Category: Research

Michigan Space Grant Consortium Award Recipients in Engineering

Michigan Space Grant Consortium

Michigan Tech faculty, staff members and students received awards totaling $90,500 in funding through the Michigan Space Grant Consortium (MSGC), sponsored by the National Aeronautics and Space Administration (NASA) for the 2020-2021 funding cycle. The following are recipients within the College of Engineering.

Undergraduates Receiving $3,000 Research Fellowships

  • Troy Maust (ECE): “Auris: An RF Mission” with Brad King (ME-EM)
  • Lea Morath (BioMed): “Evaluating Zinc Alloys for Biodegradable Arterial Stents” with Jeremy Goldman (BioMed)
  • Victoria Nizzi (MSE): “The Use of Computer Modeling to Simulate and Predict the Biodegradation of a Magnesium Alloy Fracture Plate” with Jaroslaw Drelich (MSE)

Graduate Students Receiving $5,600 Research Fellowships

  • Kelsey LeMay (BioMed): “Processing of Porcine Internal Mammary Arteries for Hyman Bypass Graft Applications” with Jeremy Goldman (BioMed)
  • Sophie Mueller (GMES): “Keweenaw Fault Geometry and Slip Kinematics: Mohawk to Lac La Belle, MI Segment” with James DeGraff (GMES)
  • Mitchel Timm (ME-EM): “Transport, Self-Assembly, and Deposition of Colloidal Particles in Evaporating Droplets” with Hassan Masoud (ME-EM)
  • Emily Tom (MSE): “Investigation of Novel Mg-Zn-Ca Alloys for Bioresorbable Orthopedic Implants” with Jaroslaw Drelich (MSE)

Faculty and Staff Receiving $5,000 or More for Pre-College Outreach and Research Seed Programs

  • Glen Archer (ECE): “Michigan Tech Electrical Engineering Outreach Program for Pre-College Students to Build Early Interest in STEM Areas” (includes augmentation)
  • Joan Chadde (CEE): “Engaging High School Women and Native Americans in Rural Communities in Environmental Science & Engineering STEM Careers” (includes augmentation)
  • Lloyd Wescoat (CEE): “Celebrating Lake Superior: A 2020 Water Festival for Grades 4-8” (includes augmentation)

Design Expo 2020 Registration Now Open

Michigan Tech’s 20th annual Design Expo will highlight hands-on, discovery-based learning. More than 1,000 students on Enterprise and Senior Design teams will showcase their work and compete for awards.

Student registration is now open. Senior Design and Enterprise teams must visit the Design Expo website to register and review important instructions, deadlines and poster criteria. All teams must register by Monday, Feb. 10.

The Design Expo takes place from 8 a.m. to 4 p.m. Thursday, April 16 in the MUB Ballroom and all are welcome to attend.

A panel of judges made up of distinguished corporate representatives and Michigan Tech staff and faculty will critique the projects at Design Expo. Interested in judging at Design Expo? Sign up here.

Design Expo is co-hosted by the College of Engineering and the Pavlis Honors College. Learn more at mtu.edu/expo.

By the College of Engineering and Pavlis Honors College.


Engineering Students at the Health Research Institute Slam

Research Slam event photo of people in the labThe Health Research Institute hosted its first Research Slam Student forum Nov. 8, 2019. The event was divided into three categories: Two-Minute Introduction, Three-Minute Thesis, and Eight-Minute Talks.

Presenters from the Three-Minute Thesis and Eight-Minute Talk categories were judged on comprehension, content, audience engagement and ability to communicate their work and findings clearly.

The winners are:

Three Minute Thesis

Eight Minute Talk

  • 1st – Ariana Tyo, Biomedical Engineering
  • 2nd – Dhavan Sharma, Biomedical Engineering
  • 3rd – Wenkai Jia, Biomedical Engineering

Congratulations to the winners and thank you to all of the presenters for sharing your research with the HRI community. We would also like to give special thanks to our faculty judges: Tatyana Karabencheva-Christova (Chem), Sangyoon Han (BioMed), Samantha Smith (CLS), Jingfeng Jiang (BioMed), Marina Tanasova (Chem), Rupak Rajachar (BioMed), Traci Yu (BioSci), and Shiyue Fang (Chem).


