Category: Research

John Gierke: Drilling Wells in the Keweenaw—Needles in a (Geologic) Haystack

Community water wells in Michigan’s Keweenaw Peninsula tap places ancient glaciers carved and filled. Pictured above: Interpolated bedrock depth map. Warm colors indicate progressively deeper bedrock (red being the deepest). Credit: John Gierke, Michigan Tech

John Gierke shares his knowledge on Husky Bites, a free, interactive webinar this Monday, September 20 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Michigan Tech Professor John Gierke is also alumnus. He earned both a BS and MS in Civil Engineering, and a PhD in Environmental Engineering, all at Michigan Tech.

What are you doing for supper tonight, Monday 9/20 at 6 ET? Grab a bite with Dean Janet Callahan and John Gierke, Professor of Geological and Mining Engineering and Sciences at Michigan Tech. “The water we drink comes from geologically unique places,” he says. As a hydrogeologist, Gierke uses his expertise in teaching and research, and in places around the globe, most recently, El Salvador. Also on his own blueberry farm located about 20 minutes from campus.

“I was attracted to environmental engineering because of my interest in protecting human and environmental health, says Michigan Tech Professor Eric Seagren. “The use of a broad range of sciences within environmental engineering appealed to me, too.”

Joining in will be fellow colleague and friend, Eric Seagren, a professor of Civil, Environmental and Geospatial Engineering who specializes in finding new, sustainable ways to clean up environmental pollution, including contaminated groundwater.

As a hydrogeologist, Gierke studies the “spaces” in rocks and sedimentary deposits where water is present. Although groundwater is everywhere, Keweenaw geology makes accessing it truly challenging.

“Drilling productive wells in the Keweenaw is like finding needles in (geologic) haystack,” he says. “Groundwater supplies for many communities are in ancient bedrock valleys that were carved by glaciers and later backfilled with sands, gravels, and, sometimes, boulders left by the melting glaciers in their retreat. In the Midwest, groundwater exists almost everywhere, but in the Western Upper Peninsula of Michigan, and northern Wisconsin and Minnesota, the close proximity of ancient bedrock makes drilling trickier.”

During Husky Bites, Prof. Gierke will show us the inside of some especially interesting aquifers and wells—how they are found and developed, and why some rock formations yield water, and others don’t yield very much.

“Community water wells in Michigan’s Keweenaw Peninsula tap places ancient glaciers carved and filled.”

Prof. John Gierke

“Imagine a 400′ deep glacial tunnel scour back, filled with sands, gravels, silts and clays and capable of yielding 400-some gallons per minute,” says Gierke. “Wells located just outside that ‘trough’ are stuck in bedrock, only capable of giving up hardly 20 gpm, only enough for a single household.”

“The replenishment rate of groundwater in the Copper Country, like much of the northern Midwest, is sufficient that groundwater exists almost everywhere,” adds Gierke. “The challenge in terrains like the Keweenaw, where bedrock is often near the surface, is not whether groundwater exists at depth, but rather where the geology is sufficiently porous and/or fractured to allow water wells to produce at rates sufficient for communities.”

This photo from Prof. Seagren’s lab shows the release of a blue dye, simulating the release of an amendment from a well.

For Prof. Seagrean, at Michigan Tech his major research focus is the bioremediation of contaminated groundwater, especially contaminants like petroleum products and chlorinated solvents. He studies the release of remedial amendments, such as oxygen, added to stimulate the biodegradation of contaminants.

“An amendment is added to a well, and then just released into the natural flow of groundwater without pumping,” he explains. Much of this work involves the use of lab-scale model aquifers. Seagren believes it can be very effective, affordable, and safe way to solve the problem. According to the USGS, more than one in five (22 percent) groundwater samples contain at least one contaminant at a concentration of potential concern for human health.

Seagren also develops and tests low-impact, bio-geoengineering practices to stabilize mine tailings and mitigate toxic dust emissions. “These approaches mimic and maximize the benefits of natural processes, with less impact on the environment than conventional technologies,” he says. They may also be less expensive.” 

Seagren and his research team zeroed in on a natural process, microbially-induced calcium carbonate precipitation —an ubiquitous process that plays an important cementation role in natural systems, including soils, sediments, and minerals.

Prof. Gierke, how did you first get into engineering? What sparked your interest?

“Here I am on Bering Glacier in 2007, unfurling a Michigan Tech flag (that’s one of the University’s former logos).” Dr. Gierke is standing next to Dr. Josh Richardson (left), now a Geophysicist at Chevron. Josh earned all his degrees at Michigan Tech: a BS in Geophysics ’07, an MS in Glacier Seismology and Geophysics ’10, and a PhD in Volcano and Glacier Seismology, Geophysics ’13

I began studying engineering at Lake Superior State College (then, now University) in the fall of 1980, in my hometown of Sault Ste. Marie. In those days their engineering program was called: General Engineering Transfer, which was structured well to transfer from the old “Soo Tech” to “Houghton Tech,” terms that some old timers still used back then, nostalgically. I transferred to Michigan Tech for the fall of 1982 to study civil engineering with an emphasis in environmental engineering, which was aligned with my love of water (having grown up on the St. Mary’s River).

Despite my love of lakes, streams, and rivers, my technical interests evolved into an understanding of how groundwater moves in geological formations. I used my environmental engineering background to develop treatment systems to clean up polluted soils and aquifers. That became my area of research for the graduate degrees that followed, and the basis for my faculty position and career at Michigan Tech, in the Department of Geological and Mining Engineering and Sciences (those sciences are Geology and Geophysics). My area of specialty now is Hydrogeology.

Hometown?

I grew up in Sault Ste. Marie, Michigan, where I fished weekly, sometimes daily, on the St. Mary’s River. Sault Ste. Marie is bordered by the St. Mary’s River on the north and east. In the spring, summer and fall, I fished from shore or a canoe or small boat. In the winter, I speared fish from a shack just a few minutes from my home or traveled to fish through the ice in some of the bays. I was a fervent bird hunter (grouse and woodcock) in the lowlands of the Eastern UP, waterfowl in the abundant wetlands, and bear and deer (unsuccessfully until later in life). 

What do you like to do in your spare time?

