Tag: MEEM

Stories about Mechanical Engineering-Engineering Mechanics.

Guest Blog: The Importance of Teamwork

Hurricane Frederic at peak intensity near landfall on Dauphin Island on September 12, 1979.
Credit: The National Oceanic and Atmospheric Administration (NOAA)

In his guest blog, Michigan Tech mechanical engineering alumnus Patrick Parker ’75 tells the story of working in a power plant during Hurricane Fredric, a Category 4 with sustained winds of 155 mph. It happened just four years after Pat graduated from Michigan Tech.

“Teamwork is the fuel that allows common people to attain uncommon results.” — Andrew Carnegie

“Every Bad situation is a blues song waiting to happen” — Amy Winehouse

“In teamwork, silence isn’t golden, it’s deadly.” — Mark Sanborn

“Talent wins games, but teamwork and intelligence win championships.” —Michael Jordan

“Alone we can do so little, together we can do so much!” — Helen Keller

Early in my career, I was a maintenance supervisor at a 7-unit power station just north of Pensacola, Florida. I had a crew of 15 people—electricians, mechanics, and welder/mechanics. We maintained equipment throughout the plant, and made repairs when any operational issues arose, to help avoid a power outage on one or more of the units.

While living on the Gulf Coast, I had heard many stories of hurricane events, most of which involved the loss of property due to the high winds, tremendous rainfall (often over 20 inches) and if you were close to the beach, the storm surge could have waves over 10 feet washing ashore. I heard stories of lost friends and family, stories that usually ended with “I told them to “move up north till this is over!’”

Michigan Tech Alumnus Patrick Parker, BSME ’85

In early September of 1979, we began watching closely a tropical storm off the southern tip of Florida moving North by NW, directly toward us. After a couple of days, its gusts were often much higher.

Our plant manager had lived through several events like this and began issuing instructions that would prepare us for the worst, while we prayed for the best. We began with a thorough clean up of the plant for anything important to be moved somewhere it would be safe. We paid special attention to any of our safety equipment, fire fighting gear, tools, rigging, and anything that could be useful in dealing with fire,collapse of structures, flooding, or any first aid. We also moved anything hazardous such as flammables, gases, or anything that could cause harm if it got out into the area around the plant. As that went forward, our Plant Manager made our staffing plans for the upcoming event.

Our operations department in the downtown office sent us instructions to put all seven of our units into service, to help ensure some redundancy in the event we start tripping units off line, due to storm damage. In order to do that we called in our operators who were skilled in the use of oil and natural gas for combustion. We finally worked it out, so all our operators were here (half were sleeping) as well as all our maintenance staff to address needs as they arose. We had also arranged for a good store of water, food, and sleeping arrangements for those workers who were staying overnight. All our employees all wanted to stay, but there were some with responsibilities that forced them to go home.

The coal yard would be another concern due to its size and proximity to a river that dumped into the Gulf. We received coal usually by barge which was less than 50 feet from the river. Our people who worked there began constructing a dike made of coal that would minimize any spillage into the river as strong winds and rain began. (Two years later they built a concrete dike about 2 feet thick by 8 feet tall around the portion of the coal pile adjacent to the river.)

As the storm approached, we began making final preparations for the high winds and rain by closing all doors and reinforcing them with steel beams/braces. The windows were covered with plywood and canvas sheets, and the smaller windows near walkways were covered with duct tape to minimize shattering and spreading glass.

Anything that was likely to get airborne during the wind and rain was moved off the site, such as contractor trailers, port-a-johns, and unnecessary equipment. The concern was to protect the transmission lines and support poles from being knocked down or shorted out. We did a thorough final walk around of all plant space, paying special attention to the area outside to check for anything else. Then the hard part began—WAITING!

We were on our feet almost nonstop, walking around, looking, checking and listening for anything that might indicate a problem. Many of us laid down somewhere and slept as we had been working almost 30 hours straight.

On September 12, 1979, in the early evening hours, Hurricane Fredric’s eye came ashore as a category 4 with sustained winds of 155 mph. It was located about half way between Pensacola Florida, and Mobile, Alabama. That landfall put us in the northeast quadrant of the storm, which typically is the worst part of the storm due to a hurricane’s counter clockwise rotation.

After 40 years I still have many images of what happened that week and the aftermath that followed for many weeks. I’ll share just a couple: I remember going to the top floor that was still inside the boiler structure with the Plant Manager (about 9 stories up) to look south toward Pensacola. I was expecting to see light coming from the city as usual, but there was none.

About every 3 to 5 minutes there was a large BOOM and a large flash of orange light coming from several miles south. I didn’t know what was happening, and it made me more than a little apprehensive. I imagined some industrial plant nearby exploding and burning. I asked the Manager what he thought it was, and he said, “Oh that’s just the pole mounted transformers blowing up. There will be a lot of overtime work for the Division Linemen to do when this is all over!” Was he ever right!

“There is a practice that still goes on today that couldn’t speak more clearly about the importance of working together. When the rain and wind subsided, hundreds of trucks from Line Departments of other power companies came from all over the southern states, converging on Pensacola and all the way to Mobile—bringing manpower, power poles, lights, transformers, and miles of conductor wire to assist with our repairs, all around the city and neighboring counties.”

Patrick Parker, BSME ’75


The division manager for the area around Pensacola came to the Plant and asked if he could “borrow” some of our people, especially electricians to assist in the walk down of all the “radials” as everyone he had was busy with the repairs. Our plant manager gave him almost all our electricians, and a couple of our engineers to help.

When electric power leaves the power plant, it passes through a Generation Step-Up transformer (GSU) which raises the voltage to transmission power levels (typically 345 KVA). The transmission line then carries the power to a ‘substation’ which lowers the voltage to typically 25 KVA and then sends the power in different directions around the city/county on the wooden power poles commonly seen. Each separate circuit is called a “radial”.

The trouble is there are many hundreds of miles of radials, which are very vulnerable to storms due to the high winds, lightning and heavy rain. Plus, the radials will not call and tell where the damage is; you must go out looking for them! Someone must walk each radial from one end to the other, and radio the Lineman Dispatcher, informing them what damage was found, and where it is located. Then they can dispatch people, parts, and equipment to make the repairs, thus hoping to save a lot of time with more people out looking. It works very well.

At the plant we had only one significant event during the storm. The plant had been built 75 feet into the ground to minimize the stress on the structure during high winds. The ‘pump room’ (75 feet down) was cooled, thankfully, by several large fans (12 feet in diameter) that pulled air in from outside. The problem was that the duct work for the fan also provided a perfect route for rainwater to flow in. We had all seven units running, when one of our staff noticed one of the large 480 Volt busses was on fire. As things happen in life, one of the cooling fans was right over the buss. We found a perfect example why water and electricity don’t mix well, as it was spitting sparks, flashes, and fire from the top of the buss.

Some of our firefighting group stretched out a fire hose and charged it up. I learned an important lesson that night. It seems it is sometimes possible to put out an electric fire with water. Instead of spraying the buss directly with the stream of water (inviting electric shock), they aimed the fire hose steeply upward, bouncing the stream of water off the flooring of the deck above the buss. A heavy downpour descended on the buss which eventually put the fire out.