Seismic Reflections: Siting the Gordie Howe Bridge

The Gordie Howe International Bridge connecting Windsor, Ontario, and Detroit, Michigan is currently under construction and expected to be complete in 2024 at a cost of $5.7 billion.  The bridge is named in recognition of the legendary hockey player, a Canadian who led the Detroit Red Wings to four Stanley Cup victories.

The construction of any large infrastructure project requires a strong foundation, especially one with the longest main span of any cable-stayed bridge in North America—namely, the Gordie Howe International Bridge over the Detroit River. More than a decade before ground was broken, careful siting of the bridge began to take place. By 2006 the list of possible crossings had been narrowed down to just two options.

Historical records from the early 1900s indicated that solution mining for salt had taken place on both sides of the river close to where the bridge was to be built. On the Michigan side, collapsed salt cavities caused sink holes located on nearby Grosse Isle. It was imperative that any salt cavities in the bridge construction area be found and avoided.

Seismologists Roger Turpening and Carol Asiala at Michigan Technological University

Seismologists Roger Turpening and Carol Asiala at Michigan Technological University were tasked by American and Canadian bridge contractors to select the best seismic method for searching for any cavities in the two proposed crossings—referred to at the time as “Crossing B” and “Crossing C”—and to interpret all resulting seismic images.

“Given the task to image a small target deep in the Earth, a seismologist will quickly ask two important questions: How small is ‘small?’ and How deep is ‘deep’? That’s because these two parameters conflict in seismic imaging,“ Turpening says.

“Seismic waves—vibrations of the Earth—are attenuated severely as they propagate through the Earth,” he explains. “Imaging small targets requires the use of high-frequency, seismic energy. When seismic sources and receivers are confined to the Earth’s surface, which is the usual case, waves must propagate downward through the Earth, reflect off of the target, and return to the surface. Soil, sand, and gravel in the surface layer overwhelmingly cause the greatest harm to image resolution, and the ray paths must pass through this zone twice.”

Turpening was one of the early developers of a technique called vertical seismic profiling, or VSP. “Seismic receivers are placed inside a vertical hole near the target. With the seismic source placed on the surface some distance from the hole, it’s possible to explore a region around the hole with ray paths that need to pass through the surface layer only once,” he says. “If the target is very important, we can drill a second hole and place the seismic source in it. Now we have even higher resolution because all of the ray paths are in the rock formations with low attenuation.”

The downside? “We can only make images of the region between the two holes. But if the target is extremely important in a limited area, we can use many boreholes and many images in the search. Given enough boreholes, a block of earth can be imaged with cross-well seismic reflection techniques.

A cross-well, seismic reflection image between test boreholes. The cavity is sharply seen because the shale stringers in the B-Salt (at the bottom of the image) are abruptly terminated. The cavity is approximately 375 ft. wide.

To site the Gordon Howie bridge, Turpening and Asiala chose a frequency band of 100Hz to 2 KHz—much higher than could be used with surface sources and surface receivers—for surveys on both sides of the river. This yielded high resolution seismic images, crucial for detecting cavities—and indeed they found one—on the Canadian side.

“The high-resolution imaging made it easy for us to spot missing shale stringers in the B-Salt layer in that image,” says Turpening. “This made the final selection of the bridge location simple. We found the cavity between boreholes X11-3 and X11-4, thus forcing the Canadians to chose Crossing B.  Obviously, the Michigan group had to, also, choose Crossing B.”

On the US side of the river geologist Jimmie Diehl, Michigan Tech professor emeritus, provided corroborating borehole gravity data.


Michigan Tech Accepted for Membership in UCAR

UCAR Member MapMichigan Tech has been approved for membership in the University Corporation for Atmospheric Research (UCAR). At its meeting at its headquarters in Boulder, Colorado Tuesday (Oct. 8, 2019), the membership of UCAR voted unanimously (89-0) to extend membership to Michigan Tech.

On July 24, three members of the UCAR Membership Committee visited the Michigan Tech campus and met with Provost and Senior Vice President for Academic Affairs Jackie Huntoon, Vice President for Research Dave Reed and Deans David Hemmer (College of Sciences and Arts) and Janet Callahan (College of Engineering) along with assorted faculty and graduate students. In addition, the committee toured several University facilities including the Pi Cloud Chamber and the Great Lakes Research Center.