I live on a blueberry farm about 20 minutes from campus in Chassell, Michigan. It’s open to the public in August for U-Pick. For the farm, I used my technical expertise to design, install, and operate a drip irrigation system that draws water from the underlying Jacobsville Sandstone aquifer. 

How do you know your co-host? 

Eric Seagren and I have been disciplinary colleagues for over 2 decades. Our expertise overlaps in terms of how pollutants move through groundwater. 

“Me cooking while camping with my family on Isle Royale two summers ago,” says Prof. Seagren.

Prof. Seagren, how did you first get into engineering? What sparked your interest?

I was attracted to environmental engineering because of my interest in protecting human and environmental health. The use of a broad range of sciences within environmental engineering also appealed to me. Growing up we had a family friend who was a civil engineer, and my Dad had a cousin who was an electrical engineer. My Dad himself had wanted to be an engineer, but he had gone to a one-room country school and a small-town high school, and when he got to college they told him he did not have an adequate background in math and science to pursue engineering, something we would never tell a student today! 

“This microphoto is from my work on the biomodification of the engineering properties of soil. It shows a calcium carbonate crust formed via bacterial activities.” Prof. Seagren will explain more of what can be seen here during Husky Bites.

Anyway, that might have influenced me some, but more importantly was my interest in protecting the environment. I had always spent a lot of time outdoors, either at my grandparents’ farm, or hunting and fishing with my Dad and friends and camping in Scouts. I took an environmental studies class in high school and that’s where I first learned about environmental engineering.

Hometown, family?

 I grew up in Lincoln, Nebraska, and earned my undergraduate degree at the University of Nebraska, Lincoln. Currently I live in Hancock, with my family, which includes my wife Jennifer Becker, who is also a faculty member at Michigan Tech, and my two teenage children, Ingrid and Birk. We have a cat named Rudy.

Any mentors in your life who made a difference?

Back when I was in college, most people got an undergraduate degree in civil engineering and then pursued a graduate degree in environmental engineering, and that is the path I took. While I was doing my undergraduate work at the University of Nebraska there was a young professor named Dr. Mohamed Dahab who really influenced me and took an interest in me and my career path to this day. He was a great mentor and example for me, and that’s contributed to how I try to mentor students, too.

Dr. Seagren’s ’53 Chevy.

Any hobbies? 

In my spare time I like to garden, do home repairs, hike, fish, boat, run, and Nordic ski. I’m also fixing up a ‘53 Chevy pick-up from my grandpa’s farm. We used to use the truck to haul grain from the farm to the elevator in town. It’s a nice shade of blue. Next summer we hope to fill the back with blueberries from John’s farm and enter it into a local parade.

Read more:

How the Rocks Connect Us

Keweenaw Geoheritage: Glaciers

Field Trip to Alaska (Bering Glacier)

Michigan Tech Part of $15M Great Lakes Innovation Hub

In an effort to nurture a regional innovation ecosystem and move more discoveries from the research lab to the real world, the National Science Foundation (NSF) has established a Great Lakes Innovation Corps Hub and Michigan Technological University plays a key role.
 
The 11-university Hub is led by the University of Michigan (U-M), and it’s one of five Hubs across the country announced Aug. 26 as NSF continues to evolve the I-Corps program. Launched in 2011, the NSF Innovation Corps, or I-Corps, trains scientists and engineers to carry their promising ideas and technologies beyond the university and into the marketplace to benefit society.
 
In addition to Michigan Tech and U-M, the Great Lakes Hub includes Purdue University, the University of Illinois Urbana-Champaign, the University of Toledo, the University of Minnesota, Iowa State University, Missouri University of Science and Technology, the University of Akron, the University of Chicago, and the University of Wisconsin-Milwaukee.

The Impact of I-Corps

Each university in the Great Lakes Hub already has a successful I-Corps program. Michigan Tech has been part of the NSF I-Corps Site program since 2015. Over the past five years, Michigan Tech’s I-Corps Site has helped introduce the entrepreneurial mindset to over 300 researchers, faculty, staff and students, and helped teams assess the commercial potential of nearly 150 technologies.

Mary Raber is Chair of the Department of Engineering Fundamentals at Michigan Tech

The Great Lakes I-Corps Hub aims to connect people at a large scale to increase the “effective density” of the Midwest’s innovation ecosystem. Mary Raber, Michigan Tech I-Corps principal investigator and chair of the Department of Engineering Fundamentals, said Michigan Tech researchers will be able to engage with the other members of the Hub and benefit from the extensive resources available throughout the Great Lakes region.
 
“Being invited to join the Great Lakes Hub is reflective of the success of Michigan Tech’s I-Corps Site program and the number of teams that have been selected to attend the National I-Corps program,” said Raber.
 
Other members of the Michigan Tech I-Corps team include Lisa Casper (Pavlis Honors College), Jim Baker (Office of the Vice President for Research), Michael Morley and Nate Yenor (Office of Innovation and Commercialization), and Jonathan Leinonen (College of Business).
 

“Michigan Tech is an integral part of the Great Lakes I-Corps Hub.”

Dr. Mary Raber


“The Great Lakes region is home to many of the world’s leading research institutions, and many of our nation’s critical industries. Our goal with this I-Corps Hub is to leverage this intellectual depth to create a lasting economic impact on the region,” said Alec D. Gallimore, the U-M Robert J. Vlasic Dean of Engineering, the Richard F. and Eleanor A. Towner Professor, an Arthur F. Thurnau Professor, and a professor of aerospace engineering.
 
“We’ll do this by creating new businesses, by keeping our existing companies globally competitive and on the leading edge of technology, and by developing talent that not only has technical and cultural expertise, but also an entrepreneurial mindset,” he said.
 
The new Great Lakes Hub has set a goal of training 2,350 teams in the next five years and sending an additional 220 teams to a more in-depth National NSF I-Corps program.
 
In this way, I-Corps is helping to fill what Jonathan Fay, executive director of the U-M Center for Entrepreneurship, calls the “widening gap” between the cutting-edge research being done at universities and the development work of industry to turn research into societal benefit and economic gain.

Read the full story on Michigan Tech News.

ACMAL: New Remote Teaching and Research Capabilities

The Applied Chemical and Morphological Analysis Laboratory (ACMAL) is a shared facility located in the Minerals and Materials building on Michigan Tech’s campus. ACMAL has a wide range of electron microscope and x-ray analysis instruments available to the Michigan Tech community and guest researchers.

