Category Archives: Research

Michigan Tech Accepted for Membership in UCAR

UCAR Member MapMichigan Tech has been approved for membership in the University Corporation for Atmospheric Research (UCAR). At its meeting at its headquarters in Boulder, Colorado Tuesday (Oct. 8, 2019), the membership of UCAR voted unanimously (89-0) to extend membership to Michigan Tech.

On July 24, three members of the UCAR Membership Committee visited the Michigan Tech campus and met with Provost and Senior Vice President for Academic Affairs Jackie Huntoon, Vice President for Research Dave Reed and Deans David Hemmer (College of Sciences and Arts) and Janet Callahan (College of Engineering) along with assorted faculty and graduate students. In addition, the committee toured several University facilities including the Pi Cloud Chamber and the Great Lakes Research Center.

UCAR is a nonprofit consortium of more than 100 colleges and universities providing research and training in atmospheric-related sciences. In partnership with the National Science Foundation, UCAR operates the National Center for Atmospheric Research (NCAR).

Membership in UCAR recognizes that Michigan Tech is among the players in atmospheric science nationally.


NSF Funds Collaborative Study on Energy System Transitions

Michigan Satellite ViewKathleen Halvorsen (SS) is the principal investigator on a project that has received a $1,012,875 research and development grant from the National Science Foundation.

The project is entitled, “GCR: Collaborative Research: Socio-Technological System Transitions: Michigan Community & Anishinaabe Renewable Energy Systems.” Rebecca Ong, (Chem Eng) Chelsea Schelly, (SS) Joshua Pearce, (MSE/ECE) and Richelle WInkler (SS) are Co-PI’s on this project. This is the first year of a potential five year project totaling $2,723,647.

By Sponsored Programs.

Extract

The objective of this Growing Convergence Research project is to lay the foundations for a convergent, transdisciplinary field of study focused on understanding transitions in socio-technological systems. This project aims to converge social science theories of values and motivation with engineering and economics understandings of technological feasibility to develop a comprehensive understanding of how and why energy systems, in particular, are reconfigured to include renewable energy resources.

This project brings together scholars from resource management, chemical and materials engineering, electrical engineering, sociology, energy policy, philosophy of science, and regional planning to simultaneously explore the social, cultural, and technological dimensions of energy system transitions.

The project will investigate energy system transitions in eight case communities (two Anishinaabe Tribal Nations and six non-tribal Michigan communities) that vary along characteristics key to understanding energy transitions – including rural vs. urban, renewable energy sources, degree of transition, governance, and type of utility provider.

Read more at the National Science Foundation.


LIFT Team Launches Fast Forge Project

LIFT building signDETROIT – Lightweight Innovations For Tomorrow (LIFT), a national manufacturing innovation institute operated by the American Lightweight Materials Innovation Institute, has joined with Michigan Upper Peninsula-based startup Loukus Technologies to launch a “Fast Forge” project exploring the use of ductile magnesium-based alloys for extrusions used in automotive, defense and consumer applications.

The project team, which includes LIFT, Loukus Technologies, Eck Industries and Michigan Technological University, aims to extrude magnesium alloys with high room temperature ductility (>25%). In turn, this process will lead to a roadmap of magnesium alloy design and development, and a materials properties database of how they can be used in future applications.

Read more at LIFT Technology in LIFT Launches Project With Michigan Startup To Advance Automotive and Warfighter Safety.


Finding a Research Mentor Workshop for Undergraduate Students

Undergraduate ResearchAre you interested in conducting research? Are you unsure how to locate a faculty member to work with? Join this interactive discussion featuring practical advice and tips for finding and approaching a faculty member for a research position.

In addition, learn about paid research internship opportunities at Michigan Tech and beyond. The one-hour workshop will be offered from 4 to 5 p.m. Tuesday (Sept. 10, 2019) in Fisher 133 and from noon to 1 p.m. Friday, Sept. 13 in Fisher 133.

By Pavlis Honors College.


