Category: Education

Aleksey Smirnov is the new Chair of Geological and Mining Engineering and Sciences

Aleksey Smirnov is the new chair of the Department of Geological and Mining Engineering and Sciences at Michigan Tech

The College of Engineering at Michigan Technological University is pleased to announce that Aleksey Smirnov has accepted the position of chair of the Department of Geological and Mining Engineering and Sciences, beginning July 1, 2020.

Smirnov joined Michigan Tech as an assistant professor of geophysics in 2007, teaching undergraduate and graduate courses in Plate Tectonics and Global Geophysics, Planetary Geology and Geophysics, and Fundamentals of Applied and Environmental Geophysics. 

His research interests include the long-term evolution of the Earth’s magnetic field and its geological and geodynamical implications. Deciphering the early history of our planet—including the early history of its geomagnetic field—represents one of the great challenges in Earth science.

Smirnov seeks to substantially increase the amount of reliable data on the Precambrian field by applying new experimental approaches to investigate the fossil magnetism of well-dated igneous rocks around the globe. He also investigates geodynamics and global plate tectonics, magnetism of rocks, minerals, and synthetic materials, environmental magnetism, and develops new techniques and instruments for paleomagnetic and rock magnetic research. His work on the early magnetic field history has been supported by several NSF grants including a 2012 CAREER award. 

“I am delighted that Dr. Smirnov will be Chair of GMES and looking forward to him joining the leadership team of the college,” states Dean Janet Callahan. “His experience as a faculty member and long-term perspective of the department will be something he can strongly leverage as he works to grow the research profile of the department and student enrollment.”

Professor John Gierke led the department as chair for two terms, or six years. “We are grateful for Dr. Gierke’s leadership,” says Callahan. He is also a tremendous teacher and researcher, and is looking forward to giving both his full attention once again.”

After receiving his BS in Geophysics from Saint-Petersburg State University (Russia) in 1987, and his PhD in Geophysics from the University of Rochester in 2002, Smirnov conducted postdoctoral studies at the University of Rochester, and at Yale University. At Michigan Tech, he is also affiliated with the Department of Physics.

What first brought you to Michigan Tech?

Our University has been renowned for its geophysical research, including my own field of paleomagnetism, for many years. The opportunity for collaboration with such an accomplished academic community played an important role in my decision. In addition, Michigan’s Upper Peninsula and the surrounding regions have a rich geologic history with some of the oldest rocks on Earth. This makes it a prime geological location to study the evolution of the early Earth’s geomagnetic field, which is one of my main research interests. After 13 fruitful years at Michigan Tech, I know I made the right choice. 

What do you enjoy most about your research and teaching?

I have established a robust research program that involves worldwide collaborations and has yielded some important results. However, the most enjoyable part of both my scientific research and classroom teaching at Michigan Tech has been my interaction with students. My research activities provide excellent opportunities for student research and academic instruction, and I have been able to work together with very talented graduate and undergraduate students. 

What are you hoping to accomplish as chair?

I envision a vibrant and diverse department that is nationally and internationally recognized for its excellence in education and research. I intend to assure our position as a proactive, efficient, and respected participant in the efforts of both the College and the University as we strive towards our shared strategic goals, including student enrollment, research, diversity, and external recognition.

Our department has evolved over time to meet the needs of our ever-changing world, but it has been and remains an integral part of Michigan Tech since its foundation in 1885. As chair, I will be honored to uphold this legacy of excellence and distinction into the future.


John Irwin is New Chair of Manufacturing and Mechanical Engineering Technology at Michigan Tech

John Irwin stands at the front of a class with white board in the background. He wears a red and white checked shirt, and he is smiling at the class.
Professor John Irwin, new chair of the MMET department at Michigan Technological University, teaches a course in Product Design and Development on campus last fall.

The College of Engineering at Michigan Technological University is pleased to announce that John Irwin has accepted the position of chair of the Department of Manufacturing and Mechanical Engineering Technology beginning July 1, 2020. 