UCAR is a nonprofit consortium of more than 100 colleges and universities providing research and training in atmospheric-related sciences. In partnership with the National Science Foundation, UCAR operates the National Center for Atmospheric Research (NCAR).

Membership in UCAR recognizes that Michigan Tech is among the players in atmospheric science nationally.


NSF Funds Collaborative Study on Energy System Transitions

Michigan Satellite ViewKathleen Halvorsen (SS) is the principal investigator on a project that has received a $1,012,875 research and development grant from the National Science Foundation.

The project is entitled, “GCR: Collaborative Research: Socio-Technological System Transitions: Michigan Community & Anishinaabe Renewable Energy Systems.” Rebecca Ong, (Chem Eng) Chelsea Schelly, (SS) Joshua Pearce, (MSE/ECE) and Richelle WInkler (SS) are Co-PI’s on this project. This is the first year of a potential five year project totaling $2,723,647.

By Sponsored Programs.

Extract

The objective of this Growing Convergence Research project is to lay the foundations for a convergent, transdisciplinary field of study focused on understanding transitions in socio-technological systems. This project aims to converge social science theories of values and motivation with engineering and economics understandings of technological feasibility to develop a comprehensive understanding of how and why energy systems, in particular, are reconfigured to include renewable energy resources.

This project brings together scholars from resource management, chemical and materials engineering, electrical engineering, sociology, energy policy, philosophy of science, and regional planning to simultaneously explore the social, cultural, and technological dimensions of energy system transitions.

The project will investigate energy system transitions in eight case communities (two Anishinaabe Tribal Nations and six non-tribal Michigan communities) that vary along characteristics key to understanding energy transitions – including rural vs. urban, renewable energy sources, degree of transition, governance, and type of utility provider.

Read more at the National Science Foundation.


LIFT Team Launches Fast Forge Project

LIFT building signDETROIT – Lightweight Innovations For Tomorrow (LIFT), a national manufacturing innovation institute operated by the American Lightweight Materials Innovation Institute, has joined with Michigan Upper Peninsula-based startup Loukus Technologies to launch a “Fast Forge” project exploring the use of ductile magnesium-based alloys for extrusions used in automotive, defense and consumer applications.

The project team, which includes LIFT, Loukus Technologies, Eck Industries and Michigan Technological University, aims to extrude magnesium alloys with high room temperature ductility (>25%). In turn, this process will lead to a roadmap of magnesium alloy design and development, and a materials properties database of how they can be used in future applications.

Read more at LIFT Technology in LIFT Launches Project With Michigan Startup To Advance Automotive and Warfighter Safety.


Finding a Research Mentor Workshop for Undergraduate Students

Undergraduate ResearchAre you interested in conducting research? Are you unsure how to locate a faculty member to work with? Join this interactive discussion featuring practical advice and tips for finding and approaching a faculty member for a research position.

In addition, learn about paid research internship opportunities at Michigan Tech and beyond. The one-hour workshop will be offered from 4 to 5 p.m. Tuesday (Sept. 10, 2019) in Fisher 133 and from noon to 1 p.m. Friday, Sept. 13 in Fisher 133.

By Pavlis Honors College.


Outreach in Natural Resources and Engineering

Natural Resource and Engineering career activityEighteen high school students from Detroit and across the lower peninsula are spending six days at Michigan Tech from July 22-27, 2019, to explore Natural Resources and Engineering majors and consider attending Michigan Technological University. This is the 5th year that the program has been conducted.

Students will investigate drinking water treatment, autonomous vehicles, forest management, and more, with Michigan Tech faculty from Mechanical Engineering-Engineering Mechanics (ME-EM), Civil and Environmental Engineering (CEE), Electrical and Computing Engineering (ECE), as well as natural resource agencies, such as the US Forest Service. Students will participate in hands-on engineering explorations and enjoy a variety of outdoor activities, from kayaking to mountain biking and hiking at Porcupine Mountains Wilderness State Park.