Outreach in Natural Resources and Engineering

Natural Resource and Engineering career activityEighteen high school students from Detroit and across the lower peninsula are spending six days at Michigan Tech from July 22-27, 2019, to explore Natural Resources and Engineering majors and consider attending Michigan Technological University. This is the 5th year that the program has been conducted.

Students will investigate drinking water treatment, autonomous vehicles, forest management, and more, with Michigan Tech faculty from Mechanical Engineering-Engineering Mechanics (ME-EM), Civil and Environmental Engineering (CEE), Electrical and Computing Engineering (ECE), as well as natural resource agencies, such as the US Forest Service. Students will participate in hands-on engineering explorations and enjoy a variety of outdoor activities, from kayaking to mountain biking and hiking at Porcupine Mountains Wilderness State Park.

Some of the engineering-related explorations include:

  • Value of STEM Careers, with Dr. Janet Callahan, Dean of the College of Engineering
  • Water Use and Cleaning Wastewater, with Joan Chadde, Center for Science and Environmental Outreach (CSEO)
  • Water Treatment and the Flint Water Crisis, with Brian Doughty, CSEO
  • Water Treatment Technologies, with Ryan Kibler, Benjamin Cerrados, Dr. Daisuke Minakata, CEE
  • Demo of acoustic triangulation and underwater autonomous vehicles, with Dr. Andrew Barnard and Miles Penhale, ME-EM
  • Stream Lab and Green Land and Water Management Practices, with Dr. Brian Barkdoll, CEE
  • Tour of Flood Damage in Houghton (and Detroit): Why does flooding occur and how can it be mitigated? with Dr. Alex Mayer, CEE, and Mike Reed, Detroit Zoological Society
  • Self-Driving Vehicles, with Dr. Jeremy P. Bos, ECE

The program is coordinated by Michigan Tech Center for Science and Environmental Outreach, with funding from: Michigan Space Grant Consortium, Michigan Tech School of Forest Resources and Environmental Science, College of Engineering, Departments of Civil and Environmental Engineering, Mechanical Engineering-Engineering Mechanics, Admissions, Housing and Residential Life, Great Lakes Research Center, and the Michigan Space Grant Consortium.

For more information, contact: Joan Chadde at 906-487-3341/906-369-1121 or jchadde@mtu.edu.


New High School STEM Internship Program at Michigan Tech

Chris Adams working at a bench with Riley Stoppa
Biological sciences graduate student Chris Adams works in the GLRC fisheries lab with STEM intern Riley Stoppa.

A total of 13 high school students from throughout Michigan are participating in a 5-day internship at Michigan Tech July 15-19, 2019. Faculty and their graduate students voluntarily host the students in engaging research activities during the week. The faculty’s department, along with the College of Engineering and College of Sciences and Arts, together provide a $600 scholarship for the student that covers their transportation, lodging and meals.

The interns work with Michigan Tech faculty and graduate students in their research lab or doing field work outside. During the week, students tour the Michigan Tech campus and local area, ‘experience college living’ in a residence hall, and meet students from across Michigan and beyond!

In Dr. Parisa Abadi’s Mechanical Engineering Lab, students will be 3D printing nanomaterials. Dr. Tara Bal in the School of Forest Resources and Environmental Sciences (SFRES) will conduct invasive species monitoring and forest health assessments. Dr. Will Cantrell in Atmospheric Physics will have the intern investigating why some clouds rain, while others do not.

Dr. Daniel Dowden in the Department of Civil and Environmental Engineering (CEE) has his intern investigating which technologies will allow buildings to sustain minimal damage and be easily repairable after large earthquakes. Four faculty–Drs. Deering, Waite, Oommen, and Gierke in Geological and Mining Sciences and Engineering are providing a broad introduction of mapping geological features, conducting geophysical surveys, and working to construct a 3-D model of a geological feature. Dr. Casey Huckins and graduate student–Chris Adams in Biological Sciences–are monitoring Pilgrim River and measuring the results of a fish survey in the lab. Dr. Daisuke Minakata in CEE and Dr. Paul Doskey in SFRES, along with graduate students, are researching innovative drinking water and wastewater treatment technologies.

