Category: Research

Michigan Space Grant Consortium Awardees for 2022-2023

Michigan Space Grant Consortium NASA

The University of Michigan – Michigan Space Grant Consortium has announced grant recipients. Michigan Tech faculty and staff researchers receiving grants are:

Faculty Led Fellowships for Undergraduates

Brendan Harville for “Seismic Amplitude based Lahar Tracking for Real-Time Hazard Assessment.”

Sierra Williams for “Understanding the Controls of Solute Transport by Streamflow Using Concentration-Discharge Relationship in the Upper Peninsula of Michigan.”

Graduate Fellowships

Espree Essig for “Analyzing the effects of heavy metals on vegetation hyperspectral reflectance properties in the Mid-Continent Rift, USA.”

Caleb Kaminski for “Investigation of Ground-Penetrating Radar Interactions with Basaltic Substrate for Future Lunar Missions.”

Katherine Langfield for “Structural Characteristics of the Keweenaw and Hancock Faults in the Midcontinent Rift System and Possible Relationship to the Grenville Mountain Belt.”

Tyler LeMahieu for “Assessing Flood Resilience in Constructed Streambeds: Flume Comparison of Design Methodologies.”

Paola Rivera Gonzalez for “Impacts of La Canícula (“Dog Days of Summer”) on agriculture and food security in Salvadoran communities in the Central American Dry Corridor.”

Erican Santiago for “Perchlorate Detection Using a Graphene Oxide-Based Biosensor.”

Kyle Schwiebert for “LES-C Turbulence Models and their Applications in Aerodynamic Phenomena.”

HONES Awards

Paul van Susante for “Lunabotics Competition Robot.”

Research Seed Grants

Xinyu Ye for “Analyzing the effects of potential climate and land-use changes on hydrologic processes of Maumee River Watershed using a Coupled Atmosphere-Lake-Land Modeling System.”

Pre-College Educational Programs

Jannah Tumey for “Tomorrow’s Talent Series: Exploring Aerospace & Earth System Careers through Virtual Job-Shadowing.”

Q&A with Xin Xi: Uncovering Global Dust-Climate Connections

Dr. Xin Xi: “Surface weather observations are worth a refreshed look and can be used for improving our dust-climate modeling capability.”

GMES Assistant Professor Xin Xi’s new open-source dataset, duISD, is featured in Michigan Tech’s Unscripted Research blog. Here, he tells us more about it.

Q: How did you get started studying dust and desertification? 

XX: I grew up in humid southern China and had no experiences with dust storms when I was young. When I started college in Beijing, I had personal encounters with the “yellow dust” or Kosa (in Korea and Japan). The sky turned murky yellow every spring, while the whole city was shrouded in a cloud of dust blown from northwestern China. 

When I started graduate school at Georgia Tech, atmospheric aerosols emerged as a central theme in climate research, largely because they are capable of counteracting the warming effect of greenhouse gasses and play a crucial role in the hydrological cycle. Like many others, I became interested in my research due to the positive influence of my Ph.D. advisor, an expert in atmospheric aerosols, particularly mineral dust. 

Q: Why did you decide to revisit the use of horizontal visibility? 

XX: Primarily because of the long timespan of the visibility record from surface weather stations. It is by far the longest instrumental data record of dust, including regions near the dust source where modern-day satellites have difficulties providing reliable observations. 

Long-term, uninterrupted data records are paramount for understanding the variability of dust in response to climate and land use changes. I believe the visibility record has not been used to its full potential, so I took on the effort to develop a homogenized dust-climate record.

Q: Who do you imagine will get the most use from your new dataset? How would a researcher make use of it, and why? 

XX: This new dataset is an initial version of the dust-climate dataset I have been working on. Currently it consists of monthly records of the ambient dust burden at more than 10,000  weather stations worldwide. It is presented in an easy-to-read format, so anyone familiar with spreadsheets can use it. Dust researchers may find it useful, because they can avoid the tedious preprocessing steps with the raw data and are presented with summary statistics to help them pick the stations for their region of interest.