John Irwin is a professor and served as associate chair of the MMET department this past year with Materials Science and Engineering Professor Walt Milligan, who was interim chair during the department’s transition from the School of Technology to the College of Engineering.

“I am looking forward to Dr. Irwin’s leadership in the department of MMET. This is one of our strongest hands-on programs, graduating strongly qualified, highly sought graduates,” stated College of Engineering Dean Janet Callahan. “Dr. Irwin’s extensive experience with continuous improvement of academic programs through ABET is a strong asset he brings to the department.”

Irwin has taught many courses in the MET program. Most recently, courses in Parametric Modeling, Statics and Strength of Materials, Product Design and Development, CAE and FEA Methods, Computer-aided Manufacturing, and Senior Design. 

His research interests include problem-based learning methods applied in the areas of CAD/CAM, static and dynamic model simulation, and product and manufacturing work cell verification. Dr. Irwin is also an affiliate professor with the Department of Cognitive Learning and Sciences, and Director of the Research and Innovation in STEAM Education (RISE) Institute at Michigan Tech. 

Irwin earned an AAS Mechanical Design Engineering Technology from Michigan Tech in 1982, a BS in Technical Education at Ferris State University in 1984, an MS in Occupational Education at Ferris State University in 1992, and a EdD in Curriculum and Instruction at Wayne State University in 2005. 

Irwin is a former collegiate cross country and track & field letter winner, and later competed as a company sponsored triathlete. Later he continued his athletic interests as a cross country coach for Mott Community College. John continues to run, swim and bike as an activity.

What first brought you to Michigan Tech?

I came to Michigan Tech from Mott Community College in Flint, Michigan, where I was a professor of design engineering technology. After earning a doctorate, I was interested in seeking a University position in engineering technology and/or STEM education. Fortunately, at that time there was a faculty opening in Michigan Tech’s School of Technology. As a graduate of Michigan Tech I had ties to the UP, and also family close to Houghton. Both things impacted my decision, but the high quality reputation of a Michigan Tech education is mainly what brought me here.

What are you hoping to accomplish as chair of the MMET department?

I’ve got an in-depth familiarity with the faculty and staff, having been an MET faculty member since 2006. We want to create a sustainable approach to funding capstone projects through industry relations, seek out advanced manufacturing research opportunities, facilitate the development of faculty-led multidisciplinary research projects, support continued program assessment accreditation procedures, and increase degree options for students. Maintaining the quality and services of the MMET Machine Shop is integral to reaching our goals.     

What do you enjoy most about your research and teaching?

Working with students in their senior capstone design sequence courses provides me with an instant reward as a faculty member. I greatly enjoy advising and facilitating the engineering problem-solving process. For many students, the senior project is their first opportunity to manage a project budget, work in a team for more than just a few weeks, and attempt to provide the project deliverables. Most rewarding of all is to hear from students after they’ve graduated, and find they are well established in successful careers as engineers. 

My research is very interconnected with my teaching. Specifically, I enjoy studying the use of simulations to better understand difficult-to-describe concepts, those that will benefit teaching and learning, and have a positive impact on industry in the long term. It is also especially wonderful to introduce many K-12 teachers to engineering concepts, and then see them apply those concepts in their classrooms.


Graduate School Announces Summer 2020 Award Recipients

Michigan Tech in Summer

 The Graduate School announced the recipients of the Doctoral Finishing Fellowship, Portage Health Foundation Graduate Assistantship, Matwiyoff & Hogberg Endowed Graduate Fellowship, and the DeVlieg Foundation Research Award. The Portage Health Foundation and the Graduate School have provided support to help students complete their doctoral studies and to those in health-oriented research areas.

The following are award recipients in engineering graduate programs:

Doctoral Finishing Fellowship Award

Portage Health Foundation Graduate Assistantship

Matwiyoff & Hogberg Endowed Graduate Fellowship

Profiles of current recipients can be found online.


