Tag Archives: MEEM

Dr. Edmond O. Schweitzer III: An Inventor Who Helps Keep the Lights On—in 164 Countries Around the World

Michigan Technological University, at night.

Michigan Tech welcomes to campus today inventor Edmond O. Schweitzer III, recognized as a pioneer in digital protection. 

“Why shouldn’t we invent, and wake up every day wanting to go to work to find a better way to do something for other people?” says global innovator and inventor Dr. Edmond O Schweitzer, III, Chair, President and CEO of Schweitzer Electronics.

Dr. Schweitzer was recently inducted into the National Inventors Hall of Fame for inventing the first-ever digital protective relay. Digital protective relays detect electrical faults that cause power outages.

The first protective relays relied on coils and were electromagnetic. Schweitzer’s microprocessor-based digital protective relay is multifunctional, protecting power systems, recording data and detecting faults in lines more effectively. “His first revolutionary ‘relays’ came on the market in the 1980s,” said Bruce Mork, electrical engineering professor at Michigan Tech. “The design has led to reduced costs, flexible operation options and increased reliability. The product lines have been enhanced with many patents and with the utilization of today’s smart grid technologies.”

Schweitzer Electronics Laboratories, Inc. (SEL) based in Pullman, Washington is a longtime partner of Michigan Tech—supporting the Power System Protection Lab at Michigan Tech since 1993, and hiring at least 40 Michigan Tech ECE graduates over the years, plus a dozen more students thus far in 2019.

Inventing runs in Schweitzer’s family, and while on campus he will present a lecture on Creativity and Innovation at 4:15 pm in EERC 103. Wednesday’s lecture is open to the public. All are welcome to attend. Schweitzer will also join a roundtable of power companies to discuss Cybersecurity.

Todd Brassard, VP Operations of Calumet Electronics, arranged Dr. Schweitzer’s visit to Michigan Tech. Calumet Electronics Corporation is a key supplier-partner of printed circuit boards (PCBs) to SEL. The company, based in Calumet, Michigan, is an American manufacturer, supplying PCBs for applications demanding zero failures, zero downtime, and requires a lifetime of performance. Celebrating 50 years, Calumet is a critical supplier to mission critical industries including power grid management, , medical device, aerospace, industrial controls, and defense. Calumet is one of the few PCB manufactures who have made a commitment to American manufacturing.

At Michigan Tech, “SEL has supported us for years, incrementally donating lab equipment since 1993 when I started the protection course and lab here on campus,” adds Mork. “I became aware of their new technology and product lines while working as a substation design engineer in Kansas City in the mid-1980s. As a PhD student at North Dakota State University, I facilitated getting it into the labs there, and again at Michigan Tech after I arrived in 1992. I first met Ed when he presented a paper at the American Power Conference in 1993—it’s a paper I still use today when introducing microprocessor-based protection to my students.”

 


Stimulate Your Thought Processes: Meet Dr. Edmund O. Schweitzer, III at Michigan Tech This Week

“Why shouldn’t we invent, and wake up every day wanting to go to work to find a better way to do something for other people?” says global innovator and inventor Dr. Edmond O Schweitzer, III, Chair, President and CEO of Schweitzer Electronics.

Global Innovator Dr. Edmund O. Schweitzer, III, who comes from a family of inventors, will be on campus at Michigan Tech to deliver a lecture, “Creativity and Innovation,” this Wednesday, October 2 at 4:15PM in EERC 103. All are welcome. 

Dr. Schweitzer is recognized as a pioneer in digital protection and holds the grade of Fellow in the IEEE, a title bestowed on less than one percent of IEEE members. He received the IEEE 2012 Medal in Power Engineering, the highest award given by IEEE, for his leadership in revolutionizing the performance of electrical power systems with computer-based protection and control equipment.
Earlier this year, Schweitzer was inducted into the National Inventors Hall of Fame for his invention of the first microprocessor-based digital protective relay.  According to the NIHF, “Digital protective relays detect electrical faults that cause power outages. The first protective relays relied on coils and were electromagnetic. Schweitzer’s first microprocessor-based digital protective relay, the SEL 21, was multifunctional, protecting power systems, recording data and detecting faults in lines more effectively. His design has led to reduced costs, flexible operation options and increased reliability.”
He is the founder of Schweitzer Engineering Laboratories, Inc. (SEL) based in Pullman, Wash. The company invents, designs, and builds digital products and systems that protect power grids worldwide. SEL’s products also protect homes, hospitals and businesses in 163 countries around the world.
Dr. Schweitzer’s visit to campus is sponsored by Calumet Electronics Corporation, key supplier-partner to SEL of printed circuit boards. Their goal for the visit is to share ideas, advance innovative thinking, and build new bridges.
“SEL has supported the Power System Protection Lab here in the Department of Electrical and Computer Engineering at Michigan Tech since 1993,” said Professor Bruce Mork. “SEL employs at least 40 Michigan Tech ECE graduates, as well.”