Dr. Xi used the dataset to characterize dust variability and climate connections around the world. The results of his study are featured in an article in the Journal of Geophysical Research: Atmospheres

Q: Do you intend to update with future versions? 

XX: Definitely. I plan to conduct data fusion by combining the surface observations with additional climate and land information from satellites or models.

Q: What are the most unique and noteworthy aspects of this research? 

XX: It is a climate data record development project, and the ultimate goal is to create a quality-controlled dataset for the climate community to study trends, variability and relationships about dust and climate. In addition, I believe the dataset can offer other insightful information about the deficiency of current climate models. 

Q: What do you plan to research next? 

XX: I plan to take on the next step of updating the initial dataset I created, and develop new analytic results, which can convince myself — and, hopefully, the climate community — that surface weather observations are worth a refreshed look and can be used for improving our dust-climate modeling capability.

Xi’s open-source dataset, duISD, can be accessed online

Michigan Tech Represented at Midwest Growth Capital Symposium

SuPyRec logo.
ZiTechnologies logo with statement Clean Energy Pellets from Non-Recyclable Plastic-Paper.


Jim Baker (VPR) presented “Supporting Tech Companies from Pre-Launch to Investment” at the Midwest Growth Capital Symposium, held virtually and hosted by the University of Michigan’s Zell Lurie Institute for Entrepreneurial Studies.

The symposium also was attended by two Michigan Tech startup companies, SuPyRec and ZiTechnologies. Company representatives presented to prospective investors and hosted virtual booths throughout the event.

SuPyRec is led by David Shonnard (ChE) and is commercializing plastics recycling technology developed in his lab. ZiTechnologies is led by PhD graduate Stas Zinchik and is commercializing clean energy technology based on research conducted in Ezra Bar Ziv’s lab (ME-EM).

Both companies are leveraging support resources available within Michigan Tech’s Office of Innovation and Commercialization through Nate Yenor, director of technology business incubation, in close collaboration with MTEC SmartZone, the Michigan Small Business Development Center and Husky Innovate.

By Jim Baker, Vice President for Research Office.

The symposium took place May 17 and 18, 2022.

Powering the Moon—with Microgrids

MOON POWER — An artistic rendering of what a resilient microgrid for a lunar base camp might look like. Sandia engineers are working with NASA to design the system controller for the microgrid. (Illustration by Eric Lundin)

Professor Wayne Weaver and Research Professor Rush Robinett III were mentioned in a Sandia LabNews story, “Powering the moon: Sandia researchers design microgrid for future lunar base.”

The article details Sandia National Labs’ partnership with NASA to design a reliable and resilient microgrid for the moon. Weaver and Robinett are “heavily involved” in developing controller software to maintain an even voltage level on the grid, according to the story.

Tom Werner: Butterflies, Moths, and Fruit Flies in the Keweenaw

Butterly or moth? Find out during Husky Bites!

Thomas Werner shares his knowledge on Husky Bites, a free, interactive Zoom webinar this Monday, April 4 at 6 pm ET. Learn something new in just 30 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Thomas Werner

What are you doing for supper this Monday night 4/4 at 6 ET? Grab a bite with Dean Janet Callahan and Biological Sciences Associate Professor Thomas Werner. Joining in will be one of his former students, alumna Tessa Steenwinkel.

Tessa Steenwinkel

Steenwinkel earned her BS in Biochemistry and Molecular Biology and her MS in Biology/Biological Sciences, all at Michigan Tech. She works now as an Educational Assistant at Madison Country Day School near Madison, Wisconsin, and she will start a PhD program at Baylor College of Medicine in Houston, Texas, this fall.

During Husky Bites, they will share the most beautiful butterflies, moths, and fruit fly species of the Keweenaw Peninsula. And we’ll learn much more about their Encyclopedia of North American Drosophilids. Be sure to bring your questions!