The other unfortunate detail lay right above the buss in a large cable tray which routed most of the control wiring for the plant substation. As it burned and shorted out, almost all the switch yard breakers opened (for safety sake, they default open), which tripped 6 of the 7 units. We managed to keep unit 6 running at 300 megawatts. I guess the “good news” for us was even if we had all the units running, the transmission lines and distribution system was out of service due to the storm. We had no way of sending our power anywhere. It took us about a week to rewire the substation controls, the 480-volt buss, and other damage that was surprisingly minimal. I give our plant manager the credit for that. We had no injuries during the event or in the time that followed.

I learned several very important lessons during that experience:

1. Prepare, Prepare, Prepare! I believe that was the key to minimizing damage and preventing any injury.

2. Contain any Hazardous Materials—if they get loose, it doesn’t end well!

3. When someone asks for help GIVE IT. Work Together. You will need help one day, so make friends when you can.

4. NEVER, NEVER spray water on an energized electric buss! It usually doesn’t end well! I think we were very, very lucky!

5. When a hurricane approaches, the smartest thing to do is evacuate, sooner than later!

Most residents feel that as soon as the power company has all their wiring ‘hot’ again, all they must do is close their house breaker to restore power. Actually, the power company will deliberately open the wiring at the top of each power pole going to homes or businesses to prevent people from electrocuting themselves, and/or setting their house on fire due to internal damage to their home as a result of the storm. Before the power company will rewire the pole for you, they must see an inspection report of your home or business from a licensed electrician to make sure it is okay to activate power. As you might imagine, this frustrates the owners, particularly business owners. But the risks outweigh a few extra days without air conditioning.

About the Author

Pat Parker grew up in Ferndale, Michigan and went on to graduate from Michigan Technological University in 1975 with a BS in Mechanical Engineering.

His mom was from London, England. She was 14 during the London ‘blitz’ of WWII. His dad, from west Tennessee, flew for the Army Air Force in B-17s as a recon photographer. His dad met his mom while on leave in London, by pretending he was lost!

Pat first grew interested in mechanical engineering with the influence of an elderly neighbor by the name of John Pavaleka, who came to the US in the early 1920s from Czechoslovakia. John graduated from Yale with an ME degree. After graduation, he went to work for Boeing Aircraft, designing hydraulic systems in the WWII bombers—all the hydraulic systems that operated the gun turrets, landing gear, and flight controls. John was incredibly talented, and had his own hand-carved collection of airplanes of numerous designs including one with forward-swept wings.

While at Michigan Tech, Pat did well in Heat Transfer, Fluid Mechanics, and Thermodynamics courses. A classmate, Rick Sliper, encouraged Pat to go into the power generation field. So after graduation, Pat went to work for a company that built large power-generation boilers—doing construction, commissioning, and ongoing maintenance. Beginning as a first line supervisor, Pat moved up to power plant manager at two locations.

Tired of all the travel (living largely in motels) and wanting to start a family, Pat changed jobs, in order to establish a home. Still, over 42 years, Pat and his family managed to live in six states.

Some of Pat’s work-related accomplishments include a great safety and environmental record; lowering operating costs; and improving availability. He also won an award from the State of Florida for helping two elementary schools with their education goals and their Christmas celebrations.

Reluctantly retiring for health issues, Pat now spends time woodworking, writing, camping—and spoiling his two granddaughters!

Michigan Tech Announces New Online Graduate Certificates in Engineering

Michigan Technological University is a public research university founded in 1885. Our campus in Michigan’s Upper Peninsula overlooks the Keweenaw Waterway and is just a few miles from Lake Superior.

Ready to propel your career forward in 2021? Michigan Technological University’s College of Engineering now offers 16 new online graduate certificate programs. Interested in taking a course soon? Spring 2021 instruction begins on Monday, January 11.

“One of our goals at Michigan Tech has been to expand online learning opportunities for engineers, to help them meet new challenges and opportunities with stronger knowledge and skills,” says Dr. Janet Callahan, Dean of the College of Engineering.

The certificates are offered by four departments within the College of Engineering at Michigan Tech: Civil and Environmental Engineering, Mechanical Engineering-Engineering Mechanics, Biomedical Engineering, and Geological and Mining Engineering and Sciences. Several more engineering departments will join the effort in the near future.

“We have many more certificates in the works,” Callahan says. “We expect to have a total of 30 new online graduate certificates—including more than 90 courses online—by Fall 2021.

Dean Janet Callahan stands in front of the summer gardens on campus at Michigan Tech
Janet Callahan, Dean of the College of Engineering, Michigan Technological University

Students can sign up for a single course without committing to a certificate. “The courses are accessible and flexible to accommodate a busy schedule,” Callahan explains.

“These are the same robust courses taken by our doctorate and masters candidates, taught directly by highly regarded faculty, with outstanding opportunities to create connections,” she adds. “We invite working professionals to join these courses, and bring their own experiences to bear, as well as their challenges as part of the discussion.”

All courses will be taught online—many of them synchronously offered—with regularly-scheduled class meeting times. 

Obtaining certification from Michigan Tech in sought-after industry skills is a great way to accelerate and advance a career in technology, Callahan says. Students take a cluster of three courses to earn a certificate. “It’s a three-step approach for a deeper dive into the subject area that results in a credential.” 

Michigan Tech was founded in 1885. The University is accredited by the Higher Learning Commission and widely respected by fast-paced industries, including automotive development, infrastructure, manufacturing, and aerospace. The College of Engineering fosters excellence in education and research, with 17 undergraduate and 29 graduate engineering programs across nine departments.


Work full time or live far from campus? You can still learn from the world-class engineering faculty at Michigan Tech.

Michigan Tech faculty are accessible, offering an open door learning experience for students.

“We have a strong, collegial learning community, both online and on campus,” notes Callahan. “We’re also known for tenacity. Our faculty and graduates know how to deliver and confidently lean into any challenge.”

Michigan Tech’s reputation is based on those core strengths, Callahan says. “A certificate credential from Michigan Tech will be respected across many industries, particularly in the manufacturing sectors of the Midwest—and around the world. Michigan Tech engineering alumni are working in leadership positions across the United States and in 88 different countries.”

“Remember those ‘aha’ moments you had, back in your undergrad days, your backpack days, when things suddenly came together? It’s exciting, invigorating and fun to learn something new.”

Dean Janet Callahan, Michigan Tech


“Registration doesn’t take long,” she adds. “We have simplified the graduate application process for working professionals. You can apply online for free.”

Interested in taking a course soon? Spring 2021 instruction begins on Monday, January 11.

Need more time to plan? Consider Fall 2021. Instruction begins on Monday, August 30, 2021.

New! Michigan Tech online graduate engineering certificates and courses, with more to come!