Over the past year, several ACMAL labs have been equipped with new software and cameras for improved remote teaching and research! These new remote capabilities allow for live/recorded demonstrations to be shared with large classes or for research clients and to view live data collection. 

Below are descriptions of these instruments and laboratories affected:

FEI 200kV Titan Themis Scanning Transmission Electron Microscope (STEM)

ACMAL STEM

The STEM is Michigan Tech’s newest electron microscope addition that has atomic resolution imaging capabilities. The instrument has the following capabilities and modes: conventional TEM mode, scanning TEM mode, electron energy loss spectroscopy, energy filter TEM, high angle annular dark field, ChemiSTEM, Super-X Energy Dispersive X-Ray, and nanometer scale tomography. 

New remote capabilities include:

  • Zoom screen-share from both the TEM laboratory web camera and instrument control monitors
  • Huskycast (Panopto) recording of lab space, TEM lab camera, and instrument control monitors

Learn more about the STEM: ACMAL – FEI 200kV Titan Themis STEM

Contact Elizabeth Miller (eafraki@mtu.edu) for more information.

FEI Philips XL 40 Environmental Scanning Microscope (ESEM)

ACMAL ESEM

The ESEM can be used to image a wide range of material types at a microscale including hydrated, contaminated, organic, or inorganic samples. This microscope itself has several modes and features that make it a flexible instrument for any research needs: SE/BSE imaging, thin window EDAX EDS, electron backscatter diffraction, high and low vacuum modes, and hot or cold stage options.

New remote capabilities include:

  • New laboratory web camera
  • Zoom screen-share abilities from both the microscope control and AzTEC analysis computers
  • Remote technical assistance with Raritan DKX4-101 KVM-over-IP
  • Remote operation with Raritan DKX4-101 KVM-over-IP

Learn more about the ESEM: ACMAL – FEI Philips XL 40 ESEM

Contact Elizabeth Miller (eafraki@mtu.edu) for more information.

X-Ray Facilities: Scintag XDS2000 Powder Diffractometer and Scintag XDS-2000 PTS

XRD Powder

ACMAL’s X-ray facilities (XRF) has instruments capable of performing x-ray diffraction (XRD) analyses on both powder and solid samples. Sample data such as present phases, lattice parameter, percent crystallinity, and texture analysis can all be found using MTU’s Scintag XDS2000 Powder Diffractometer and Scintag XDS-2000 PTS XRD instruments. These instruments have the following features to expand the types of samples that can be analyzed: zero background sample holder, custom powder sample holders, custom irregular shaped solid holder, custom liquid holder, ICDD-JCPDS database, and Anton-Paar high temperature stage.

New remote capabilities include:

  • New cameras installed in both the instrument lab and sample preparation lab.
  • Huskycast (Panopto) recording for both cameras and lab computer monitors.
  • Zoom sharing available in both labs and computer monitors.

Learn more about X-ray facilities: ACMAL – X-Ray Facilities

Contact Dr. Edward Laitila (ealaitil@mtu.edu) for more information.

Two Engineering Students Awarded DoD SMART Scholarships

Apply, Award Phase, Employment, Degree Pursuit, Retain

The Graduate School is pleased to announce the Department of Defense (DoD) Science, Mathematics, and Research for Transformation (SMART) Scholarship awardees.

• Lauren Mancewicz, doctoral graduate student in environmental engineering, is a scholarship awardee. Mancewicz’s current research focuses on using a numerical variable-density groundwater flow and transport model to investigate the impacts of sea-level rise on island hydrology and freshwater resources.

• Casey Majhor, doctoral graduate student in electrical engineering, is a scholarship awardee. Majhor’s research focuses on improving and implementing autonomous ground vehicles and robotics. As a DoD SMART Scholar, Majhor plans to contribute to DoD project focus areas such as combat vehicle robotics and manned-unmanned teaming vehicle systems.

The Graduate School is proud of these students for their outstanding scholarship. These awards highlight the quality of students at Michigan Tech, the innovative work they have accomplished, the potential for leadership and impact in science and engineering that the country recognizes in these students, and the incredible role that faculty play in students’ academic success.

The DoD SMART Scholarship is part of the National Defense Education Program and its benefits include full tuition and education-related expenses payment, a stipend of $25,000-$38,000 per year, summer internships ranging from 8 to 12 weeks, health insurance, a miscellaneous allowance of $1,200 per year, mentorship at one of the DoD sponsoring facilities, and employment placement at a DoD facility upon degree completion.

By the Graduate School.

Award Results for Design Expo 2021

PPE Project

As we’ve come to expect, the judging for Design Expo 2021 was very close, but the official results are in. More than 1,000 students in Enterprise and Senior Design showcased their hard work on April 15 at Michigan Tech’s second-ever, fully virtual Design Expo.

Teams competed for cash awards totaling nearly $4,000. Judges for the event included corporate representatives, community members and Michigan Tech staff and faculty. The College of Engineering and the Pavlis Honors College announced the award winners below on April 15, just after the competition. Congratulations and a huge thanks to all the teams for a very successful Design Expo 2021.

Last but not least, to the distinguished judges who gave their time and talents to help make Design Expo a success, and to the faculty advisors who generously and richly support Enterprise and Senior Design—thank you for your phenomenal dedication to our students.

Please check out the Design Expo booklet and all the team videos.

ENTERPRISE AWARDS

(Based on video submissions)

  • First Place—Husky Game Development (Team 115) Advisor Scott Kuhl, (CC)
  • Second Place—Aerospace Enterprise (Team 106) Advisor L. Brad King, (ME-EM)
  • Third Place—Innovative Global Solutions (Team 116) Advisors Radheshyam Tewari (ME-EM) and Nathan Manser (GMES)
  • Honorable Mention—Consumer Product Manufacturing (Team 111) Advisor Tony Rogers (ChE)

SENIOR DESIGN AWARDS

(Based on video submissions)