Dr. Werner started studying insects as a childhood hobby, at age 10, when a beautiful butterfly flew in the window of his family’s 9th floor apartment in Erfurt, in East Germany. Many years later, his interest in insects is still strong, as he leads a fruit fly research lab at Michigan Tech. 

Werner’s research bridges the miniscule and the massive in an effort to better understand the mechanisms behind several unique features of fruit flies, such as the developmental genetics of color pattern formation as well as those of mushroom toxin resistance, among several other questions. Some of their research questions aim to provide insight into human cancer development.

For being so small, fruit flies have had a large impact on genetic research, thanks in great part to Dr. Tom Werner at Michigan Tech.

Werner also teaches courses on general immunology, introduction to genomics, developmental biology, and he used to teach genetics and with a genetic techniques lab. He’s been bestowed with the state-wide Michigan Distinguished Professor of the Year Award 2021 and won Michigan Technological University’s Distinguished Teaching Award twice (both in the non-tenured and the tenured categories).

Callout quote:

“Werner is the epitome of the scholar-teacher. His enthusiasm in the classroom is remarkable, as is his devotion to mentoring more than 100 undergraduate researchers,” says David Hemmer, dean, College of Sciences and Arts.

“Thinking about the long winters here, I would call teaching a powerful antidepressant.”

Dr. Thomas Werner

Steenwinkel started at Michigan Tech in the fall of 2017 by joining the Pavlis Honors College. She majored in Biochemistry and Molecular Biology-Biological Sciences with a minor in Pharmaceutical Chemistry. Originally from the Netherlands, Steenwinkel has lived in the United States since she was 12 years old.

“On Michigan Tech’s annual Preview Day in March 2017, Tessa visited my lab at Michigan Tech as a high school student,” Werner recalls. “I offered her a job on the spot, because I felt that she would become the best student I have ever mentored. And I was correct about that: As my undergraduate research assistant and master’s student, she has published two books and 10 papers with me, while she won 8 university-wide and national awards!”

Tessa at work in the Werner Lab

“When I walked into the lab, I knew that this could be the place for me,” adds Steenwinkel. “After getting started at Tech, I immediately reconnected with Dr. Werner and essentially started working in the lab the next day. I worked there for over four years, working alongside grad students, leading my own project, and managing the lab even when Dr. Werner went on sabbatical in Singapore. I was always so grateful to have Dr. Werner as a mentor.”  

During her first year, Steenwinkel went from assisting in Werner’s research lab to becoming a co-author on his book, Drosophilids of the Midwest and Northeast, with John Jaenike, a professor of biology at the University of Rochester. The three later published a second book together “Drosophilids of the Southeast”, published under the umbrella name “The Encyclopedia of North American Drosophilids.” Both books welcome researchers, teachers, and young students alike into the amazing world of flies and the diversity of their potential use in research.  

The Encyclopedia of North American Drosopholids, Vol 1: covers the Midwest and Northeast.
The trio’s second book covers the Drosophilids of the Southeast.

The books also include a significant outreach component that speaks to young children about science and nature in the form of a bedtime story about fruit flies written by Steenwinkel. Open-access books, they can be downloaded for free here and here.

While at Michigan Tech, Steenswinkel became the first recipient of the Soyring Foundation Scholarship. John Soyring, Tech alumnus and Pavlis Honors College External Advisory Board member, established the scholarship for Pavlis Honors students expressing interest in research and innovation related to water quality management, renewable energy, or solutions to prevent and cure cancer. 

Prof. Werner, what sparked your interest in biology, fruit flies and genetics?

I am a biologist by heart. It all started in former East Germany when a butterfly entered my bedroom on the ninth floor in the middle of the city. On that July morning in 1981, I started collecting butterflies as a 10-year-old boy. This moment defined my life, and today I am associate professor of genetics and developmental biology.

Family?

I have a wife Megan, a daughter Natalia (10), and two sons: Oliver (7) and Oscar (5).