William Predebon Inducted into the Pan American Academy of Engineering

William Predebon is the JS Endowed Chair of the Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University. “I am honored to be inducted into the Pan American Academy of Engineering and humbled to be included with other leaders from the Americas and Mexico,” he says.

William Predebon, chair of the Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University, traveled to Washington, D.C. last week to be inducted into the Pan American Academy of Engineering.

The Pan American Academy of Engineering was started in 2000 in Panama City, the first of its kind. It brings together engineers from across the continent of North America, South America and Mexico—a total of 18 countries. The Pan American Federation of Engineering Societies and the National Federations North America, South America, Mexico established the Academy to publicly honor the exceptional engineers, who, prestige of their profession, have contributed decisively to the progress of their country and continent.

He earned a bachelor’s degree from the University of Notre Dame in 1965 and his master’s and doctorate from Iowa State University in 1968 and 1970, respectively. He joined Michigan Tech’s ME-EM department in 1975. He was associate chair from 1993-1997. He has been chair of the department since 1997, and has transformed the program.

Under his watch, the ME-EM department has made great strides in conducting interdisciplinary research, growing the doctoral program, expanding research funding, and updating the curriculum and laboratories.

“The world is changing, and we need to respond to its challenges and opportunities,” says Predebon. “Most recently, we have witnessed the rise of big data as the fourth industrial revolution gets underway, leading to the digital mechanical engineering space. To produce leaders during this change, our Department is rapidly evolving our educational methods and our methods of research. We are leading the effort to infuse into our undergraduate and graduate curriculum the knowledge and critical skills to use big data, machine learning and artificial intelligence in the solution of engineering design problems.”

Predebon has been involved with the Pan American Academy of Engineering for just about two years—attending meetings, giving talks, and advising on mechanical engineering education and research—and will continue to do so in the future. “I am honored to be inducted into the Pan American Academy of Engineering and humbled to be included with other leaders from the Americas and Mexico,” he says.

 


Mechanical Engineering Among the Best in the Nation

Undergraduate students at work near the Wave Tank in Michigan Tech’s Department of Mechanical Engineering-Engineering Mechanics

The Mechanical Engineering program at Michigan Tech has once again been ranked among the finest in the country. Michigan Tech’s ME program is 34th in the 2020 U.S. News and World Report rankings of the “Best Undergraduate Mechanical Engineering Programs Among All Doctoral Granting Universities.”

William Predebon, chair of the Department of Mechanical Engineering-Engineering Mechanics (ME-EM) called the rankings a “major milestone” for the undergraduate ME program and a testament to the quality of the faculty and staff in ME-EM. “This ranking puts the Michigan Tech ME undergraduate program among the top doctoral granting ME programs in the nation. This ranking is recognition by our peers of the efforts of the faculty and staff to continually update our ME curriculum to reflect the future needs of our students. It is a team effort of faculty, staff and the support of the administration.”

U.S. News and World Report annually publishes rankings of the major undergraduate engineering degree programs in doctoral granting universities. The methodology used by U. S. News to make the list of top

programs, is that a department must receive seven or more top 15 nominations in a particular discipline. The nominations are from the department chairs of the respective engineering disciplines who are asked for nominations of up to 15 of the best engineering programs in their respective disciplines.

The U.S. News rankings are available here.


Dean Kamen Visit Featured in Daily Mining Gazette

During his day-long visit to Michigan Tech last week to recruit engineering and computing students, inventor and innovator Dean Kamen also met younger students on FIRST Robotics teams from 18 middle and high schools across Michigan’s Upper Peninsula. Photo by Matt Monte, monte.net.

HOUGHTON — Dean Kamen is looking for his next engineers. Having already hired Michigan Technological University students, he knew where to look.

“I love their kids,” he said. “They’re smart, they’re focused, they’re mature, they’re earnest. And we want more.”