  • First Place —Advanced PPE Filtration System (Team 240) Team Members: Matthew Johnson, Electrical Engineering; Bryce Hudson, Mary Repp, Carter Slunick, Mike Stinchcomb, Braeden Anex, Brandon Howard, Josh Albrecht, and Hannah Bekkala, Mechanical Engineering Advised by: Jaclyn Johnson and Aneet Narendranath, Mechanical Engineering-Engineering Mechanics Sponsored by: Stryker
  • Second Place—ITC Cell Signal Measurement Tool (Team 204) Team Members: Reed VandenBerg and Andrew Bratton, Electrical Engineering; Noah Guyette and Ben Kacynski, Computer Engineering Advised by: John Lukowski, Electrical and Computer Engineering Sponsored by: ITC Holdings Corp.
  • Third Place—Development of a Beta Brass Alloy for Co-Extrusion (Team 234) Team Members: Anna Isaacson, Sidney Feige, Lauren Bowling, and Maria Rochow, Materials Science and Engineering Advised by: Paul Sanders, Materials Science and Engineering Sponsored by: College of Engineering
  • Honorable Mention—EPS Ball Nut Degrees of Freedom Optimization (Team 236) Team Members: Brad Halonen, Rocket Hefferan, Luke Pietila, Peadar Richards, and David Rozinka, Mechanical Engineering Advised by: James DeClerck, Mechanical Engineering- Engineering Mechanics Sponsored by: Nexteer
  • Honorable Mention—Electric Tongue Jack Redesign (Team 230) Team Members: Jack Redesign and Brandon Tolsma, Mechanical Engineering; Collin Jandreski, Christian Fallon, Warren Falicki, and Andrew Keskimaki, Electrical Engineering Advised by: Trever Hassell, Electrical and Computer Engineering Sponsored by: Stromberg Carlson
  • Honorable Mention—Bone Access and Bone Analog Characterization (Team 212) Team Members: Sarah Hirsch, Mechanical Engineering; Elisabeth Miller and Christiana Strong, Biomedical Engineering; Morgan Duley, Electrical Engineering; Katelyn Ramthun, Biomedical Engineering Advised by: Hyeun Joong Yoon and Orhan Soykan, Biomedical Engineering Sponsored by: Stryker Interventional Spine Team
  • Honorable Mention—Blubber Only Implantable Satellite Tag Anchoring System (Team 221) Team Members: Quinn Murphy, Lidia Johnson, Joshua Robles, Katy Beesley, and Kyle Pike, Biomedical Engineering Advised by: Bruce Lee, Biomedical Engineering; Sponsored by: NOAA

DESIGN EXPO IMAGE CONTEST

(Based on image submitted by the team)

  • First Place—Blizzard Baja (Team 101): “Our current vehicle, Hornet, after a race.” Credit: Blizzard Baja team member
  • Second Place—WAAM Die Components (Team 237): “MIG welding robot printing a steel part.” Credit: Mike Groeneveld
  • Third Place—Aerospace Enterprise (Team 106): “Team photo, pre-Covid.” Credit: Aerospace Enterprise team member

DESIGN EXPO INNOVATION AWARDS

(Based on application)

  • First Place—Consumer Product Manufacturing Enterprise, Shareable Air project (Team 101) Advised by: Tony Rogers, (ChE)
  • Second Place—ITC Cell Signal Measurement Tool (Team 204) Advised by: John Lukowski (ECE) 
  • Third Place—Hospital Washer Autosampler Implementation (Team 218) Advised by: Sang Yoon Han and Houda Hatoum (BioMed)

DESIGN EXPO PEOPLE’S CHOICE AWARD

(Based on receiving most text-in voting during Design Expo)

ENTERPRISE STUDENT AWARDS

  • Rookie Award—Jack Block, CFO – Supermileage Systems Enterprise
  • Innovative Solutions—Cody Rorick, Alternative Energy Enterprise
  • Outstanding Enterprise Leadership—Andy Lambert, CEO – Supermileage Systems Enterprise and Daniel Prada, Spark Ignition (SI)
  • Team Lead—Clean Snowmobile Enterprise

ENTERPRISE FACULTY/STAFF AWARDS

  • Behind the Scenes Award—Kelly Steelman, Associate Professor and Interim Chair, Dept. of Cognitive and Learning Sciences, nominated by Built World Enterprise.

Jared Wolfe: “Molti-Colored” Migratory Birds

Jared Wolfe and Erik Johnson generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

Dr. Jared Wolfe

What are you doing for supper this Monday 4/19 at 6 ET? Grab a bite with Dean Janet Callahan and Jared Wolfe, Wildlife Biologist and Assistant Professor in the College of Forest Resources and Environmental Science at Michigan Tech. Joining in will be Wolfe’s longtime colleague and friend, Erik Johnson, Director of Bird Conservation, Audubon Louisiana. 

During Husky Bites, get ready for a wide-ranging, free-wheeling conversation about wild bird research, education and conservation. Be sure to bring your questions for these two world experts. 

“Here in the Upper Peninsula of Michigan, there is an incredible diversity of birds that show up to breed in the summer, but many of these birds are decreasing in abundance—they are diminishing,” says Wolfe. “We’ve lost 2.5 billion birds in North America over the past 30 years,” he adds. “Why?” 

For Wolfe and Johnson, much of their life and work has become dedicated to finding both why, and how. The two began collaborating at Louisiana State University, where they both earned their PhDs. Among their many joint projects is a book, Molt in Neotropical Birds; Life History and Aging Criteria. The volume, published in collaboration with the American Ornithological Society, describes molt strategies for nearly 190 species based on information gathered from a 30-year study of Central Amazonian birds.

Dr. Erik Johnson

Wolfe has spent 15-plus years working with tropical birds in Africa, Central and South America where he studies effects of climate and habitat change on sensitive bird species and wildlife communities. In North America, he works with managers to integrate wildlife management and conservation into sustainable forest stewardship.

Wolfe joined Michigan Tech in 2018, Determining how birds adapt lifecycle events to climate change and subsequent shifts in food resources is a central facet of his research. He uses monitoring data from California, Hawaii, Costa Rica and Brazil to measure changes in breeding and molting phenology, and survival relative to climate. He also studies bird communities within human dominated landscapes and adjacent habitat patches. 

Molt in Neotropical Birds, by Erik Johnson and Jared Wolfe, CRC Press, 2017, 412 pp.

Bird migration is an important focus in the Wolfe Lab at Michigan Tech. “Seasonal movements of birds have captured the imagination of naturalists for millennia,” he says. “The advent of diminutive tracking devices ushered in an era of discovery, where connectivity between breeding and wintering grounds are continually being revealed.” 