Dr. Michael Mullins in the Department of Chemical Engineering (ChE) has his intern researching ways to remove PFAs contaminants from water. Dr. Rebecca Ong in ChE has her two interns investigating biofuel production from native grasses. Dr. Chelsea Schelly in the Department of Social Sciences and Dr. Robert Handler in the Sustainable Future Institute are measuring food, energy, and water consumption in residential homes and looking for ways to reduce household resource consumption. Dr. Kuilin Zhang and his graduate student Qinjie Lyu in CEE have their intern studying traffic data collection, traffic signal timing, eco-driving, and using traffic simulation software.

The program is coordinated by the Michigan Tech Center for Science and Environmental Outreach, in partnership with Summer Youth Program who provides logistical support and supervises the students in the residence halls in the evening.

Funding for the program is received from the Michigan Tech College of Engineering, the College of Sciences and Arts, the Department of Civil and Environmental Engineering, the Department of Mechanical Engineering-Engineering Mechanics, the Department of Chemical Engineering, the School of Forest Resources and Environmental Science, the Department of Biological Sciences, the Great Lakes Research Center, Youth Programs, and an anonymous donor.

The STEM internship program is coordinated by Joan Chadde at Michigan Tech Center for Science and Environmental Outreach.


Collaborative Research Funding for Extreme Hydrometeorological Events

 

Landslide El Salvador terrain map
El Salvador’s Volcán San Vicente showing landslide scars from 2009 torrential rains. NASA Earth Observatory image by Robert Simmon, based on data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

John Gierke (GMES/EPSSI) is Principal Investigator on a project that has received a $582,752 grant from the National Science Foundation. This is a potential three-year project.

Luke Bowman (GMES), Alex Mayer (CEE), Fengjing Liu (Forestry), and Angie Carter (SS) are Co-PI’s on the project titled “IRES Track III: Collaborative Research: Coupling Participatory and Hydrological Research for Adapting to Extreme Hydrometeorological Events in Agricultural Communities, El Salvador.”

Extract

In this project, graduate students from US universities obtain international research experience in social and hydrological sciences while working on a scientific problem with real-world implications.

Changes in climate cause communities to adapt to enhance resiliency and foster practices that are more appropriate for new conditions. In regions where dry seasons are increasingly long, the shorter rainy seasons experience more severe storms.

Rural and agricultural communities are especially vulnerable to new seasonal conditions and their resources for adaptation are limited.

The Dry Corridor of Central America (spanning parts of El Salvador, Guatemala, Honduras, and Nicaragua) is an important region for agriculture and needs adaptation strategies. The project location is ideal because of its many-decades history of changing climate.

The project participants work with local farmers and agricultural stakeholders to gain experience in adapting to climate change. The interdisciplinary scientists and development professionals work together in participatory research in communities experiencing water scarcity and extreme rainfall events.

Read more at the National Science Foundation.


INCE-USA Beranek Medals

Leo Beranek MedalAndrew Barnard (ME-EM) presented students with the Leo Beranek Student Medal for Excellence in the Study of Noise Control through The Institute of Noise Control Engineering of the USA (INCE-USA). Barnard is the Vice President – Student Activities and Education for INCE-USA.

Sunit Girdhar (ME) won the graduate pewter medal for his work on IIC test method improvement and Josh Langlois (EE) won the undergraduate gold medal for his work on real-time signal processing for CNT speakers.

INCE-USA allows universities to award the INCE-USA Beranek Medal for Excellence in Noise Control Engineering. Congratulations to Sunit and Josh for their excellent research in Noise Control Engineering over the past year.

By Mechanical Engineering-Engineering Mechanics.


EPIC: A New Way to Observe Volcanic Eruptions from Space

America’s first operational deep space satellite orbits one million miles from Earth. Positioned between the sun and Earth, it is able to maintain a constant view of the sun and sun-lit side of Earth. This location is called Lagrange point 1. (Illustration is not to scale) Credit: NOAA
DSCOVR, America’s first operational deep space satellite, orbits one million miles from Earth. Positioned between the sun and Earth, it is able to maintain a constant view of the sun and sun-lit side of Earth. This location is called Lagrange point 1. (Illustration is not to scale) Credit: NOAA

Michigan Tech volcanologist, Professor Simon Carn (GMES/EPSSI), is principal investigator on a new project, “Exploiting High-Cadence Observations of Volcanic Eruptions from DSCOVR/EPIC,” funded by NASA.