Guy Meadows: Shipwrecks and Underwater Robots

Guy Meadows: “I love being on the waters of the Great Lakes and the oceans⁠—and having an engineering career that allows me to do what I love.

Guy Meadows shares his knowledge at Husky Bites, a free, interactive webinar this Monday, June 8 at 6 pm. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Guy Meadows uses an underwater robot to chart new territories in the field of underwater exploration. But not just any old robot—one of the world’s best.

Its name is Iver3, and it has two dual processor computers on board, Wifi, GPS, water flow and speed of sound sensors, and the latest in sonar technology. It can dive 330 feet and cover 20-plus miles of water on missions up to 8 hours. It also has a high definition camera, lights and a satellite phone. These combined features make Iver an impressive research tool.

The IVER3. Consider it a robotic Aquaman. “Iver performs like a superhero,” says Meadows.

With Iver, Meadows and his team are able to provide ultra-high resolution acoustic images underneath the waters of the Great Lakes. “Whether it’s tracking underwater features, looking at shipwrecks, or mapping trout spawning beds, we can do this all much more precisely and in much greater detail than was ever possible,” he says.

Meadows is director of the Marine Engineering Laboratory, and the Robbins Professor of Sustainable Marine Engineering at Michigan Tech. His work with Iver is cutting edge. “Iver can obtain a ‘survey quality’ map of a swath of the bottom of Lake Superior,” he explains. “The map size depends on the altitude of the robot above the lake floor, but at ten meters above the bottom you can map an entire football field.”

“What we’re doing is seeing with sound waves. Acoustic energy shines on the target and illuminates it for us. Navy research vessels use active remote sensing, too,” he adds. “But we can see a lot more clearly with Iver.”

A sepia-toned looking image of a shipwreck at the bottom of Lake Superior. Both the ship and its shadow are visible at a high resolution of detail.
Here is the John J. Audubon, which sank in Lake Huron in 1854 in 180 feet of water and now within the NOAA’s marine sanctuary boundaries. “We’re seeing with sound waves,” Guy Meadows explains. “Acoustic energy illuminates the target and allows a higher resolution image of the shipwreck and its acoustic shadow.”

Michigan Tech students learn how to program Iver as part of their many classes onboard Agassiz, the university’s research vessel. “If we set up the geometry just right, we can get the highest possible quality sonar image,” Meadows explains.

“When we go out to look at shipwrecks in Lake Superior, we program Iver to fly a prescribed distance from the bottom of the lake, and a prescribed distance from the vessel. We can see both the image of the target vessel, and its acoustic shadow,” says Meadows. “The images are fantastic, but the shadows also provide a great deal of valuable information and detail.”

Q: When did you first get into engineering? What sparked your interest?

“I was born and raised in the City of Detroit. I went to Detroit Public Schools, and when I went to college I had to work to make ends meet. I got a job as a cook in the dorm, and and eventually worked my way up to lead cook. I was cooking breakfast for 1,200 people each morning. One of my fellow classmates was studying engineering, too. He had a job working for a professor doing research on storm waves and beaches. I had no idea I could be hired by a professor and get paid money to work on the beach! I quit my job in the kitchen soon after, and went to work for that professor instead. I had been a competitive swimmer in high school, and the beach was where I really wanted to be. When I graduated with my degree, having grown up in Detroit, I went to work for Ford. I have to thank my first boss for assigning me to work on rear axle shafts. After about two months, I called my former professor, to see if I could come back to college.

My advice for students just starting out is to spend your first year exploring all your options. Find out what you really want to do. I had no idea I could turn a mechanical engineering degree into a job working on the beach. Turns out, I could⁠—and I’m still doing it today.

Q: What do you like to do when you’re not on the beach or out on the water?