Any hobbies? Pets? What do you like to do in your spare time?

As a hobby, I collect and rear butterflies and moths. I like camping (and collecting fruit flies on these trips for my next field guides). I also have a dog named Frosty, who also likes camping.

Tessa, what sparked your interest in science?

My brother with Down Syndrome first got me interested in biology. From there, I started to learn about genetics, development, and diversity. This is what brought me to Michigan Tech and to start working in Dr. Werner’s lab, where he was using fruit flies to model human cancer. When I started working there, he had just published his first book on fruit flies, and I was immediately fascinated by the beauty and diversity of these small bugs. 

Hometown, family?

I’m originally from the Netherlands. I grew up there with my parents and two younger brothers. In 2012, we moved to Baton Rouge, Louisiana, before moving to Madison, Wisconsin, in 2014. In 2017, I decided to start college at Michigan Tech, where I obtained my undergraduate and master’s degrees.

Any hobbies or pets? What do you like to do in your spare time?

When I’m not in the lab, I enjoy running outside and teaching ski lessons to the local kids. When you live in Houghton, you have to make the best out of it. I’m currently getting ready to start my PhD. I currently have two very enthusiastic turtles. 

TECH SCEnE Offers the Best of Both Worlds in Michigan’s Upper Peninsula

Keweenaw Bay Indian Community tribal members share their knowledge, wisdom, and culture with TECH SCEnE REU students. Apply for TECHSCEnE Summer 2022 by March 15 at https://www.techscene.mtu.edu. Tentative program dates are June 3, 2022- July 29, 2022. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply.

What are you doing this Summer 2022? Want to combine cutting-edge engineering research with direct community involvement and impact? With a generous stipend, travel allowance, plus all expenses paid for 8 weeks?

Samantha Haynes, future biomedical engineer, spent 8 weeks as a TECH SCEnE REU researcher last summer.

Biomedical engineering student Samantha Haynes decided to immerse herself in something entirely new via TECH SCEnE, a National Science Foundation Undergraduate Research Experience (REU) at Michigan Technological University. Haynes came all the way from Arlington, Virginia, where she studies biomedical engineering at Virginia Tech.

The 8-week, all-expense paid program offered at Michigan Tech is called TECH SCEnE (short for Technology, Science and Community Engagement in Engineering). Haynes stayed on campus, went on outdoor trips throughout the Keweenaw Peninsula, guided by the Keweenaw Bay Indian Community, and conducted hands-on research in campus labs alongside a faculty mentor.

TECH SCEnE research projects include water quality testing for heavy metal contamination, smart adhesives for underwater applications, remote monitoring and mobile robots, simulating daylight for hatcheries, and in vitro modeling of the impact of heavy metals.

Samantha is seventh from the left. TECH SCEnE stands for Technology, Science and Community Engagement in Engineering

In addition to hands-on laboratory experience, Haynes and her fellow students took plenty of field visits to the beautiful lakeshores of Lake Superior and Keweenaw Bay. Application deadline for Summer 2022 is March 15. Tentative program dates are June 3, 2022- July 29, 2022.

This year is forecast to be outstanding for viewing the Northern Lights in the Upper Peninsula of Michigan. Located just 20 minutes or so from the Michigan Tech campus, McLain State Park on Lake Superior is a great potential viewing spot!

Haynes pioneered research on heavy metal contamination in the soil and wild rice beds around the Keweenaw last summer as an undergraduate researcher taking part in TECH SCEnE. She also worked alongside members of the Keweenaw Bay Indian Community (KBIC), her fellow REU students, and other volunteers to plant over 75 trees, build hoops houses, harvest foods, and upkeep a large community garden, the tribe’s People’s Garden.

Wild rice, known as manoomin, the good berry, is both a spiritual and nutritional staple of the Keweenaw Indian Community.

Samantha, what did you like most about TECH SCEnE?