Portrait of Volcanologist Simon Carn
Volcanologist Simon Carn

Carn and his team will use a satellite instrument, the Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR), which is parked in space a million miles from Earth.  EPIC provides global spectral images of the entire sunlit face of Earth, as viewed from an orbit around Lagrangian point 1 (L1)—the neutral gravity point between Earth and the sun.

“The unique feature of EPIC is that it can provide more satellite images per day of volcanic eruptions than other ultraviolet sensors we have used before,” Carn explains. “Our goal is to use this ‘high cadence’ imaging to improve understanding of volcanic eruption processes and impacts.”

Last Fall 2018, in an open-access article published online in the journal Geophysical Research Letters (GRL), Carn and his collaborators shared their first observations of volcanic eruption clouds from EPIC. The team developed and used an EPIC SO2 algorithm to detect every significant volcanic eruption since the DSCOVR launch in 2015.

“Although relatively small, these 16 eruptions, in places including Indonesia, Japan and Alaska (USA), have demonstrated EPIC’s sensitivity to moderate volcanic eruptions at a range of latitudes,” Carn noted. “EPIC should provide exceptional observations if still operational when the next major stratospheric volcanic eruption (VEI 4+) occurs.” VEI is short for Volcanic Explosivity Index. The team also demonstrated EPIC’s ability to track volcanic cloud transport on hourly timescales; a significant advance over low earth orbit UV sensors, such as the Ozone Monitoring Instrument, OMI—the visible and ultraviolet spectrometer aboard the NASA Aura spacecraft; and the Ozone Mapping and Profiler Suite (OMPS) on the NOAA polar satellite system.

Gallery image from NASA DSCOVR: EPIC, Earth Polychromatic Imaging Camera.
Gallery image from NASA DSCOVR: EPIC, Earth Polychromatic Imaging Camera.

“It is clear that the EPIC observations have great potential to provide new insight into the short‐term evolution of volcanic SO2 clouds, and also to enable more timely detection of volcanic eruptions. The potential value of frequent UV observations of volcanic clouds has been noted in the past, and with EPIC this has become a reality,” adds Carn.

 

 

Simon Carn has received multiple research grants totaling more than $2.8 million from NASA, the National Science Foundation, the National Geographic Society Committee for Research and Exploration, the Royal Society and the European Union. His research focus is the application of remote sensing data to studies of volcanic degassing, volcanic eruption clouds and anthropogenic pollution. His main focus: SO2, a precursor of sulfate aerosol, which plays an important role in the atmosphere through negative climate forcing and impacts on cloud microphysics.

See daily images of Earth from EPIC.

Read more about EPIC.


Michigan Tech—at the Intersection of Engineering and Medicine

Undergraduate research in the Biomedical Optics Laboratory at Michgan Tech
Undergraduate research in the Biomedical Optics Laboratory at Michgan Tech

There’s a lot of cutting-edge, health-focused research going on at Michigan Tech, in areas that engage undergraduates in hands-on research. This is because we care deeply about improving the human condition, and we teach this “first-hand.”

If you are interested in medicine, possess a desire to help others, and enjoy creative problem solving, read on. Michigan Tech researchers tackle genetics, cardiovascular disease, and cancer, just to name a few. Still more areas focus on improving health, fitness, clean water, sleep, medical imaging, and more.

In the College of Engineering alone, we have over 30 faculty—in biomedical engineering, chemical engineering, electrical and computer engineering, environmental engineering, materials science and engineering, and mechanical engineering—who engage in health-aligned research, engaging both undergraduates as well as graduate students in research.