​Johnson has over 15 years of applied ornithological research experience in five countries. He completed his dissertation work studying the effects of forest fragmentation on avian communities at the Biological Dynamics of Forest Fragments Project (BDFFP) in coordination with the Instituto Nacional de Pesquisas da Amazônia (INPA). His primary focus now at Audubon Louisiana involves avian conservation challenges along the Gulf Coast of the United States.

Wolfe and Johnson both employ geolocators and other technologies to study migration to better understand the movements of temperate birds. Photo credit: Erik Johnson

Prof. Wolfe, how did you first get into Wildlife Biology? What sparked your interest?

Jared Wolfe and his crew from Central Africa. Wolfe co-founded the Biodiversity Initiative in 2013. It seeks protect all wildlife–including forest elephants, gorillas, chimpanzees, and hundreds of bird species – and conserve the rainforest across central Africa.

Growing up in downtown Sacramento, there wasn’t much opportunity to recreate in nature or see wildlife outside the city. There was a strip of riparian forest bordering the American River which served as a refuge from the city. Just a short bike ride from my house I would see coyotes, migratory birds, waterfowl, and beavers all seeking refuge, like me, from the city. These formative experiences helped develop a passion for wild places and wild things which led to a lifelong fascination with plants and animals. Luckily, I learned about the profession of wildlife ecology when I was 18, and never turned back!

What do you like to do in your free time?

I love to go fishing, birding, hiking, camping, hunting, anything that gets me away from social media and my computer!

Wolfe founded a banding station at Michigan Tech’s Ford Center and Forest in Alberta, Michigan. “High capture rates and diversity make this a wonderful location to study bird populations,” says Wolfe.

Could you tell us a little about your family?

Sure, I am from Sacramento, California. My wife, Dr. Kristin Brzeski is a conservation geneticist who is also a professor at CFRES. We have one son, a covid baby, 7 month old Lawrence. We went into the pandemic barely pregnant, and to the surprise of our colleagues, are emerging with an infant! 

Prof. Johnson, how did you first get into Wildlife Biology? What sparked your interest?

Erik Johnson, Audubon Louisiana

I suppose I’ve always been into birds. My parents tell stories of me when I was little, being more interested in the pigeons than the lions, elephants, and zebras when we visited zoos. I started really picking up binoculars when I was about 10 and starting keeping bird lists when I was 11. My mom and aunt are casual bird watchers, and my whole family was an outdoorsy sort of family, so they embraced my interest from the beginning. From there I became focused on wildlife biology, ecology, and conservation more broadly.

What do you like to do for fun?

I really love to do anything outdoors—travel, hike, bike, garden. And of course, bird watching. Lately, I’ve been interested in photographing insects, with a particular interest in leafhoppers, planthoppers, and treehoppers. I dabble in guitar and violin, and used to really be into snowboarding, which is much harder to do in Louisiana!

Family and growing up?

On this Downy Woodpecker, can you spot it? Differences in coloration provide valuable information about a bird’s age. Find out how on Husky Bites this Monday 4/12 at 6 pm ET. Photo credit: Erik Johnson, Audubon Louisiana.

I live in Sunset, Louisiana, but grew up in Pittsburgh and was born in Boston. I have family all over the eastern US—my parents are still in Pittsburgh, my younger brother is in New Hampshire, and I have aunts, uncles and cousins in Ohio, North Carolina, New York, and Massachusetts, and more distant connections to Germany, where my mom was born. My wife, Ceci, is from Metairie, Louisiana (just outside of New Orleans), and we’ve been married 15 crazy years.

Read more

Fine Feathers: Migration and Molt Affect How Birds Change Their Colors

Watch

Where Research Goes Outdoors

Tiny Nanoindentations Make a Big Difference for Prasad Soman

microphoto of nanoindentations seen near the grain boundary of iron, seen at 20 microns
Nanoindentations performed near or away from the grain boundary of iron, made to study their effect on deformation. Photo credit: Prasad Soman

Prasad Soman will graduate soon with his MSE PhD. But instead of walking down the aisle and tossing his cap in Michigan Tech’s Dee Stadium, this year he’ll take part in Michigan Tech’s first-ever outdoor graduation walk.

“My PhD research goal was to better understand how the addition of carbon affects the strengthening mechanism of iron—by looking to see what happens at the nanoscale,” he explains.

Soman studied the mechanisms of grain boundary strengthening by using an advanced and challenging technique known as nanoindentation to get “up close and personal” to the interfaces between individual crystals within a material. Just last week Soman successfully defended his PhD dissertation: “Study of Effects of Chemistry and Grain Boundary Geometry on Materials Failure.” The research was sponsored by the US Department of Energy.

photo of Prasad Soman
“My experience at Tech has been exciting and fulfilling: study, teaching, and research amidst the beauty of the Upper Peninsula of Michigan,” says Prasad Soman, who will graduate from Michigan Tech on April 30 with a PhD in Materials Science and Engineering.

He’ll soon be moving to California to take a position with Amazon, the culmination of many years of hard work. “My journey into the field of metallurgy and materials science began in India, way back in high school, when I was thinking of choosing a major for my undergraduate studies in engineering. I had developed a great interest in Physics and Chemistry, then discovered I could pursue my interest even further by choosing metallurgical engineering as my major,” he says. Though his new position will not utilize his metallurgical expertise in a direct way, Amazon was drawn to Prasad’s ability to independently carry out and complete a detailed research project that required a high level of attention to detail, data collection, and advanced analysis and physical modeling.

“I attended College of Engineering Pune, one of the top tier schools for metallurgy in India. Upon graduation, I went on to work in the steel industry for a while, and then decided to pursue higher education in the US.

Soman arrived at Michigan Tech with the intention of earning a Master’s in MSE. Professor Yun Hang Hu advised Soman towards that degree, involving him in research focused on the fabrication and characterization of Molybdenum Disulfide (MoS2)-based electrodes (aka Moly) for supercapacitor applications. The experience prompted Soman to continue on in his studies and earn a PhD.

For his MS degree, Soman worked with Yun Hang Hu, Charles and Carroll McArthur Professor of MSE at Michigan Tech

Two MSE faculty members, Assistant Professor Erik Herbert and Professor Stephen Hackney, served as Soman’s PhD co-advisors. “Prasad analyzed the effect of grain boundary segregation on the strengthening and deformation mechanism in metals and alloys,” says Herbert. “To do this Prasad intensively used small-scale mechanical testing, including nanoindentation and in-situ TEM experiments.”