  • Aerodynamics
  • Computational Fluid Dynamics
  • Dynamic Systems
  • Geoinformatics
  • Medical Devices and Technologies
  • Natural Hazards and Disaster Risk Reduction
  • Quality Engineering
  • Resilient Water Infrastructure
  • Structural Engineering: Advanced Analysis
  • Structural Engineering: Bridge Analysis and Design
  • Structural Engineering: Building Design
  • Structural Engineering: Hazard Analysis
  • Structural Engineering: Timber Building Design
  • Pavement Design & Construction
  • Vehicle Dynamics
  • Water Resources Modeling

Learn about all graduate programs at Michigan Tech, both online and on campus, at mtu.edu/gradschool.

Marty Lagina: Say YES to the Quest: Reflections, Energy and Adventure!

“Something interesting and different happened on that island, and we still aren’t sure what,” says Marty Lagina. Pictured above: Oak Island, Nova Scotia, Canada, August 1931. Format: glass plate negative.

Marty Lagina and Bill Predebon generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

“Engineering school teaches you how things work, and also to know what you don’t know,” says Marty Lagina.

What are you doing for supper this Monday night 11/23 at 6 ET? Grab a bite with Dean Janet Callahan and Marty Lagina, CEO of Heritage Sustainable Energy, winemaker, and creator and star of the long-running reality TV show, Curse of Oak Island.

Joining in as Dean Callahan’s co-host will be Bill Predebon, the JS Endowed Department Chair of the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech.

Lagina is one of Dr. Predebon’s former students—as an undergraduate student in mechanical engineering, Lagina worked as his research assistant.

“If there’s ever been a human being, who if you cut him he bleeds Michigan Tech, that’s Bill Predebon,” says Lagina. 

Throughout his life, Lagina says his engineering education has given him the confidence to try new things.

“I was thinking of going to law school, and my father told me: ‘You would make a better lawyer if you knew how things worked.’ So I went to Michigan Tech to study engineering and I liked it. And it prepared me very well for what turned out to be a very multifaceted career.”

“When something interesting comes along, and it looks like fun, and it’s legal and ethical (even better if it’s good for society) and you might make some money—do it!”

Marty Lagina

Lagina graduated from Michigan Tech with his mechanical engineering degree in 1977, then took a job as a petroleum engineer for Amoco. A few years later, while attending law school at the University of Michigan, he worked as an independent petroleum engineer consultant, hired by various Michigan corporations to explore wells. “I was a law student, putting together oil deals, working out of a tiny room the size of a small walk-in closet,” he recalls.

“Our first 14 lost money, then we finally hit a decent well. It put us in business.” His partner in that first energy consulting business: Craig Tester, another Michigan Tech mechanical engineering graduate. They were college roommates.

A photo of Marty Lagina, from the Michigan Tech archives.

Once Lagina earned his JD, the two founded Terra Energy to pioneer the exploration and development of the Antrim shale natural gas resources of Michigan, which they did—successfully developing over $3 billion of oil and natural gas resources.

When he turned 40, Lagina decided to change course. He formed Heritage Sustainable Energy, a renewable energy provider. Heritage has successfully developed a series of wind and solar projects in Michigan, installing enough capacity to power the equivalent of 57,000 average Michigan homes every year.

Heritage operates a total of 139.2 megawatts (MW) of installed renewable energy capacity, with hundreds of MW in its project pipeline, along with a commitment to help reduce Michigan’s dependence on conventional energy sources.

Heritage Sustainable Energy’s Garden Solar Project is the first utility scale solar project in Michigan’s Upper Peninsula. The Garden Wind Farm, above, located north of the Village of Garden, will have 34 wind turbines by the end of this year.

In 2006, Lagina started doing some unnatural exploring to solve a 200–500 year old mystery. Featured on the History Channel, Lagina, his family and friends attempt to solve the “Curse of Oak Island,” based on the legend of a Nova Scotia island. 

“I’m the skeptic,” says Lagina. “My brother, Rick, is the optimist, but I’m the engineer who needs more proof.”

Part National Treasure, part Indiana Jones, the five-segment series follows their exploits as they attempt to—literally—get to the bottom of the ‘money pit’ on the island that has given up some clues, booby traps, bizarre hints and puzzle pieces. Theories of what is buried range from treasures from Solomon’s temple, the Holy Grail, the Knights Templar, or pirates.

First, they had to spend millions to purchase a controlling interest in the North Atlantic island. “And everything is difficult,” Lagina says. “It’s been dug at for 200-plus years, so you need to figure out if you are discovering something from the original works or not.”

Tester, an expert on drilling, resistivity, and more, also appears on The Curse of Oak Island.

Born in Kingsford on Michigan’s Upper Peninsula, Marty has spent nearly all his life living in Michigan. His background is in engineering and the energy business, but with family ties to one of Italy’s premier winegrowing areas, a passion for wine is in his blood.

He founded Mari Vineyards in 1999 (the same year he was inducted into Michigan Tech’s ME-EM Academy). His goal: to make world-class red wines in northern Michigan but with a nod to the Italian style of his ancestors. The winery’s namesake is Lagina’s Grandma Mari, an Italian immigrant who settled in the Iron Mountain area of Michigan’s Upper Peninsula. Lagina is said to have fond memories of her creating wine in the basement of her home.

Marty’s Italian grandma, Teresa Mari, made her own wine at home.

Mari Vineyards is situated on 60 acres in Traverse City. The winery is 100 percent carbon neutral and built from UP dolomite stone, dug from the bases of wind turbines. Lagina has unique growing methods, too—something he plans to share during his session of Husky Bites. As for the wine? “It’s good!” he says.

Mari Vineyards

“Winemaking is an art, but it’s also highly technical,” he adds. “My education at Michigan Tech is what gives me the confidence for innovation.”

Dr. Predebon, what do you do in your spare time?

“I’ve been at Michigan Tech since 1975. That’s 45 years this fall. I just finished 22 years as department chair. My work has absorbed my life, by choice. I have a real passion for our program. We do a good job of preparing engineers, with a heavy emphasis on hands-on education. 

Dr. Bill Predebon

“I have always enjoyed teaching, so the way I look at my role is to nurture the growth of my faculty and staff, right along with our students. I want to help them all reach their potential.

“That said, exercise is a big part of my life, too. I try to exercise every day. I mainly run on a treadmill and lift weights. My wife is an artist and a potter, and together we organically garden. Turns out you can grow anything here in the UP. My wife is very good; I just help. We have a peach tree, we have grown watermelon, we’ve grown cantaloupes, we’ve grown potatoes, her passion is pumpkins so we grow these large pumpkins—150 pounds.”

Dr. Predebon joined the faculty at Michigan Tech in 1975. He earned the Michigan Tech Distinguished Teaching Award in 1984, and became chair of the university’s largest department, Mechanical Engineering-Engineering Mechanics, six years later.

Bill Endres: Pivoting During the Pandemic: From Covid to Codes

Bill Endres, Haley Edie, Ethan Twardy, and Theo Wachowski generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan.  Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

Patient’s eye view of a bag valve mask. Michigan Tech engineering students, led by ME-EM Associate Professor Bill Endres, developed a device to help caregivers improve patient outcomes.

What are you doing for supper tomorrow night, Monday 11/16 at 6 ET? Grab a bite with Dean Janet Callahan and Prof. Bill Endres, along with recent engineering graduates Haley Edie and Ethan Twardy, and current student Theo Wachowski.