I applied to TECHScENE REU because I thought the internship was very unique. I was excited to have the opportunity to work in Michigan and learn about the local Indian community. I personally value diversity and learning about different communities very much, so I appreciated that this type of internship existed. I’m also passionate about creating positive social change, helping to protect the environment, and using science to bridge gaps in education and educate the public on pressing issues.

What was the best part?

Samantha and fellow volunteers tending to plants in one of the many Hoop Houses of the Keweenaw Bay Indian Community People’s Garden

Out of all the experiences activities we did throughout TECH ScENE, building relationships with my fellow peers, mentors, and the Native American community was my favorite part.

What was the most challenging aspect?

The unlearning process of everything I thought I knew about Native Americans. We participated in weekly workshops to unlearn false, preconceived ideas and to learn factual information about Native American tribes and tribal members, especially those we were working with as part of TECH SCEnE. 

“Boozhoo! Welcome to our wellness trail,” says this sign, located on Keweenaw Bay Indian Community tribal land. Take a moment to learn a few words of the Ojibwe language. “Miikaans means “trail”. “Aki” means Earth. And “boozhoo!” means “greetings!” or “hello!”

What next? What are your future plans?

Currently I am a junior in biomedical engineering, so the next step is to secure another internship for summer 2022, in order to gain more experience. Once I graduate, I plan to start working and possibly consider graduate school after a year or two.

Samantha’s final presentation, with her TECH SCEnE research mentor, Professor Rupali Datta

Are you an adventurous college student? Want to learn how to use science and technology to benefit both the community and the environment? Apply to TECH SCEnE by March 15. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply. Learn more and apply for free at techscene.mtu.edu.

Research links continents to key transitions in Earth’s oceans, atmosphere and climate

Mountain peaks, glaciers, and prayer flags near the Kunzum La Pass, a high mountain pass connecting the Lahaul and Spiti valleys in the Indian Himalaya. Credit: Timothy Paulsen, UW Oshkosh

A recent study led by University of Wisconsin Oshkosh geologist Timothy Paulsen advances the understanding of the role continents have played in the chemical evolution of Earth’s oceans, with implications for understanding atmospheric oxygenation and global climate oscillations. The research team includes Chad Deering and Snehamoy Chatterjee, Dept. of Geological and Mining Engineering and Sciences at Michigan Technological University, and Jakub Sliwinski and Olivier Bachman, Institute of Geochemistry and Petrology, ETH Zurich.

Tim Paulsen

The team’s research article, Continental Magmatism and Uplift as the Primary Driver for First-Order Oceanic 87Sr/86Sr Variability with Implications for Global Climate and Atmospheric Oxygenation, is featured on the cover of the February issue of GSA Today, published by the Geological Society of America.

The team analyzed a global database of the chemistry of tiny zircon grains commonly found in the Earth’s continental rock record. “We use zircon because it is very resistant to weathering and breakdown over a wide span of environmental conditions and can be dated accurately,” Deering explains. Zircon grains are about the size of the width of human hair; typically around 150microns.

Chad Deering

“Oceans cover 70% of Earth’s surface, setting it apart from the other terrestrial planets in the solar system,” said Paulsen, the lead author on the paper. “Geologists have long recognized that there have been profound changes in ocean chemistry over time.”

Yet there are significant questions about the drivers for changes in ocean chemistry in Earth’s past, especially associated with the ancient rock record leading up to the Cambrian explosion of life approximately 540 million years ago.

“Continents tend to be worn down by weathering and rivers tend to transport this sediment to the oceans, leaving scattered puzzle pieces for geologists to fit together,” said Deering, associate professor of Geological and Mining Engineering and Sciences at Michigan Tech, and coauthor on the paper. “There is increasing evidence that important pieces of the puzzle are found in the ancient beach and river sediments produced through continental weathering and erosion.”

The researchers’ findings, based on an analysis of an exceptionally large zircon data set from sandstones recovered from Earth’s major continental landmasses, may signify key links in the evolution of the Earth’s rock cycle and its oceans.