Some of the engineering-related explorations include:

  • Value of STEM Careers, with Dr. Janet Callahan, Dean of the College of Engineering
  • Water Use and Cleaning Wastewater, with Joan Chadde, Center for Science and Environmental Outreach (CSEO)
  • Water Treatment and the Flint Water Crisis, with Brian Doughty, CSEO
  • Water Treatment Technologies, with Ryan Kibler, Benjamin Cerrados, Dr. Daisuke Minakata, CEE
  • Demo of acoustic triangulation and underwater autonomous vehicles, with Dr. Andrew Barnard and Miles Penhale, ME-EM
  • Stream Lab and Green Land and Water Management Practices, with Dr. Brian Barkdoll, CEE
  • Tour of Flood Damage in Houghton (and Detroit): Why does flooding occur and how can it be mitigated? with Dr. Alex Mayer, CEE, and Mike Reed, Detroit Zoological Society
  • Self-Driving Vehicles, with Dr. Jeremy P. Bos, ECE

The program is coordinated by Michigan Tech Center for Science and Environmental Outreach, with funding from: Michigan Space Grant Consortium, Michigan Tech School of Forest Resources and Environmental Science, College of Engineering, Departments of Civil and Environmental Engineering, Mechanical Engineering-Engineering Mechanics, Admissions, Housing and Residential Life, Great Lakes Research Center, and the Michigan Space Grant Consortium.

For more information, contact: Joan Chadde at 906-487-3341/906-369-1121 or jchadde@mtu.edu.


New High School STEM Internship Program at Michigan Tech

Chris Adams working at a bench with Riley Stoppa
Biological sciences graduate student Chris Adams works in the GLRC fisheries lab with STEM intern Riley Stoppa.

A total of 13 high school students from throughout Michigan are participating in a 5-day internship at Michigan Tech July 15-19, 2019. Faculty and their graduate students voluntarily host the students in engaging research activities during the week. The faculty’s department, along with the College of Engineering and College of Sciences and Arts, together provide a $600 scholarship for the student that covers their transportation, lodging and meals.

The interns work with Michigan Tech faculty and graduate students in their research lab or doing field work outside. During the week, students tour the Michigan Tech campus and local area, ‘experience college living’ in a residence hall, and meet students from across Michigan and beyond!

In Dr. Parisa Abadi’s Mechanical Engineering Lab, students will be 3D printing nanomaterials. Dr. Tara Bal in the School of Forest Resources and Environmental Sciences (SFRES) will conduct invasive species monitoring and forest health assessments. Dr. Will Cantrell in Atmospheric Physics will have the intern investigating why some clouds rain, while others do not.

Dr. Daniel Dowden in the Department of Civil and Environmental Engineering (CEE) has his intern investigating which technologies will allow buildings to sustain minimal damage and be easily repairable after large earthquakes. Four faculty–Drs. Deering, Waite, Oommen, and Gierke in Geological and Mining Sciences and Engineering are providing a broad introduction of mapping geological features, conducting geophysical surveys, and working to construct a 3-D model of a geological feature. Dr. Casey Huckins and graduate student–Chris Adams in Biological Sciences–are monitoring Pilgrim River and measuring the results of a fish survey in the lab. Dr. Daisuke Minakata in CEE and Dr. Paul Doskey in SFRES, along with graduate students, are researching innovative drinking water and wastewater treatment technologies.

Dr. Michael Mullins in the Department of Chemical Engineering (ChE) has his intern researching ways to remove PFAs contaminants from water. Dr. Rebecca Ong in ChE has her two interns investigating biofuel production from native grasses. Dr. Chelsea Schelly in the Department of Social Sciences and Dr. Robert Handler in the Sustainable Future Institute are measuring food, energy, and water consumption in residential homes and looking for ways to reduce household resource consumption. Dr. Kuilin Zhang and his graduate student Qinjie Lyu in CEE have their intern studying traffic data collection, traffic signal timing, eco-driving, and using traffic simulation software.

The program is coordinated by the Michigan Tech Center for Science and Environmental Outreach, in partnership with Summer Youth Program who provides logistical support and supervises the students in the residence halls in the evening.

Funding for the program is received from the Michigan Tech College of Engineering, the College of Sciences and Arts, the Department of Civil and Environmental Engineering, the Department of Mechanical Engineering-Engineering Mechanics, the Department of Chemical Engineering, the School of Forest Resources and Environmental Science, the Department of Biological Sciences, the Great Lakes Research Center, Youth Programs, and an anonymous donor.

The STEM internship program is coordinated by Joan Chadde at Michigan Tech Center for Science and Environmental Outreach.