As the pandemic unfolded last spring, a group Michigan Tech engineering students pivoted from disappointment at a study abroad trip being cut short, to developing, prototyping and testing an electro-mechanical ventilator—one that is affordable, rugged, compact, and able to be rapidly manufactured and deployed. Their device automatically actuates a bag valve mask (BVM) to serve as a ventilator substitute, to improve patient outcomes.

Haley Edie, Theo Wachowski, Andy Sleder and Ethan Twardy were all studying abroad at Fachhochschule Kiel in Germany at the start of the pandemic, when Michigan Tech asked them to return home.

A bag valve mask is a hand-held, hand-operated device commonly used by EMTs and in emergency rooms and critical care settings to provide positive pressure ventilation to patients who are not breathing or not breathing adequately.

Prof. Bill Endres, the team’s advisor, reconfigured their 30-week senior capstone experience into a 12-week accelerated operation. Engineering students (now all recent graduates) Drew Scharlow, Andy Sleder, John Winkler, and Andrew Marogi worked on the project, as well. 

Dr. Bill Endres is an associate professor in the Department of Mechanical Engineering-Engineering Mechanics. He is also director of the department’s Senior Capstone Design program.

Some of the team extended their efforts over the summer through Michigan Tech’s I-Corps Site program, offered through the Pavlis Honors College. 

The National Science Foundation’s Innovation Corps, or I-Corps, fosters entrepreneurship among university researchers, leading to successful commercialization of technology. Michigan Tech’s I-Corps Site Program uses the same methods and principles to encourage technical entrepreneurship.

Endres and his students felt they had a potentially marketable product, and gave it a name, CoVent. They learned how to think about commercialization and transitioning their device into the marketplace. They interviewed paramedics, EMTs, doctors, nurses, combat medics, and more.

Use of a BVM to ventilate a patient is frequently called ‘bagging’ the patient. In medical emergencies, such as cardiac arrest, when the patient’s breathing is insufficient or has ceased completely, a bag valve mask (BVM) saves lives by force-feeding air or oxygen into the lungs. BVMs are regularly used by first responders and medical professionals, frequently with compressions, instead of mouth-to-mouth ventilation.

Activated by hand, BVMs are challenging to sustain for longer periods of time. Particularly in rural areas, transport can take 40 minutes or more, and then bagging often continues in the ER. Some pediatric codes can last even longer, two hours or more.

Recent graduate Haley Edie is now in Boston working for Autodesk. In her spare time, she volunteers for FIRST Robotics.

During Husky Bites we’ll meet Haley Edie, who graduated last spring 2020 with a BS in Mechanical Engineering. She is now a research engineer at Autodesk in Boston, Massachusetts, focused on generative design, robotics and additive manufacturing. 

“One of the biggest hurdles we faced as a team, was that we were all very geographically distributed,” says Edie. “We also had to find a way to build a hard prototype of our device when none of us had all the pieces for it.”

Ethan Twardy was born and raised in Sault Ste. Marie, Michigan. He’s also into drumming, cross country running, and theatre acting.

We’ll also meet Ethan Twardy, who earned his BS in Computer Engineering in Spring 2020. He is now a software engineer at Plexus Corp. in Neenah, Wisconsin. “From the place a patient is discovered, to the ambulance, to the ER—what is needed: something that can work between each of those worlds and kind of seamlessly transition between them. We’ve learned that our device needs to be interfaced with other breathing circuits, things like filters, pressure sensors, pressure taps, all these kinds of breathing circuit components” he adds.

Is the team ready to go forward with commercialization? “I guess the biggest change from the start to now is confidence,” adds Twardy. “Not only in talking about what we’ve learned and about the product, but also in understanding the customer.” 

Last but not least we’ll meet Theo Wachowski, set to graduate in December 2020 with a BS in Mechanical Engineering. He is currently working as a new product development intern at Boston Whaler in Edgewater, Florida. 

Theo Wachowski: “Taking part in FIRST robotics team throughout middle school and high school cemented my love for design and fabrication,” he says.

Wachowski agrees. “We’re getting great feedback. I know this can definitely help people. It’s really a team effort and the team decision in the end.”

Prof. Bill Endres is director of the senior design program in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech. “Putting my own startup experience to practice and to the test, I’ve developed the program to run a lot like a business,” he says.

Prof. Endres has personally advised more than 80 capstone teams over the past 15 years or so, as director he has overseen more than 350 projects/teams. Most are mechanical engineering teams, but plenty, like the CoVent team, are multidisciplinary teams, made up of students majoring in various engineering disciplines.

I have a passion for designing processes, physical devices, software tools, and even business models–from system-level to detail-level, discovering interconnections and intra-connections. I guess that makes me a geek.

Prof. Bill Endres

At Michigan Tech, teams of highly dedicated, senior-level students in all the engineering departments address practical, open-ended design challenges in their last course before graduating. Many of the projects are sponsored by industry and community organizations, even individuals. (Our College of Engineering Dean Janet Callahan has sponsored several senior design team projects over the past few years, too.)

Prof. Endres, how did you first get into engineering? What sparked your interest?

I’ve long had an interest in how things worked, mainly physical/mechanical devices.  I also liked biology, so I originally intended on pursuing bioengineering. That field was pretty new back in 1984. It  wasn’t even in the College of Engineering at U of Illinois at that time.  Plus, my older sister, who had a BS in Biology, said I’d have to get a PhD to do anything with it. No way was I gonna get a PhD!  So, I pursued mechanical engineering…eventually getting a PhD…thinking, “no way will I ever go be a professor!” 

Prof. Endres’s daughter, Jess, is an ER Technician at Carle Foundation Hospital in Illinois. “She was our first subject matter expert (SME) who joined a Zoom call just 6 hours after the idea surfaced for the project.”

Hometown and Hobbies?

I grew up in Park Ridge, Illinois, about 5 miles from O’Hare airport. As for my hobbies, I have a passion for designing processes, physical devices, software tools, and even business models–from system-level to detail-level, discovering interconnections and intra-connections. I guess that makes me a geek (and that’s a good word in my book, literally). In 1996 I set out to build a technology company focused on machining simulation software. With changes in life and profession, that effort was chalked up as a learning experience and set aside. Later I turned my entrepreneurial eye toward the cutting-tool industry. I founded Endres Machining Innovations, LLC (EMI) in 2005. Through R&D programs and commercialization partnerships, EMI has developed and delivered innovative tooling products–enabling substantial productivity improvements. 

Hamburg, Germany, and its Fernmeldeturmone, or radio broadcasting tower. Photo by Haley Edie.

Haley, when did you first get into engineering? What sparked your interest?

I really got into engineering when I was introduced to FIRST Robotics at my high school. I fell in love with working to solve a problem, working with my hands and the field of robotics in general. I still mentor and volunteer with FIRST to this day. I was born and raised in the small town of Almont in lower Michigan. I now work for Autodesk in Boston, Massachusetts as a Research Engineer. In my free time I love to read (sci-fi and fantasy!!), bake, hike, swing dance and volunteer at FIRST robotics competitions. 

Theo, when did you first get into engineering? What sparked your interest?