“The most exciting part of this work involved utilizing various material characterization techniques,” says Soman. “The Advanced Chemical and Morphological Analysis Laboratory (ACMAL) facility, located in the Michigan Tech M&M building near the MSE department, is one of the best materials characterization facilities in the world. Characterization of the materials response to mechanical indentation was essential for my PhD work, so having access to the many techniques available in ACMAL was both revealing and fulfilling.”

‘The work was painstaking, but thanks to Prasad’s incredible hard work, skill, and dedication, he was able to make significant inroads to improve our understanding.” 

Dr. Erik Herbert, Assistant Professor, Materials Science & Engineering

Soman used a variety of characterization methods in his research, including nanoindentation, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron backscatter diffraction spectroscopy (EBSD). “All help examine materials behavior at the nanometer scale,” he adds.

In particular, Soman used nanoindentation to study local grain boundary deformation in metals and alloys. “Using nanoindentation we can measure hardness at a very small length scale. The indentation impression size is on the order of a couple of microns—smaller than the width of a human hair,” Soman explains.

Two MSE faculty members, Professor Stephen Hackney (l) and Assistant Professor Erik Herbert (r) served as Soman’s PhD co-advisors.

“Performing a nanoindentation was challenging at first. The goal is to get the indentation very close to the grain boundary. The task is done using a simple optical microscope, yet accuracy on the order of a couple of microns must be achieved. That kind of accuracy is essential for the proper positioning of the indent relative to the boundary. But just as for any other thing, the more you practice (and learn from mistakes) the better you perform. It’s been a great achievement for me to consistently get the indentation accurately placed.”

PhD Candidate Prasad Soman hard at work in Michigan Tech’s ACMAL Lab

“Instrumented indentation experiments allow us to measure materials properties—including hardness and elastic modulus—as a function of depth,” says Soman. “We also examine how different microstructural features—grain boundary vs. grain interior—respond to a very localized deformation at nanometers length scale.”

Soman says he decided to join Michigan Tech’s MSE program due to its strong emphasis on metallurgical engineering. “While here at Tech, however, I was exposed to a variety of domains within materials science—energy storage materials, semiconductors, polymers, and more. So, while I focused on my passion for fundamental science in metallurgy, I also developed understanding and skills in these different domains,” he explains.

“That has come to fruition, as I will now be going to work in the consumer electronics industry, which requires a multidisciplinary approach.”

The large building on the far left of this campus photo is Michigan Tech’s Mineral and Materials Engineering Building (aka the “M&M”)—home to the MSE Department and the Advanced Chemical and Morphological Analysis Laboratory (ACMAL).

Soman will soon pack up and move to Sunnyvale, California. He’ll be working as a hardware development engineer at Amazon. “The team is a cool group of engineers/scientists with diverse backgrounds—mechanical, chemical, design and other disciplines, as well. We’ll develop health and wellness electronic devices, such as smart watches, smart AR/VR glasses, and more. This job will allow me to utilize some of the key skills I developed at Michigan Tech in the field of metallurgy and mechanics. More than anything, I am eager to learn from the best of the best—all the folks in my team.”

One last thing, adds Soman: “I will terribly miss Houghton. I call it my home away from home.”

Michigan Space Grant Consortium Award Recipients in Engineering

Michigan Space Grant Consortium

Michigan Tech students, faculty and staff members received awards totaling $95,175 in funding through the Michigan Space Grant Consortium (MSGC), sponsored by the National Aeronautics and Space Administration (NASA) for the 2021-2022 funding cycle. The following are recipients within the College of Engineering.

Undergraduates receiving $3,000 research fellowships:

  • Chloe Strach (CEE): “Understanding and Predicting the Fate of 1,4-Dioxane in the Aqueous Phase UV/Chloramine Advanced Oxidation Process” with Daisuke Minakata (CEE)

Graduate Students receiving $5,000 research fellowships:

  • Jessica Alger (CEE): “Promoting Green Space Equity in Urban Areas with Water Resources Challenges” with Dave Watkins (CEE)
  • Diana Bullen (GMES): “Using a Biologically Enhanced Silica Recovery System to Retrieve Valuable Non-Renewable Resources from Waste Material” with Nathan Manser (GMES)
  • Ian Gannon (GMES): “Critical Mineral Potential in the Vulcan Quadrangle and Adjoining Areas, Dickinson County, Upper Peninsula of Michigan” with James DeGraff (GMES)
  • Brock Howell (GMES): “Effective Optimization of Groundwater Extraction Through the Development of Computational Tools” with John Gierke (GMES)
  • Ryan Klida (GMES): “Satellite-Based Synthetic Aperture Radar (SAR) Techniques for Earth Dam Monitoring and Failure Prediction” with Thomas Oommen (GMES)
  • Benjamin Mohrhardt (CEE): “Fate of Photo-Viable Dissolved Free Amino Acids Under Sunlight Irradiation in Natural Aquatic Environment” with Daisuke Minakata (CEE)
  • Katie Nelson (GMES): “Measuring CO2 Fertilization of Tropical Forests from Volcanic Soil Gas Emissions Using Remote Sensing: Volcán Rincón de la Vieja, Costa Rica” with Chad Deering (GMES)
  • Natalie Nold (ChE): “Improved Vaccine Production to Reduce Pandemic-Related Health Risks” with Caryn Heldt (ChE)
  • Kassidy O’Connor (GMES): “Using Satellite Aperture Radar to Improve Wildfire-Causing Debris Flow Mapping on the West Coast” with Thomas Oommen (GMES)
  • Jonathan Oleson (ME-EM): “A Machine Learning Model for Mechanics of Multi-Walled Carbon Nanotubes for Space-Composite Materials” with Susanta Ghosh (ME-EM)
  • Emily Shaw (CEE): “Toxicity in Fish Tissue: Redefining Our Understandings by Quantifying Mixture Toxicity” with Noel Urban (CEE)

Faculty and staff members receiving $5,000 or more for pre-college outreach and research seed programs include:

  • Luke Bowman (GMES): “Career Connection Explorations: Enriching Middle School STEM Curriculum Using NASA Resources” Includes augmentation

Tim Eisele: Backyard Metals

It takes a village. (Leaching manganese in Tim Eisele’s lab at Michigan Tech requires help from a sizeable community of bacteria.)