Kamen, president of DEKA Research and Development, visited Tech Thursday. He spoke to engineering students and met Upper Peninsula students participating in the FIRST Robotics program, which he co-founded.

“They’ve been great to us at FIRST, they’ve supported FIRST teams for a long time,” said Kamen, whose 440 patents include the Segway. “Now we can return the favor and start hiring some of their graduates and it’ll be a win-win. We want the kids, they want careers.”

Read the full article by reporter Garrett Neese in the Daily Mining Gazette.


Undergraduate Engineering at Michigan Tech Climbs Higher in US News & World Report 2020 Rankings

Dean Janet Callahan stands in front of the summer gardens on campus at Michigan Tech
“We’re different from most other universities because of our central focus on engineering and technology. What this means for students is that if they love solving high-tech problems—they belong here,” says Janet Callahan, Dean of the College of Engineering, Michigan Technological University

Michigan Technological University has moved up in the latest US News & World Report ranking for Best Undergraduate Engineering Programs. Michigan Tech is now ranked 66th among 206 undergraduate engineering programs at colleges or universities that offer doctoral degrees in engineering. Michigan Tech’s ranking was 75th in the same rankings last year.

Janet Callahan, Dean of the College of Engineering at Michigan Tech, said that while she is pleased to see the rankings increase during her first year as dean, she is not surprised. “The faculty at Michigan Tech are incredible. The rise reflects the growing reputation of Michigan Technological University’s strong engineering programs,” she says. “We’re different from most other universities because of our central focus on engineering and technology. What this means for students is that if they love solving high-tech problems—they belong here!”

The US News rankings of undergraduate engineering programs accredited by ABET, the Accreditation Board for Engineering and Technology, are based solely on the judgments of deans and senior faculty at peer institutions. Additional details on the methodology may be found herewhich states:

US News surveyed engineering school deans and faculty members in spring 2019 and asked them to rate each program they were familiar with on a scale from 1 (marginal) to 5 (distinguished) for these rankings. Two peer assessment surveys were sent to each ABET-accredited engineering program.

US News has separate rankings for 206 undergraduate engineering programs at colleges or universities that offer doctoral degrees in engineering and for 210 engineering programs at colleges where the terminal degree in engineering is a bachelor’s or master’s. Two separate surveys and respondent groups were used, which means that deans and senior faculty only rated engineering programs within their institution’s ranking category.

Research at the graduate level often influences the undergraduate curriculum, and engineering schools with doctoral programs in engineering tend to have the widest possible range of undergraduate engineering courses and program offerings. 

In spring and early summer 2019, of those surveyed in the group where the terminal degree in engineering is a bachelor’s or master’s, 51.7% returned ratings; 71.6% did so for the doctoral group. This compares to a response rate of 33% in the engineering bachelor’s or master’s survey in 2018 and 58% for the doctoral survey in 2018.

US News used the two most recent years’ responses to calculate weighted average scores of programs in both categories. For example, a program that received 55% of its total ratings in 2019 and the remaining 45% in 2018 would have 55% of its overall score determined by its 2019 survey results and 45% by its 2018 survey results.

Learn more at mtu.edu/engineering.


Finding a Research Mentor Workshop for Undergraduate Students

Undergraduate ResearchAre you interested in conducting research? Are you unsure how to locate a faculty member to work with? Join this interactive discussion featuring practical advice and tips for finding and approaching a faculty member for a research position.

In addition, learn about paid research internship opportunities at Michigan Tech and beyond. The one-hour workshop will be offered from 4 to 5 p.m. Tuesday (Sept. 10, 2019) in Fisher 133 and from noon to 1 p.m. Friday, Sept. 13 in Fisher 133.

By Pavlis Honors College.


Outreach in Natural Resources and Engineering

Natural Resource and Engineering career activityEighteen high school students from Detroit and across the lower peninsula are spending six days at Michigan Tech from July 22-27, 2019, to explore Natural Resources and Engineering majors and consider attending Michigan Technological University. This is the 5th year that the program has been conducted.

Students will investigate drinking water treatment, autonomous vehicles, forest management, and more, with Michigan Tech faculty from Mechanical Engineering-Engineering Mechanics (ME-EM), Civil and Environmental Engineering (CEE), Electrical and Computing Engineering (ECE), as well as natural resource agencies, such as the US Forest Service. Students will participate in hands-on engineering explorations and enjoy a variety of outdoor activities, from kayaking to mountain biking and hiking at Porcupine Mountains Wilderness State Park.

