Brian, at Michigan Tech while we were in grad school. He works at the Advanced Power Systems Research Center. We have two children (5 and 7 years old). My Dad, who will be 86 in October, also lives with us half the year. He normally splits his time between our home and my sister’s in Madison. Due to COVID, he stayed with us all last winter. It is a full house, but there is a lot of love. 

What do you like to do in your spare time?

We have two large dogs—one Shepard-mix and one King Shepherd—and a freshwater aquarium. I love to knit, play ukulele, and jog. This summer, I coached a just-pedaling group in the Single Track Flyers mountain bike program. It was a lot of fun. The kids kept picking flowers for me when we were out on rides. I’d tuck them in my ponytail. 

Amanda stands by a huge waterfall
Amanda Singer will be getting married next summer! Right now she’s earning her PhD in Engineering Education at Ohio State.

Amanda, how did you first get into engineering? What sparked your interest?

I first became interested in engineering as a high school student. I had always loved math and science and had several teachers encourage me to explore engineering as a potential career path. My decision to pursue engineering as my major in college, though, happened during Preview Day at Michigan Tech. I enjoyed hearing the faculty and students talk about the projects they had worked on. I loved the fact that you could pursue a wide range of opportunities with the degree. I started my first year at Michigan Tech as an general engineering major. Ultimately, I decided on Environmental Engineering, which I pursued for both my bachelor’s and master’s degrees. 

Hometown, family?

Meet Kronk. He loves to go camping and hiking with Amanda!

While I currently reside in Columbus, Ohio, I was born and raised in St. Clair, Michigan. My fiancé, who graduated with a chemical engineering degree from Michigan Tech, currently works as a plant engineer in Phoenix. He’s in the process of transferring to his company’s location in Columbus. We spend much of our free time planning our 2023 wedding in the Keweenaw! My parents now spend most of their weekends traveling either to visit me, or my younger sister who is attending Virginia Tech while pursuing a PhD in Human Development. While we all miss the Keweenaw, we love being able to explore some new places!

“Kronk has a backpack that he can ride in but he prefers being able to explore on his leash. Here is a picture of him in the Porcupine Mountains.”

What do you like to do in your spare time?

I enjoy hanging out with my friends and family, traveling, reading, biking, and crocheting. I have a cat named Kronk, (adopted from the Copper Country Humane Society). He likes to join me when camping and hiking. Recently, I began training for the Door County triathlon (in Wisconsin). My mom and I will be competing together next summer!

Read more:

EWB: Bridging Barriers

Design Thinking: Solving Wicked Problems