My father was a carpenter, so from a young age I always had the opportunity to build things and design projects. Having the ability to take an idea and make it reality has always brought me joy in my hobbies and classwork. I had the opportunity to participate in a FIRST Robotics team throughout middle school and high school, which cemented my love for design and fabrication. I grew up in Kalamazoo, raised by two loving parents along with one older brother. My brother graduated from Michigan Tech in 2017 with a BSME and is now working in Holland, Michigan. I love the outdoors and anything to do out in the Keweenaw, I race sailboats with Michigan Tech, and sail out on Lake Michigan in the summer. And I’m an avid rock climber who loves to climb, either here at the SDC or out at Silver Mountain.

Graduate School Announces Fall 2020 Award Recipients

Auroral activity

The Graduate School announces the recipients of the Doctoral Finishing Fellowships, KCP Future Faculty/GEM Associate Fellowship, and CGS/ProQuest Distinguished Dissertation Nominees. Congratulations to all nominees and recipients.

The following are award recipients in engineering graduate programs:

CGS/ProQuest Distinguished Dissertation Nominees:

Doctoral Finishing Fellowship Award:

Profiles of current recipients can be found online.

Michigan Tech SWE Chapter Makes It Their Mission to Give Back

child looks in wonder as a play-doh circuit lights up a small led light
Who knew! Play Doh can be used to complete a circuit!

The Society of Women Engineers (SWE) at Michigan Tech make it their mission to give back to the community and to spark youth interest in STEM-related fields.

“We’re always looking for opportunities to grow and make new connections, both as an organization on campus and as a member of the community,” says Michigan Tech SWE section president and mechanical engineering major Katie Pioch. “We love getting kids excited about STEM.”

The team gathered for a photo in Fall 2019. This fall gatherings have been mostly virtual for the Michigan Tech section.

This past year, Michigan Tech SWE students helped high school students at Lake Linden-Hubbell Schools form the first-ever SWENext Club. They also mentored two eCYBERMISSION teams, sponsored by the U.S. Army Educational Outreach Program.

SWENext enables girls ages 13 and up to become a part of the SWE engineering community as a student through age 18. SWENexters have access to programming and resources designed to develop leadership skills and self-confidence to succeed in a career in engineering and technology.  Although the program focuses on girls, all students are encouraged to get involved. 

Students in the Michigan Tech SWE section worked closely with a team of 8th graders from Lake Linden Hubbell schools–Jenna Beaudoin, Chloe Daniels, Rebecca Lyons, and Olivia Shank–to develop three hands-on electrical engineering outreach activity kits for SWENext-age students and elementary students, too. The girls worked on the activity kits in conjunction with the eCYBERMISSION Competition sponsored by the US Army Educational Outreach Program, earning an Honorable Mention award for their efforts.

The activities: Play-Doh Circuits for upper elementary students, and Paper Circuits and Bouncy Bots for middle school students. 

Play-Doh and Paper Circuits teach how parallel and series circuits work. Bouncy Bots involves a simple series circuit where a coin vibration motor—the kind used in cell phones and video game controllers—is connected to two 1.5 V batteries and adhered to a 4 oz medicine cup. When the circuit is operational, the device “bounces” across a surface.

Together with Michigan Tech’s Department of Electrical and Computer Engineering SWE students shared the activity kits with more than 400 students: regional Upper Michigan and Northern Wisconsin Girl Scouts; 5th-grade students at Calumet-Laurium-Keweenaw (CLK) schools; 4th-grade students at Hancock Elementary; and 5th-grade students at Lake Linden-Hubbell Schools. 

SWE students mentored Lake Linden-Hubbell eCYBERMISSION 6th grade team, SCubed (Super Superior Scientists). The team recycled school lunch food waste as a food source for pigs, earning an Honorable Mention in the eCYBERMISSION competition.

The Michigan Tech SWE section prepared two grant proposals, one for the SWE-Detroit Professional Section and the other for the Michigan Space Grant Consortium (MSGC), working closely with Michigan Tech’s ECE department. Both proposals were funded, enabling the students to create more activity kits and take them out into the local community.

The funding also allowed for the purchase of soldering tools, electronics components, and other supplies that will now be used to introduce an entire pipeline of students to electrical engineering topics.

High school students create heart rate monitor circuit boards, and also help mentor middle school students through the process of completing holiday tree boards. From there, high school and middle school students will be shown the Bouncy Bot activity; they will lead that activity for their school district’s elementary students. 

“Both SWE and ECE are excited for this “trickle-down” mentoring program,” says Liz Fujita, academic advisor and outreach specialist for Michigan Tech’s Department of Electrical and Computer Engineering. Due to the pandemic, SWE members cannot go to area schools. Fujita plans to resume school outreach once the pandemic ends.

Michigan Tech’s SWE Section developed a video describing their year-long outreach projects for SWE’s national FY20 WOW! Innovation Challenge. A portion of the video was created by high school junior Jenna Beaudoin, founding member of the Lake Linden-Hubbell Schools SWENext Club. For their exceptional outreach efforts, SWE awarded Michigan Tech second place in the challenge.

Gretchen Hein, senior lecturer in the Department of Manufacturing and Mechanical Engineering Technology is Michigan Tech’s SWE faculty advisor. “We really encourage our SWE section members to develop professionally and personally,” she says. Students work especially hard on their annual Evening with Industry event, which takes place each fall during Michigan Tech Career Fair.” The event, held just a few weeks ago, was virtual. Sponsors included Nucor, Marathon Oil, John Deere, Amway, Milwaukee Tool, Corteva and CWC Textron.

Gretchen Hein, MMET senior lecturer and Michigan Tech’s SWE section advisor

Hein and a group of ten Michigan Tech SWE section members traveled to the annual WE19 Conference in Anaheim, California, the world’s largest conference for women in engineering and technology. They attended professional development sessions, participated in the SWE Career Fair, and networked with other student sections and professional members. 

While there, Romana Carden, a major in engineering management, participated in the SWE Future Leaders (SWEFL) program. Carden also attended the day-long SWE Collegiate Leadership Institute (CLI) with Mackenzie Brunet, a fellow engineering management major. Both programs are led by female engineers working in industry and academia, to help college students gain leadership skills. Zoe Wahr, a civil engineering major, received a scholarship in recognition of her academic, university, and SWE accomplishments. And Hein was recognized at WE19 for her 20-plus years of service with the SWE Engaged Advocate Award, which honors individuals who have contributed to the advancement or acceptance of women in engineering.

“We have a strong and sustainable SWE chapter at Michigan Tech, and Dr. Hein’s work as the college of engineering chapter advisor has played a key role in this,” says Janet Callahan, Dean of the College of Engineering. “I am truly grateful to every person who has contributed to SWE—past, present and future.”

“In the coming year, SWE students plant to expand their outreach,” she adds. “We’d love to have more Michigan Tech students join the section and explore what SWE and the SWE members have to offer.” 

Next month, in early November, the section will participate in the WE20 Conference in New Orleans, virtually.

Interested in learning more about the SWE section at Michigan Tech? Join their email list at swe-l@mtu.edu, or follow the section on Facebook and Instagram, @michigantechswe.