Catching Viruses in the Lab
For example, in Chemical Engineering, students in Prof. Caryn Heldt’s lab “catch” viruses by understanding their sticky outer layers. The complex structures making the surface of a virus are small weaves of proteins that impact they way a virus interacts with cells and its environment. A slight change in protein sequence makes this surface slightly water-repelling, or hydrophobic, causing it to stick to other hydrophobic surfaces. Using this knowledge, they are finding new ways to detect and remove viruses before they make people sick, and also reduce cost and development time for new vaccines.

“I’m interested in how water around a virus can be controlled to decrease the cost of making vaccines and other medicines,” says Caryn Heldt. Her team conducts research using parvovirus because it’s small and chemically stable.

Accelerated Healing
In Biomedical Engineering, students in Prof. Rupak Rajachar’s lab are developing a minimally invasive, injectable hydrogel for achilles tendinitis, one of the most common and painful sports injuries. “To cells in the body, a wound must seem as if a bomb has gone off,” he says.  The team’s hydrogel formula allows tendon tissue to recover organization by restoring the initial cues that tendon cells need in order to function. Two commonly prescribed, simple therapies—range of motion exercises and applying cold or heat—boost the effectiveness of the hydrogel. Even a single injection can accelerate healing.

Prof. Rajachar and his team culture tendon cells with a bit of their injectable hydrogel in a petri dish, then watch under a microscope to see just how tendon cells respond over time. “In the presence of the hydrogel, cells of interest (called tenocytes) maintain their tendon cell behavior,” he says.

Human-Centered Monitoring
In Mechanical Engineering, students in Prof. Ye Sun’s Human Centered Monitoring Lab are turning embroidered logos into wearable electronics. Health monitoring devices like FitBit, apps on cell phones, and heart monitors are seemingly everywhere, but what if embroidery on clothing could replace these devices altogether? By using conductive thread and passive electronics‚ tiny semiconductors, resistors and capacitors‚ Prof. Sun and her team do it with stitching—lightweight, flexible, and beautiful embroidery. They’re also building a manufacturing network and cloud-based website for ordering.

Ye Sarah Suns hands are show holding a prototype of a flexible electronic circuit, where the stitches themselves become the circuit.
“I hope flexible, wearable electronics will interest a new generation of engineers by appealing to their artistic sides,” says Dr. Ye Sarah Sun. She is holding a prototype of a flexible electronic circuit, where the stitches themselves become the circuit.

Fighting Cancer with Fruit Flies
And in Biological Sciences, students in Prof. Thomas Werner’s lab perform transgenics, where they insert pieces of foreign DNA into fruit fly embryos, to determine the role genes play in the pigmentation of fruit flies. Biologists use fruit flies to study wing spots, metabolism, and aging. This is important because the same genes and major metabolic pathways in fruit flies affect cancer and other diseases in humans.

five fruit flies with striped bodies are shown. The genes that govern abdominal colors and patterns in fruit flies may provide insight into human cancer genes.
“There are a few hundred toolkit genes that all animals share and they build us as embryos and continue to help us as we develop,” says Prof. Werner. “But the differences in their regulation—when and where and how much they function—brings about the diversity of life.”

Engineers Go to Medical School
In case you are a student who is considering medical school, engineering majors stack up very well in acceptances to medical school, especially when considering research experiences and the associated research publications that our students co-author. In our Department of Biomedical Engineering alone, in 2017-18, BME majors had an 86% acceptance rate to med school.

I Followed My Heart
As a personal anecdote, my first university degree was a Bachelor of Science in Chemical Engineering. My curiosity about materials (especially metals) led me to a PhD in Materials Science. This multidisciplinary background led me to start a company with a cardiologist who needed my expertise. He had a vision for an improved angioplasty device to treat restenosis, which is when heart stents become narrow or blocked. Our company was based on my invention, related to applying tiny doses of radiation to a blockage to help in-stent restenosis. In all my career, this two years of work on this angioplasty device—it captured my imagination, my attention, and my heart (no pun intended). This intersection of engineering and medicine—it’s a life-changing experience to get personally engaged.

Now, if you’re interested in health care or working in a research lab, and you want to know more, please let me know—Callahan@mtu.edu

Janet Callahan, Dean
College of Engineering
Michigan Tech