Tim Eisele and Neha Sharma generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What are you doing for supper this Monday night 3/15 at 6 ET? Grab a bite with Dean Janet Callahan and Tim Eisele, Associate Professor of Chemical Engineering at Michigan Tech. His focus: sustainable metallurgy.

Tim Eisele, Chemical Engineering, Michigan Tech

“There is more than one way to extract metals from ore,” says Eisele. “Massive mines that disrupt many square miles are not the only way to go. I have been working on a method for using bacteria to recover iron and manganese in such a way that, if it is done carefully, it may not even be obvious that mining is going on at all.”

Joining in will be Neha Sharma, one of Dr. Eisele’s PhD students. She came to Michigan Tech from the India Institute of Technology after internships at Tata Steel, the Julius Kruttschnitt Mineral Research Centre in Australia, and India’s National Metallurgical Lab.

Eisele holds a BS, MS and PhD in Metallurgical Engineering, all from Michigan Tech. In his research, he develops bacterial processes for upgrading and extracting iron ores and low-cost reprocessing of industrial wastes such as slags and sludges to recover valuable metals.

The inspiration for this began right in Eisele’s own yard, and in his own household well. “We have 9 acres of surprisingly varied property that includes rock outcroppings, grassland, woods, and a small fen–a type of wetland–that bleeds iron,” he explains.

Iron bogs are located all over the world. This one is located in the Black Hills of Western South Dakota. Credit: U.S. Geological Survey

“It all started when we bought the house. All the plumbing fixtures were stained red. Really red. I took a glass of untreated drinking water to my lab at Michigan Tech, and found that iron precipitated out. We struck iron! So I thought, ‘Why is this happening? Is there something constructive we can do with this?’”

The high iron content of his home well water, Eisele figured out, was caused by naturally occurring anaerobic iron-dissolving organisms.

“The UP is well known for having these elements in the soil, both iron and manganese,” says Eisele. Jacobsville sandstone is a visible example. The white lines in Jacobsville sandstone are where bacteria ate out the iron.”

Jacobsville Sandstone from Jacobsville, Michigan. Held in the A. E. Seaman Mineral Museum at Michigan Tech. Sample is approximately 12 cm across.

Eisele cultivated anaerobic and aerobic organisms in the laboratory to fully adapt them to the ore. “We use mixed cultures of organisms that we have found to be more effective than pure cultures of a single species of organism,” he explains. “The use of microorganism communities will also be more practical to implement on an industrial scale, where protecting the process from contamination by outside organisms may be impossible.”

“There was not much initial interest in the technology from industry,” recalls Eisele. “‘If you can demonstrate that you can do it at a profit, come talk to us,” they said.

Since that time, Eisele and his team have been branching out to also extract manganese, which is dissolved by the same organisms as the ones that dissolve iron. This has attracted more interest, including a recent funded project from the U.S. Department of Energy.

A diagram of Eisele’s reductive bioleaching concept. He’ll explain at Husky Bites!

“Manganese is one of the ‘battery metals,’” Eisele explains. “It’s also used heavily in most steel alloys.”

“Manganese is also currently considered a ‘critical element”. Currently there is no manganese mining or production in the US,” adds Eisele. “While there are manganese ores in this country, new extraction technology is needed in order to be competitive with ores elsewhere in the world.”

In Eisele’s lab at Michigan Tech, Neha Sharma and other students, both graduate and undergraduate, work on developing and refining the technology. This includes a small “model wetland” consisting of a 5-gallon container with a circulation of water and appropriate nutrients, –in effect, simulating the type of wetland that leaches metal.

“I work on a manganese leaching setup,” Sharma explains. “It involves analyzing the samples we get from the leaching flasks for the presence of manganese. The best part of the work? “New findings are always the best part,” says Sharma. The most challenging? “Writing about them!”

In the beaker on the right, anaerobic bacteria dissolve iron in the ferrous state. On the left, in Dr. Eisele’s hand, recovered electrolytic iron.

Professor Eisele, how did you first get involved in engineering. What sparked your interest?

I have been interested in science and engineering for as long as I can remember. I originally decided to work with metals after taking a welding class in high school, and came to Michigan Tech to study metallurgy in 1980.

“This is a Cecropia Moth caterpillar (Hyalophora cecropia) that we found on a wild cherry last August.”

Family and hobbies?

I grew up on a small dairy farm in the Thumb area of lower Michigan, near Kinde (population 400). I then decided to move here, to the Big City. I currently live just outside of town with my wife, two children, a dog, a cat, six chickens, and a variable number of beehives. My daughters are still in school, and my wife is a locksmith.

“In my spare time, I like to take photos of insects, and started a website about it back in 2007, The Backyard Arthropod Project. Both of my daughters have participated in this from the beginning, and neither of them has the slightest fear of insects or spiders. My older daughter’s first contribution at the age of 2 was an assassin bug nymph, that she brought while crowing, ‘Take picture, Dada!’ My younger daughter, also at the age of 2, brought me a nice longhorn beetle that she held up while calling out ‘See! Bug!’ Lately I’ve also been including postings about the local plants, and have a couple of posts about the metal-leaching properties of our wetland.”

Neha Sharma, PhD student. Michigan Tech

Neha, how did you first get involved in engineering? What sparked your interest?

“I was always interested in science during my school days, so when I graduated from high school I thought that engineering would be the perfect fit for me. My major during my undergraduate studies in India was mineral processing. Working through those subjects and various internships –all focused on mineral processing and metallurgy–sparked my interest towards the sustainable aspect of these industries.”

One of Neha’s charcoal drawings: “I call it a tranquil life.”

Family and hobbies?

Neha with her brother, father and mother, on a visit ft the US from India.

“I grew up in a small town in India called Bokaro Steel City. I earned my bachelor’s degree from the Indian School of Mines (now Indian Institute of Technology) in Dhanbad, India. My parents still live in India. My father is a teacher in high school, teaching math and physics. My older brother works for Borealis AI, in Canada. My mother is a homemaker and loves gardening. I love going to new places. In my spare time, I’ll read a book or sketch. I love badminton, and cross country skiing, too. I am also a big Lord of the Rings fan, and a Potterhead too!”