Sarah Sun: Nice shirt! Embroidered Electronics and Motion-Powered Devices

A prototype of a flexible electronic circuit. Stitch schematics such as this one can be used to create health-monitoring fabrics.

Sarah Sun and George Ochieze generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of her session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What if your medical heart monitor was embroidered right on your shirt, in your favorite design? And what if it was powered by your own movements (no battery required)? And what if you could even design and order it yourself, right on the internet? Get ready to learn all about this, and more.

Join Dean Janet Callahan for supper along with Sarah Sun, an associate professor of mechanical engineering, and George Ochieze, a graduate student researcher in Dr. Sun’s Human-Centered Monitoring Lab at Michigan Tech.

Associate Professor Sarah Sun

Sun is the lead investigator of three National Science Foundation research grants totaling $1 million focused on wearable electronics. She is also the director of the Center for Cyber-Physical Systems within Michigan Tech’s Institute of Computing and Cybersytems ICC.

“I am passionate about using engineering solutions to solve health problems,” she says. “We’re trying to solve long-existing technical challenges to improve medical devices, and we’re developing new technologies, too, in order to enable more diagnosis solutions.”

One of Sun’s large research projects involves developing new human interfaces for monitoring medical vital signs.

Their goal: to provide a reliable, personalized monitoring system that won’t disturb a patient’s life, whether at home, while driving, or at work. “Right now for patients there’s a real trade-off between comfort and signal accuracy. This tradeoff can interfere with patient care and outcomes, too,” she explains.

Sun hopes to use electrophysiological sensing and motion sensing to help prevent automobile crashes, especially those that occur when drivers accidentally fall asleep at the wheel. According to the National Highway Traffic Safety Administration, while the precise number can be hard to nail down, drowsy driving is a factor in more than 100,000 crashes in the U.S each year, resulting in nearly 1,000 deaths and 50,000 injuries.

First, though, Sun and her team needed to figure out how to overcome a major challenge in monitoring vital signs: motion artifacts, or glitches caused by the slightest patient movement, even shivering, or tremors.

Motion artifacts appear in an ECG when the patient moves.

“ECG, a physiological signal, is the gold standard for diagnosis and treatment of heart disease, but it is a weak signal,” Sun explains. “Especially when monitoring a weak signal, motion artifacts arise.”

Sun and her team first set out to discover the mechanism underlying the phenomenon of motion artifacts. Then, they realized they were able to tap into it. 

“We not only reduce the influence of motion artifacts but also use it as a power resource,” she says. The result: a sensing device that harvests energy from patient movements.

Sun cites recent progress in the development and manufacturing of smart fabrics, textiles, and garments. “This has opened the door for next-generation wearable electronics—fully flexible systems that can be embroidered directly onto cloth,” she says.

“Feel free to download our .exp files for your own wearable system on cloth manufacturing. The code can be processed by regular sewing machines. Just go online to WEF, our new Wearable Electronics Factory.

Sarah Sun, Mechanical Engineering Assoc. Professor at Michigan Tech

By using conductive thread and passive electronics—tiny semiconductors, resistors and capacitors—Sun is able to turn logos into wearable electronics. The stitches themselves become the electronic circuit. Sun and her team can embroider on just about anything flexible, including cloth, foam, and other materials. 

Sun is also building a manufacturing network and cloud-based website where stitch generation orders can be made. “In the future, a person can upload their embroidery design to generate stitches, or download certain stitches as needed,” she says. The lab provides coding for the electronics and stitch generation to embroiderers. “Soon any embroidery company will have the potential to manufacture embroidered health monitors,” she says.

These wearable, embroidered ”E-logos” can monitor multiple vital signals. They’re customizable, too. 

Sun hopes flexible, wearable electronics will interest a new generation of engineers by appealing to their artistic sides. “This type of embroidery circuit really brings together together craft and functional design.” 

Mechanical Engineering PhD student George Ochieze arrived on campus at Michigan Tech in 2019. He grew up in Abia, Nigeria and earned his bachelor of engineering at Federal University of Technology Owerri in 2017.

George Ochieze is pursuing a master’s degree in Mechatronics and a PhD in Mechanical Engineering. He took Sun’s Introduction to Mechatronics and Robotics course at Michigan Tech last spring. That’s when he discovered his own passion: working with machines and control devices. He joined her research group last summer.

Mechatronics uses electromechanical systems automated for the design of products and processes,” Ochieze explains. “I picked up my research interest after modeling an RRR manipulator using CAD software. That’s a robot manipulator set up with 3 revolute joints. I had some challenges in controlling the joints, and Dr. Sun gave me some tips. She was very helpful in guiding me through the process, and our mentor/mentee relationship in soft robotics was formed,” says Ochieze.

Soft Robotics involves the design and construction of robots from flexible, compliant materials, drawing from the movements and adaptations of living organisms. Soft robots offer new capabilities, as well as improved safety when working around humans, with potential use in medicine and manufacturing.

Ochieze plans to share a demo on soft robotics during Husky Bites.

“Throughout my growth in the engineering field, I have been surrounded by people who are generous enough to share their knowledge. I look forward to mentoring others like me within this field.”


Professor Sun, when did you first get into engineering? What sparked your interest?

My dad liked to play with old electronics when I was young. I built my first radio receiver in middle school with him although I did not know how those electronics work at that time. This experience really inspired my interest in pursuing an engineering degree. I earned my bachelor’s degree at Tianjin University. It’s located near Beijing, in Tianjin, China, on the Bohai Sea. About six year ago, I earned my PhD in electrical engineering at Case Western Reserve University in Cleveland, Ohio. My doctoral research was on wearable electronics.

Sarah Sun's hands hold electronic embroidery showing the stitches that function as circuits

Family and Hobbies?

I grew up in Northern China, in a town with a very cold winter climate, but dry. My husband came to Michigan Tech first. He liked the U.P. a lot and told me lots of great things about Tech.  It was challenging for me to balance work and life at first, especially with two little kids. My son, Brent, is almost 8 now, and my daughter, Leah, is two. My husband and I both like to design and build stuff, so we enjoy it with our kids, too. 

George, how did you first get into engineering? What sparked your interest?

I grew up in Aba, in Abia, Nigeria. Working in my Dad’s fabrication company fostered my interest in the engineering field. At a young age I became familiar with machine operations. I was fascinated with the sequence operation of machines to achieve a desired goal. I started developing cars and movable structures with available materials, leading my fellow students in the design of mechanical components.

Graduate student George Ochieze in the Human-Centered Monitoring Lab at Michigan Tech. His passion and research focus: soft robotics.


Do you do any mentoring or teaching on campus?

I am one of two instructors in Michigan Tech’s Career and Technical Education (CTE) Mechatronics program for local high school juniors and seniors. Even in difficult times during the pandemic, these young scholars show overwhelming potential to conquer the mechatronics field—a glimpse into a welcoming future in engineering. They will go on to find degree pathways at Michigan Tech, and excellent careers in smart manufacturing.