Some of the engineering-related explorations include:

  • Value of STEM Careers, with Dr. Janet Callahan, Dean of the College of Engineering
  • Water Use and Cleaning Wastewater, with Joan Chadde, Center for Science and Environmental Outreach (CSEO)
  • Water Treatment and the Flint Water Crisis, with Brian Doughty, CSEO
  • Water Treatment Technologies, with Ryan Kibler, Benjamin Cerrados, Dr. Daisuke Minakata, CEE
  • Demo of acoustic triangulation and underwater autonomous vehicles, with Dr. Andrew Barnard and Miles Penhale, ME-EM
  • Stream Lab and Green Land and Water Management Practices, with Dr. Brian Barkdoll, CEE
  • Tour of Flood Damage in Houghton (and Detroit): Why does flooding occur and how can it be mitigated? with Dr. Alex Mayer, CEE, and Mike Reed, Detroit Zoological Society
  • Self-Driving Vehicles, with Dr. Jeremy P. Bos, ECE

The program is coordinated by Michigan Tech Center for Science and Environmental Outreach, with funding from: Michigan Space Grant Consortium, Michigan Tech School of Forest Resources and Environmental Science, College of Engineering, Departments of Civil and Environmental Engineering, Mechanical Engineering-Engineering Mechanics, Admissions, Housing and Residential Life, Great Lakes Research Center, and the Michigan Space Grant Consortium.

For more information, contact: Joan Chadde at 906-487-3341/906-369-1121 or jchadde@mtu.edu.


New High School STEM Internship Program at Michigan Tech

Chris Adams working at a bench with Riley Stoppa
Biological sciences graduate student Chris Adams works in the GLRC fisheries lab with STEM intern Riley Stoppa.

A total of 13 high school students from throughout Michigan are participating in a 5-day internship at Michigan Tech July 15-19, 2019. Faculty and their graduate students voluntarily host the students in engaging research activities during the week. The faculty’s department, along with the College of Engineering and College of Sciences and Arts, together provide a $600 scholarship for the student that covers their transportation, lodging and meals.

The interns work with Michigan Tech faculty and graduate students in their research lab or doing field work outside. During the week, students tour the Michigan Tech campus and local area, ‘experience college living’ in a residence hall, and meet students from across Michigan and beyond!

In Dr. Parisa Abadi’s Mechanical Engineering Lab, students will be 3D printing nanomaterials. Dr. Tara Bal in the School of Forest Resources and Environmental Sciences (SFRES) will conduct invasive species monitoring and forest health assessments. Dr. Will Cantrell in Atmospheric Physics will have the intern investigating why some clouds rain, while others do not.

Dr. Daniel Dowden in the Department of Civil and Environmental Engineering (CEE) has his intern investigating which technologies will allow buildings to sustain minimal damage and be easily repairable after large earthquakes. Four faculty–Drs. Deering, Waite, Oommen, and Gierke in Geological and Mining Sciences and Engineering are providing a broad introduction of mapping geological features, conducting geophysical surveys, and working to construct a 3-D model of a geological feature. Dr. Casey Huckins and graduate student–Chris Adams in Biological Sciences–are monitoring Pilgrim River and measuring the results of a fish survey in the lab. Dr. Daisuke Minakata in CEE and Dr. Paul Doskey in SFRES, along with graduate students, are researching innovative drinking water and wastewater treatment technologies.

Dr. Michael Mullins in the Department of Chemical Engineering (ChE) has his intern researching ways to remove PFAs contaminants from water. Dr. Rebecca Ong in ChE has her two interns investigating biofuel production from native grasses. Dr. Chelsea Schelly in the Department of Social Sciences and Dr. Robert Handler in the Sustainable Future Institute are measuring food, energy, and water consumption in residential homes and looking for ways to reduce household resource consumption. Dr. Kuilin Zhang and his graduate student Qinjie Lyu in CEE have their intern studying traffic data collection, traffic signal timing, eco-driving, and using traffic simulation software.

The program is coordinated by the Michigan Tech Center for Science and Environmental Outreach, in partnership with Summer Youth Program who provides logistical support and supervises the students in the residence halls in the evening.

Funding for the program is received from the Michigan Tech College of Engineering, the College of Sciences and Arts, the Department of Civil and Environmental Engineering, the Department of Mechanical Engineering-Engineering Mechanics, the Department of Chemical Engineering, the School of Forest Resources and Environmental Science, the Department of Biological Sciences, the Great Lakes Research Center, Youth Programs, and an anonymous donor.