Chee-Wooi Ten: Ahead of the Cybersecurity Curve

The Night Lights of the United States (as seen from space). Credit: NASA/GSFC.

Chee-Wooi and Junho Kong generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What are you doing for supper this Monday night 2/22 at 6 ET? Grab a bite with Dean Janet Callahan and Chee-Wooi Ten, Associate Professor of Electrical and Computer Engineering at Michigan Tech. His focus: power engineering cybersecurity.

Associate Professor Chee-Wooi Ten at Michigan Tech

“For many years as a power system engineer, we referred to ‘security’ as the power outage contingency subject to weather-related threats,” says Ten. “The redefined security we need today, cybersecurity, is an emerging field on its own, one that works synergistically with security systems engineers.”

Joining in will be Electrical Engineering Assistant Professor Junho Hong from the University of Michigan Dearborn. He is a power engineer, and a cybersecurity colleague and a longtime friend of Dr. Ten’s.

In an era of cyberwarfare, the power grid is a high-voltage target. Ten and Hong both want to better protect it. 

At issue are electrical substations, which serve as intersections in the nation’s power system. Because they play such a key role in our infrastructure, substations could be attractive targets. 

Assistant Professor Junho Hong, University of Michigan Dearborn. His research areas include Artificial Intelligence, Cybersecurity, Power Electronics, and Energy Systems.

A physical attack could damage parts of the grid, but a cyberattack to interconnection substations could cripple the entire system simultaneously. 

Some power companies remain reluctant to fully implement electronic control systems because they could compromise security. “This is a controversial issue for most utilities,” said Ten. “If the substation network is compromised, the grid will be vulnerable. If hackers know what they are doing, that could result in a major blackout.“

With better security from cyberattacks, companies could use Internet Protocol (IP) communications to manage electronic control systems. “It would be faster, more efficient, and more economical, too,” says Ten. 

However, IP has a disadvantage: hackers are notoriously resourceful at breaking into IP networks, even when they are protected by firewalls.

Still, solutions to IP problems can be found, says Ten.

“Let’s say you check your front door once a day to make sure it is locked. Does that mean your house is secure? Probably not. Just because your door is locked doesn’t mean someone can’t get in. But if you put a camera in front of your house with incoming motion data to determine if there is movement around your house, you have more data so security can be better assessed.” 

““The key word, says Ten: “Interconnected.”

The power grid is too big, so we need to simulate cyberattacks to see what happens, adds Ten. “When it comes to power system research, data is really sensitive, and cybersecurity clearance requirements make it hard to get data. That is why simulations are important. We try to make simulations as close as possible to real systems. That we can ‘try out cyber attacks’ and see the impacts.

Running simulations saves utility companies time and money, and helps them prepare for the cascading effects of such an event, adds Ten. “We can emulate the real world without constructing the real thing, something called the ‘digital twin’.”

“We can solve the problems of cybersecurity by understanding them first. Then, we can apply analytical methods to deal with those problems.”

– Chee-Wooi Ten

Ten works with government agencies, power companies, and the vendors that provide products used to strengthen substations’ cybersecurity framework. By collaborating with all the stakeholders, he aims to transform the energy industry by improving efficiency, reliability and security, both in the power grid and cyberspace. No single vendor can do everything; it has to be synergistic,” says Ten.

It’s true: hypothetical impact analysis scenarios are a lot like one scene in the movie, Avengers. Dr. Ten will explain at Husky Bites!

Professor Ten, how did you first get involved in engineering. What sparked your interest?

I actually did not do well academically in high school. I was obsessed with computers. My dad had some money to sponsor my studies in the US. And since computers were invented in the US, I wanted to be part of that, so I went to Iowa State University. In Fall 1997, the Asian economic crisis hit and affected my studies, so I changed my major to power engineering, in the Department of Electrical and Computer Engineering. When I look back, I have billionaire George Soros to thank. (Many people feel his aggressive Asian currency trades were to blame.) The power engineering program at Iowa State was one of the most historically established programs in the US. I was able to get involved in undergraduate research, with mentoring from a professor who taught me a great deal.

Family and hobbies?

I was born in Malaysia and was recently naturalized as a US citizen. My ethnicity is actually Chinese. My grandparents came to Malaysia from China early in the 20th century due to war and hunger, to pursue happiness. My brother is an engineer, too. My dad didn’t finish his university studies. I am the only one in our family with a doctorate degree.  My parents sent me to a foreign country to get a taste of life. (Imagine, I did not know how to speak English and had to relearn everything in the US!) I would not be who I am today had I stayed in Malaysia.

I’ve been living in Houghton now for about 11 years. My newest hobby is downhill skiing with my daughter. She’ll be turning 9 soon. Our ski hill, Michigan Tech’s Mont Ripley, is just 10 minutes from down the road.

Professor Hong, how did you first get involved in engineering? What sparked your interest? 

“In South Korea, two years of military service is a requirement after graduating from high school,” says Dr. Junho Hong. “Before going to college I served two years in the Navy, and learned a lot about technology on Navy ships.”

When I got to college, computer science was a hot topic but I wanted to better understand electricity. Without electricity how can we have technology? So, I chose electrical engineering. After graduation, I started looking at the much bigger work going on outside my country. I decided to earn my PhD. That’s how I met Chee-Wooi. We both studied at the University College Dublin in Ireland. We had the same doctorate advisor, Professor Chen-Ching Liu.

Dr. Hong (r) with his graduate advisor at Washington State University, Dr. Chen-Ching-Liu (l). Dr. Liu was also Dr. Ten’s PhD advisor at Washington State University. A world traveler, Dr. Liu is now at Virginia Tech. He was recently named a member of the US National Academy of Engineering in 2020 for his contributions to computational methods for power system restoration and cybersecurity.

Family and hobbies?

Before the pandemic, I used to go swimming at least once a day. Right now I’m doing a lot of training, instead. I’ve got equipment in my home—for cycling, weight training and working out. My wife and two kids are in South Korea for the time being. Early in the pandemic, my wife had some medical issues, and with hospitals here in Southeast Michigan overwhelmed with Covid patients, she had to go back home for medical treatment. It’s been hard to endure. I miss them greatly! My son and daughter are 9 and 6.