Read and View More

Vital signs—Powering Heart Monitors with Motion Artifacts

Ye Sun Wins CAREER Award

Human Centered Monitoring Laboratory (HCML)

Stitches into Circuits (check out the video, below)

Play video
Preview image for  video


Gordon Parker: Control Systems—Math in Motion

Three meters wide x 10 meters long. Eight paddles One-sided glass panel for easy visibility. Can you guess what this is?

Gordon Parker generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What do machines that move all have in common? Control systems that coordinate the machines. 

Can you recognize a control system when you see one? How about a controlled dynamic system? Well, after 20 minutes with Professor Gordon Parker, John & Cathi Drake Endowed Chair in Mechanical Engineering, you will. And then some…

“My most important and satisfying professional objective is sharing my passion for dynamics and controls with students,” says Dr. Gordon Parker.

“I’ve been working on control system theory and design for (gulp) 32 years with applications such as rockets, spacecraft, ships, cranes, ground vehicles, microgrids, wave energy converters, and more,” says Gordon. “I love working with students and colleagues to field control systems—the bigger, the better.”

Last April, our own Gordon Parker became one of just four instructors at Michigan Tech to receive the inaugural Provost’s Award for Sustained Teaching Excellence. The award brings special recognition to instructors who have been nominated as finalists for the Distinguished Teaching Award four or more times.

Mike Agostini knows firsthand Parker’s effective teaching and mentoring. Nowadays, Agostini is a senior manager of application engineering at The MathWorks in Boston. Back in 2001, he was a graduate student working with Parker to design control strategies for large boom cranes mounted on ships at sea.

“The goal was to minimize vibration from inputs,” explained Agostini. “Inputs could come from operator commands or from ship motion. We injected crane commands on top of the ship-induced motion to minimize vibration of the payloads. The payloads could be 30-plus tons, in containers 40 feet on a side. The chance for uncontrolled swing to damage property or lives was significant. It is for this reason that ship cranes traditionally have been limited to operating in very calm seas,” he says.

Example of a crane operation on a ship.

“The most enjoyable aspect was the tool building,” adds Agostini. “We had both a ship crane (on the ship) as well as a scale model crane at Sandia National Labs. But the utility of using them for day-to-day research was limited. They were simply too expensive and difficult to access regularly. So we built high-fidelity models, and took the algorithms we built and tested in software to the hardware.

“It was and incredible feeling to be on a crane ship rolling back and forth 14 degrees and see a huge 35 meter boom crane automatically actuating to compensate. So much steel and hardware under command of software and algorithms you helped design,” says Agostini. “But better than that was working with Dr. Gordon Parker. He really helped me mature as an engineer. His mentoring has helped make me the person I am today.”

Nowadays, Parker still specializes in control system design, and a key area of his research is the optimal control of microgrids. A microgrid is a local energy grid with control capability, which means it can disconnect from the traditional grid and operate autonomously, or independently.

Underwater robots and autonomous vehicles rely on battery power. When working in the middle of the ocean or other large body of water, charging sources aren’t readily available. Parker is developing a solution for this problem, tapping into the energy that comes from ocean waves.

Parker and his research team work on providing an energy source through a floating microgrid system, or a marine energy grid. “We’re developing control strategies that bridge the gap between the theoretical models and the realistic conditions you find on the ocean,” Parker explains.

Using the wave tank on the Michigan Tech campus, Parker pairs machine learning with model predictive control to help engineers measure key parameters accurately and predict wave energy converter (WEC) behavior. (Hey, and Yes, there is a wave tank in the basement of the R.L. Smith Building, with state-of-the-art instrumentation for WEC studies. Wave tanks create reproducible wave fields to aid the understanding of the motion of submerged and partially submerged bodies, such as underwater vehicles, ships, and WECs.

Michigan Tech’s Wave Tank research facility is located in the Department of Mechanical Engineering-Engineering Mechanics. Among its key uses: developing control systems for wave power, capturing the energy of waves in the ocean, or other large bodies of water.

“There’s a spectrum of wave energy converter systems in development right now. And there’s an opportunity in controlling these systems in interesting and sophisticated ways,” says Parker.

How? “In a control scheme, we look up a device, harmonize with the wave field, and resonate. With reinforcement learning, we can look at what is happening in the wave field and other wave energy converters in the array and try different controls. Our system is penalized if it doesn’t perform well and rewarded if it does,” says Parker.

Wave Energy Converters (WECS) are devices with moving elements directly activated by the cyclic oscillation of waves to harvest energy from ocean waves. Power is extracted by converting the kinetic energy of these displacing parts into electric current.

“We are analyzing the potential of exploiting the interactions between converters in compact arrays. After small scale tank testing we could potentially look at testing in the Great Lakes,” says Parker. 

Michigan Tech students are heavily involved in the research through senior design projects—developing a wave tank testing model of a wireless WEC. And a research team in Parker’s research lab, the Intelligent Systems and Control Laboratory, is creating a WEC array that extracts maximum power.

Another look at the Michigan Tech Wave Tank. Want to see and hear it? Check out the video link at the end of this post.

“These control schemes and marine energy grids have applications beyond refueling unoccupied underwater vehicles,” says Parker. “They can be applied to environmental sensing, too.” That includes monitoring meteorological conditions, sea-water chemical/physical properties, tsunamis and storm surges, fish and other marine life, coastal and sea-floor conditions.

There are microgrids on land, too, of course, and space. Parker is an expert on microgrids of all kinds. At Michigan Tech, he co-founded the Agile and Interconnected Microgrid (AIM) Center to bring together faculty from across campus—Computer Science, Mathematics, Cognitive Sciences and Learning, Electrical and Computer Engineering and Mechanical Engineering—to form an interdisciplinary team. AIM now has 18 researchers spanning seven academic units whose customers include NSF, ONR, NAVSEA, ARL, TARDEC, AFRL, DOE, and Sandia National Laboratories.

When he’s not teaching undergraduates, advising senior design teams, or mentoring graduate students, Parker is creating content for his popular, 64 segment, open source, video series on control system analysis and design. The series is used internationally by students on YouTube.

Before coming to Michigan Tech, Parker was a research fellow at Sandia National Laboratories in Albuquerque, New Mexico, where he developed systems for large angle spacecraft reorientation and fault-tolerant robots. He also worked as an aerospace engineer for General Dynamics Space Systems in San Diego, California, designing trajectories for new launch vehicle systems.

Parker earned a PhD in Mechanical Engineering at SUNY Buffalo, an MS in Aerospace Engineering at the University of Michigan, and a BS in Systems Engineering at Oakland University.

Dr. Parker, when did you first get into engineering? What sparked your interest?

My passion for control systems first occurred in a single, identifiable moment. I was in the third year of my undergrad studies in a class similar to a course at Michigan Tech, Dynamic Systems (MEEM 3750). This is where we learned about differential equation modeling of mixed physics systems—motors, masses, and springs. I was looking out the window at the tree branches swaying in the breeze. (Okay, perhaps I should have been paying attention to the Prof., but the truth is what it is.) That’s when it clicked. The motion of the branches, vibration, was similar to what we were learning—and it could be modeled with math and then controlled.

At that point I was hooked on the notion of using math to predict how things respond to being poked—including machines, the stock market, etc.—and then devising control systems to make them do what you want. By the way, in theory, this should work with people, but I’ve not cracked that nut.