The STEM internship program is coordinated by Joan Chadde at Michigan Tech Center for Science and Environmental Outreach.


Mining Engineering Returns to Michigan Tech

A class of 14 Michigan Tech field geology students stand at the entrance of the Caledonia Mine, Ontonagon County, Michigan. Photo courtesy of Steve Chittick.
Michigan Tech field geology students stand at the entrance of the Caledonia Mine, Ontonagon County, Michigan. Photo courtesy of Steve Chittick.

Starting this summer, Michigan Technological University offers a new, multidisciplinary Mining Engineering degree program for graduate and undergraduate students.

Administered through the Department of Geological and Mining Engineering and Sciences, the multidisciplinary program includes core mining and geological engineering courses as well as classes from almost all of the departments in the College of Engineering.

“At Michigan Tech, it’s a part of our heritage, and it’s part of the future, too,” says Leonard Bohmann, associate dean of engineering. “There’s a definite need for mining engineers, now and into the future. We can help fill that need, which extends far beyond renewed local mining concerns,” he adds. “There’s a global need for mining engineers.”

Paige in the mine

“Complex endeavors require skilled people with the technical understanding and innovative mindset to design systems to safely address multifaceted challenges,” says John Gierke, GMES department chair. “To develop mineral resources in a socially and environmentally responsible manner, we need mining engineering professionals who are adept at solving complex problems.”

Back to the Future

Although the Michigan Mining School was created to train mining engineers in 1885, dwindling enrollments led to shelving the program 15 years ago. “Thanks to strong engagement from our alumni, coupled with the advancing digital revolution that is changing how the industry moves into the next generation, the foundation for reintroducing the mining engineering program at Michigan Tech allowed for its reinstatement,” says Gierke. “Sometimes, one does not fully appreciate what they have until it’s gone.”

Today, 134 years since its founding, students can pursue a degree in mining engineering at Michigan Tech to gain an understanding of the technical aspects of the mining industry and an appreciation for mining as a business; and an awareness of social-environmental issues and how these issues affect their roles as future professional engineers working for the general benefit of society.

Matt Portfleet shows safe rock drilling practices to geology major Elana Barth in the Adventure Mine. Photo courtesy of Matt Portfleet.
Matt Portfleet shows safe rock drilling practices to Michigan Tech geology major Elana Barth in the Adventure Mine in Greenland, Michigan. Photo courtesy of Matt Portfleet.

Mining engineering students learn about health and safety best practices from practitioners. They are involved in multidisciplinary, hands-on, and field-based courses; learning and research opportunities in exploration and resource development; complementary coursework in mineral processing and business; advanced technologies for mapping, exploration, and education; and advanced computing and data science for optimizing mine design and operations.

Across the entire country, now, only 14 mining engineering degree programs exist in the US. Michigan Tech offers students several important advantages. “Students will learn about mining engineering in a collaborative academic department that is home to non only mining engineering, but also geological engineering, geology, geophysics, and volcanology,” says Gierke. “Our expert faculty work together in applying and developing new technologies to better understand geologic processes—and better understand how to safely develop and manage Earth resources from discovery to closure.”

Aeromagnetic survey, courtesy of Michigan Tech alumnus Benjamin Drenth, '03. An aeromagnetic survey is a common type of geophysical survey carried out using a magnetometer aboard or towed behind an aircraft. The principle is similar to a magnetic survey carried out with a hand-held magnetometer, but allows much larger areas of the Earth's surface to be covered quickly.
Aeromagnetic survey, courtesy of Michigan Tech geological engineering alumnus Benjamin Drenth, ’03. A magnetometer is aboard or towed behind an aircraft. It is similar to a magnetic survey carried out with a hand-held magnetometer, but allows much larger areas of the Earth’s surface to be covered quickly.

“Another great advantage for our students is Michigan Tech’s location in Michigan’s historical Keweenawan native-copper district,” notes Gierke. “Our students will have an abundance of hands-on, learning opportunities in working mines,” he says.

“The new way of mining is more data intensive. For instance, drone mapping makes it easy and possible to map a pit every day, versus mapping a pit once or twice a year via surveying,” adds Gierke. “Our students will become adept and experienced with new technologies. We’ll be educating mining engineers of the future.”

Want more info on mining engineering at Michigan Tech? Learn more online.