GSA Today highlights articles that appeal to a broad geoscience audience. On the cover:

“Our results suggest that two major increases in continental input from rivers draining the continents were related to the break-up and dispersal of continents, which caused increased weathering and erosion of a higher proportion of radiogenic rocks and high-elevation continental crust,” Paulsen said.

“Both episodes are curiously associated with snowball Earth glaciations and associated steps in oxygenation of the atmosphere-ocean system. Geologists have long recognized that oceans are required to make continents. It would appear based on our analyses that the continents, in turn, shape the Earth’s oceans, atmosphere and climate.”

This study was funded by University of Wisconsin Oshkosh’s Faculty Development Program.

This news story written by Natalie Johnson, UW Oshkosh Today

For Immediate Release
Contact:
Natalie Johnson, UW Oshkosh
Kim Geiger, Michigan Tech

2022-2023 Michigan Space Grant Consortium Awards

Michigan Space Grant Consortium NASA

A diverse, multitalented group of Michigan Tech students, faculty and staff members have been awarded fellowships and grants totaling an impressive $55,701 from the Michigan Space Grant Consortium (MSGC) for its 2022-23 funding cycle. This funding is sponsored by NASA.

Seismic amplitude-based lahar tracking, agriculture and food security, the effects of heavy metals on vegetation, and job shadowing aerospace and earth systems careers: these are just a few of the exciting, innovative projects that received funding.

The MSGC reflects NASA’s interests and promotes awareness, research and education in “space-related science and technology in Michigan.” To achieve this goal, the consortium not only funds fellowships and scholarships for STEM students, but also financially supports curriculum enhancement and faculty development. The MSGC is also deeply committed to supporting and upholding NASA’s policy of diversity and inclusion.

Congratulations to the winners and best of luck on your projects.

Thank you for representing Michigan Tech and making our University community proud!

Michigan Tech undergraduates who received $4,000 research fellowships are:

  • Brendan Harville (GMES) — “Seismic Amplitude-Based Lahar Tracking for Real-Time Hazard Assessment” with Greg Waite (GMES)
  • Sierra Williams (CFRES) — “Understanding the Controls of Solute Transport by Streamflow Using Concentration-Discharge Relationship in the Upper Peninsula of Michigan” with Fengjing Liu (CFRES)

Michigan Tech graduate students who received $5,000 research fellowships are:

  • Espree Essig (GMES) — “Analyzing the Effects of Heavy Metals on Vegetation Hyperspectral Reflectance Properties in the Mid-Continent Rift, USA” with Chad Deering (GMES)
  • Caleb Kaminski (GMES) — “Investigation of Ground-Penetrating Radar Interactions with Basaltic Substrate for Future Lunar Missions” with Aleksey Smirnov (GMES)
  • Katherine Langfield (GMES) — “Structural Characteristics of the Keweenaw and Hancock Faults in the Midcontinent Rift System and Possible Relationship to the Grenville Mountain Belt” with James DeGraff (GMES)
  • Tyler LeMahieu (CEGE) — “Assessing Flood Resilience in Constructed Streambeds: Flume Comparison of Design Methodologies” with Brian Barkdoll (CEGE)
  • Paolo Rivera Gonzalez (GMES) — “Impacts of La Canícula (“Dog Days of Summer”) on Agriculture and Food Security in Salvadoran communities in the Central American Dry Corridor” with Kari Henquinet (SS)
  • Erican Santiago (BioMed) — “Perchlorate Detection Using a Graphene Oxide-Based Biosensor” with Hyeun Joong Yoon (BioMed)
  • Kyle Schwiebert (Math) — “LES-C Turbulence Models and Their Applications in Aerodynamic Phenomena” with Alexander Labovsky (Math)

Michigan Tech faculty and staff members who received $2,200 or more for pre-college outreach and research seed programs are:

  • Paul van Susante (ME-EM) — Hands-On NASA-Oriented Experiences for Student Groups (HONES): “Lunabotics Competition Robot”
  • Jannah Tumey (Center for Educational Outreach) — “Tomorrow’s Talent Series: Exploring Aerospace & Earth System Careers Through Virtual Job-Shadowing”
  • Xinyu Ye (CEGE) — “Analyzing the Effects of Potential Climate and Land-Use Changes on Hydrologic Processes of Maumee River Watershed Using a Coupled Atmosphere-Lake-Land Modeling System”

By the Graduate School and Shelly A. Galliah.

Samson A. Jenekhe, Michigan Tech Alumnus, Elected to the National Academy of Engineering

Professor Sam Jenekhe’s pioneering polymer research paved the way for commercial OLEDs

Michigan Tech alumnus Samson A Jenekhe ’77 has been elected to the National Academy of Engineering, among the highest professional distinctions accorded to an engineer. Dr. Jenekhe is honored for discovery and understanding of conjugated materials for organic light-emitting diodes (OLEDs) widely used in the commercial sector.

A professor of chemistry and the Boeing-Martin Professor of Chemical Engineering at the University of Washington, Jenekhe studies the fundamental physical and chemical properties of semiconductor materials, as well as their practical applications. Research topics have included organic and flexible electronics, the use of organic light-emitting diodes for lighting and displays, energy storage and conversion systems, semiconducting polymers and polymer-based photovoltaic systems.

Jenekhe is a Chemical Engineer who earned his BS at Michigan Tech and his MS, MA, and PhD at the University of Minnesota. Jenekhe worked as a research scientist for Honeywell, Inc. and later joined the faculty at the University of Rochester, before joining the faculty at the University of Washington in 2000.

He is a fellow of the American Association for the Advancement of Science, the Royal Society of Chemistry and the American Physical Society, which in 2021 also awarded him the Polymer Physics Prize. He also received the Charles M.A. Stine Award for Excellence in Materials Science from the American Institute for Chemical Engineers in 2014.

Read More

Samson A. Jenekhe’s Pioneering Polymer Work Paved the Way for Commercial OLEDs
US Department of Energy: OLED Basics

Watch

Distinguished Chemical Engineering Seminar given by Professor Samson Jenekhe, University of Washington. Held on 2 March 2016 at the Department of Chemical Engineering, Imperial College London.

Play Plastic electronics and photovoltaics video
Preview image for Plastic electronics and photovoltaics video

Plastic electronics and photovoltaics

Zhanping You: Where the Rubber Meets the Road

Professor Zhanping You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. 
Professor Zhanping You

Zhanping You shares his knowledge on Husky Bites, a free, interactive Zoom webinar this Monday, February 21 at 6 pm ET. Learn something new in just 30 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 2/21 at 6 ET? Grab a bite with Dean Janet Callahan and Zhanping You, a Distinguished Professor of Transportation Engineering in the Department of Civil, Environmental and Geospatial Engineering, who uses old tires to make new roads. Joining in will be one of Prof. You’s PhD students, Dongzhao “Kobe” Jin.

Kobe Jin

Dr. You works with recycled materials to improve asphalt pavement performance. Crumb rubber, made from scrap tires, is one such material. ”Crumb rubber in asphalt reduces rutting and cracks and extends life, and it lowers noise levels,” he says. 

Scrap tires are plentiful, though not in a good way. “Hundreds of millions of scrap tires are generated in the US every year,” he notes. “Those giant piles of waste tires pose concerns of potential contamination of local groundwater and fire risk.”

You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. “We do it through various experimental and numerical modeling techniques,” You explains. “Our research team has also expanded the work to include field pilot projects, too. Over the past 6-7 years or so, we’ve constructed quite a few roads in Michigan that use recycled tire rubber.” The team works with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) and the EGLE Scrap Tire division, plus road commissions in Dickinson County, Kent County, St. Clair County, Clare County, and Bay County.