Hometown, Hobbies, Family?

My most important and satisfying professional objective is sharing my passion for dynamics and controls with students—from application-focused undergraduate courses to theory-laced graduate-level material. Hopefully some of that sticks, and is multiplied through their achievements, both professionally and personally.

I’ve been at Michigan Tech for 24 years now, while raising two wonderful kids with my wife, Karen. We now live in the woods outside of town enjoying the wildlife (not the wild life), fitness (usually followed by physical therapy), baking bread, and exploring the esoteric features of MATLAB/Simulink.

Learn More

Play Michigan Technological University Compact 3D Wave Flume video
Preview image for Michigan Technological University Compact 3D Wave Flume video

Michigan Technological University Compact 3D Wave Flume


Graduate School Announces Summer 2020 Award Recipients

Michigan Tech in Summer

 The Graduate School announced the recipients of the Doctoral Finishing Fellowship, Portage Health Foundation Graduate Assistantship, Matwiyoff & Hogberg Endowed Graduate Fellowship, and the DeVlieg Foundation Research Award. The Portage Health Foundation and the Graduate School have provided support to help students complete their doctoral studies and to those in health-oriented research areas.

The following are award recipients in engineering graduate programs:

Doctoral Finishing Fellowship Award

Portage Health Foundation Graduate Assistantship

Matwiyoff & Hogberg Endowed Graduate Fellowship

Profiles of current recipients can be found online.

Andrew Barnard: A Quieter Future

Andrew Barnard works on a noise control survey on the R/V Blue Heron in Lake Superior.

Andrew Barnard shares his knowledge on Husky Bites, a free, interactive webinar this Monday, June 15 at 6 pm. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Let’s say you wanted to quiet the loud auxiliary power unit on a large Abrams tank or any other loud noisy contraption. Would carbon nanotubes, thinner than a human hair, immediately come to mind? Probably not—but that is exactly the solution that Andrew Barnard has developed.

Why a nanotube speaker instead of the usual kind? It’s flexible and stretchable, with no moving parts, and you can put it practically anywhere. Plus, it weighs next to nothing. Four ounces of the material will cover an acre.

“Carbon nanotubes can oscillate their surface temperature almost instantaneously to produce noise canceling sound waves,” he explains. His technology—a coaxial active exhaust noise control system—is based on using a thin film of carbon nanotubes as a thermophone, or loudspeaker.

Why else use carbon nanotubes? “The material is flexible and stretchable, with no moving parts, and you can put it practically anywhere,” he says. “Plus, it weighs next to nothing. Four ounces of the material will cover an acre.”

“Building with Lego sets as a kid is probably what sparked my design and engineering mindset,” says Andrew Barnard. Fast forward about 30 years. Barnard is now an associate professor in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech, specializing in the field of acoustics, vibration, and noise control engineering. He is the Director of the Great Lakes Research Center. He is advisor of Michigan Tech’s Strategic Education through Naval Systems Experiences (SENSE) Enterprise team. Last year he earned the Michigan Tech Distinguished Teaching Award. And he knows what it’s like to be a Michigan Tech student; he earned both his bachelor’s and master’s degrees in mechanical engineering at Tech before heading to Penn State for a PhD in acoustics.

Barnard is faculty advisor to Michigan Tech’s SENSE (Strategic Education through Naval Systems Experience) Enterprise. It’s a relatively new team. Students design, build, and test engineering systems with a focus on Navy applications in all domains: space, air, land, sea, and undersea. Like all of SENSE is open to students in any major.  The Nautical Emergency Rescue Device (NERD) is the team’s longest-running project. 

Q: What exactly is the NERD?

It’s like a mechanized life ring. If you’ve got someone 100 yards offshore, it takes away the danger of swimming out to them or the time it takes to get a boat. A life ring can only be thrown maybe 25 yards and if it’s windy it’s hard to get the life ring to the person. The NERD uses plastic PVC piping, low-cost remote vehicle propellers and the same controls used for remote-controlled planes and boats. The project is sponsored in part by the Keweenaw Bay Indian Community.

Students in the SENSE Enterprise designed and built a prototype of the NERD. “It’s sort of like a drone that can be used as a life raft, cheap and affordable enough that it can be kept at popular swimming beaches or in squad car trunks and used very quickly.”
The SENSE Enterprise logo, created by team members. Learn more about all 24 Enterprise teams at mtu.edu/enterprise

“I like to tell students on the SENSE team that I don’t do anything, they do everything, I’m just there to make sure they don’t go off the rails; to help them work through that design process, to watch them fail and help them pick themselves up and succeed.”

Andrew Barnard

Q: What is your research focus?

I do acoustics in general. What I’m interested in is making mechanical things quiet. I tend to work on any type of system with rotating equipment: ship propellers, hard drives, hydraulic systems. That is to say, anything moving that creates sound or is affected by sound.

“It’s a very customer-centered research field because everyone has a set of transducers built into their heads—ears.”We have lots of customers to talk to and lots of customer problems to fix because certain sounds drive people nuts.

We have the same problems under water. The overall background noise in the ocean has been rising steadily since WWII. How does that affect marine mammals and fish species? How does their behavior change based on ambient noise background? That’s what we’re trying to find out.


Andrew Barnard and his students work on developing flexible and stretchable nanotube speakers.

Q: How do you like to learn?

I had lots of great professors when I was a student here at Michigan Tech; Chuck Van Karsen is a good example. Chuck was a terrific professor, knew the material back and forth, but would take the time to teach it to you. He was always showing us how we could relate the pieces of an equation to things in real life that we touch every day. I thought those types of lessons were really helpful in learning the material, so I try to bring those kinds of things into my classes as well. I’ve had so many good professors it’s hard to single out just a few. 

“Everyone has a set of transducers built into their heads—ears.”

Andrew Barnard

Q: How did you know you wanted to be an acoustic engineer?

In college, I did several internships. Two of them taught me what I didn’t want to do, a very valuable lesson. The third one was working on noise control of tractors with John Deere. That sparked my interest in the field and propelled me on to graduate school to learn more. I’ve had mentors over the years that have been vital to keeping me pursuing the long and winding path to my current position. 

Q: Can you tell us more about your growing up? 

I was born and raised outside of Sturgeon Bay, Wisconsin, cradled between Lake Michigan and the bay of Green Bay.  I come from a long line of teachers. My mother was a kindergarten teacher and both my grandmothers were teachers. In my free time nowadays I enjoy hiking and waterfalling in the UP with my wife, Becky, entertaining our dog, and playing mediocre rounds of golf.

Andrew Barnard grew up in Sturgeon Bay, Wisconsin. Pictured here is the Ship Canal Pierhead Lighthouse, located just off the coastline of Lake Michigan

Learn More

Sound Man

Q&A with Michigan Tech Teaching Award Winner Andrew Barnard

Q&A with Great Lakes Research Center’s Andrew Barnard

Play SENSE Enterprise at Michigan Tech video
Preview image for SENSE Enterprise at Michigan Tech video

SENSE Enterprise at Michigan Tech

Want to know more about Husky Bites? Read about it here.