“Teaching provides me with broad dimensions to sharpen my research vision, while research helps me develop in-depth understanding so that I can teach better,” Dr. You says.

Another material You and his team employ: pavement rubble. “More than 94% of the roads in the United States are paved with asphalt mix—about 360 million tons each year. In turn, that generates over 60 million tons of old asphalt pavement waste and rubble,” he notes. Recycling these waste materials not only greatly reduces the consumption of neat asphalt mix, it also lowers related environmental pollution, he adds. 

Blending recycled asphalt pavement (RAP) with fresh asphalt mix has presented several challenges for You and his team. “One noticeable issue of using RAP in asphalt pavement is the relatively weaker bond between the RAP and neat asphalt, which may cause moisture susceptibility,” he says. “We have determined that modifying the asphalt mix procedure and selecting the correct neat asphalt can effectively address this concern.” 

Before the recycled asphalt-tire-gravel mix ever makes it outside, You and his research team do plenty of work indoors, using computer modeling and lab tests to make sure they put viable material out in the elements. 

“When crumb rubber is blended into an asphalt binder, the stiffness of the asphalt binder is increased,” You explains. “ A higher mixing temperature is needed to preserve the flowability of asphalt binder. Conventional hot-mix asphalt uses a lot of energy and releases a lot of fumes. To solve this problem we developed a warm mix technology, a foaming process at lower temperatures, that requires less energy and reduces greenhouse gas emissions.” 

You and his group developed and tested several foaming technologies for warm mix asphalt, integrating state-of-the-art rheological and accelerated aging tests, thermodynamics, poromechanics, chemical changes and multi-scale modeling to identify the physical and mechanical properties of foamed asphalt materials. 

You has other solutions in the works, too, including man-made asphalt derived from biomass. “We tried using bio oil (derived from biomass) in asphalt and found it also improved pavement performance,” he says. 

Not even the pandemic can stop the construction of recycled roads in Michigan!
A Michigan Tech research team of students led by Zhanping You tests a new, cooler way to make rubberized asphalt in Michigan’s Upper Peninsula.

“Asphalt made from bio oil can potentially reduce the consumption of petroleum asphalt and lower the production temperature while road rutting resistance can be improved. We actively work with local, state, and national recycling efforts to develop better road materials, using plastics, waste glass, and several other recyclables, too,” he notes. “We hope our efforts will contribute to a circular and low-carbon economy.”

Prof. You, how did you first get into engineering? What sparked your interest?

I got into civil engineering accidentally, but started to love it. When I was little, I had debates with my friends on the possible damage on roads–was it the load or the pressure from the tires?

Hometown, family?

I view Houghton as my hometown now since I have been here almost 17 years, even though I was born and raised in Northwest China.

A lot of testing goes on in Dr. You’s lab at Michigan Tech.

What do you like to do in your spare time?

I love to read books—non-engineering, engineering, history, and literature. I’m also a recently appointed coadvisor to the Michigan Tech student chapter of Society of Asian Scientists and Engineers (SASE). After years of service in various professional groups at Michigan Tech, I believe an organization of Asian students involved in science and engineering is really needed.

Kobe, how did you first get into engineering? What sparked your interest?

Says Kobe: “Dr. You’s humor, lifestyle, rigorous academic attitude, and profound understanding of sustainable pavement all impact me a lot.”

The first time I got interested in engineering was when they were paving the concrete road in my hometown. I became interested in how and why a mix of some aggregate, sand, and water could create such a hard road.

Hometown, family?

My hometown is a small county in Henan Province, China. I have two sisters and I love my family.

Any hobbies? Pets? 

I like cats and basketball (I go by Kobe in honor of my favorite basketball player). I read science fiction books during my spare time.

Read More

Q&A with Research Award Winner Zhanping You
When Rubber Becomes the Road

Kobe enjoys the Houghton Waterfront Park near campus (even in the middle of winter!)