Having grown up in Detroit, I have had the opportunity to live, work and grow in a very diverse community. While as a faculty member at the University of Michigan, I was part of a great team that started the M-STEM Academies and became its founding director. The M-STEM mission is “to strengthen and diversify the cohort of students who receive their baccalaureate degrees in science, technology, engineering, and mathematics (STEM), with the ultimate goal of increasing the number and diversity of students who are well prepared to seek career opportunities or to pursue graduate or professional training in the STEM disciplines in the new global economy.” This effort has been a very important part of my journey.

More about Guy Meadows

Throughout his career Guy Meadows has influenced policy and explored societal impacts of environmental forecasting for coastal management, recreational health and safety, and regional climate change.

Guy Meadows on the dock of the Great Lakes Research Center at Michigan Tech, in front of a large, bright yellow buoy (about the size of a very small compact car) that is used to collect data in Lake Superior.
Guy Meadows, Director of the Marine Engineering Laboratory, and Robbins Professor of Sustainable Marine Engineering at Michigan Tech.

After graduation from Purdue University with PhD in Marine Science in 1977, he joined the faculty of the University of Michigan College of Engineering, where he served as professor of physical oceanography for 35 years. During that time, Meadows served as director of the Ocean Engineering Laboratory, director of the Cooperative Institute for Limnology and Ecosystems Research (NOAA, Joint Institute), director of the Marine Hydrodynamics Laboratories.

Meadows joined Michigan Tech in June of 2012, to help establish the new Great Lakes Research Center. His primary goal is to blend scientific understanding and technological advancements into environmentally sound engineering solutions for the marine environment, through teaching, research and service.

His research focuses on geophysical fluid dynamics, with an emphasis on environmental forecasting, full-scale Great Lakes and coastal ocean experimental hydrodynamics.

His teaching reaches beyond the University to less formal settings and includes five nationally televised documentaries for the History and Discovery Channels.

Read & View More

Huskies Help Solve Sunken Minesweeper Mystery

Subsurface Vehicles at Michigan Tech’s Great Lakes Research Center

Be Brief: Shipwreck

Freshwater Flights Reveal What Lies Beneath

To Protect and Preserve



Sustainable Foam: Coming Soon to a Cushion Near You

Chemical engineering major Lauren Spahn presented her research at the Michigan Tech Undergraduate Research Symposium last spring. Her lignin project was supported by Portage Health Foundation, the DeVlieg Foundation, and Michigan Tech’s Pavlis Honors College.

Most polyurethane foam, found in cushions, couches, mattress, insulation, shoes, and more, is made from petroleum. Soon, with help from undergraduate researcher and chemical engineering major Lauren Spahn, it will also be environmentally-friendly, sustainable, and made from renewable biomass.

Spahn works in the Biofuels & Bio-based Products Laboratory at Michigan Technological University, where researchers put plants—and their lignin—to good use. The lab is directed by Dr. Rebecca Ong, an assistant professor of chemical engineering.

Q&A with Lauren Spahn

Q: Please tell us about the lab.

A: “Our goal in working with Dr. Ong is to develop sustainable industries using renewable lignocellulosic biomass⁠—the material derived from plant cell walls. There are five of us working on Dr. Ong’s team. We develop novel co-products from the side streams of biofuel production, and pulp and paper production. We’re trying to make good use of the leftover materials.

 

Lignocellulose, aka biomass, is the dry matter of plants. Energy crops like this Elephant Grass, are grown as a raw material for the production of biofuels.

Q: What kind of research are you doing?

A: My particular research project involves plant-based polyurethane foams. Unlike conventional poly foams, bio-based foams are generated from lignin, a renewable material. Lignin is like a glue that holds wood fibers together. It has the potential to replace petroleum-derived polymers in many applications. In the lab, we purify the lignin from something called “black liquor”⁠. It’s not what sounds like. Black liquor is a by-product from the kraft process when pulpwood is made into paper. Lignin is collected by forcing dissolved lignin to precipitate or fall out of the solution (this is the opposite of the process of dissolving, which brings a solid into solution). By adjusting the functional properties of lignin during the precipitation process, we hope to be able to tailor the characteristics of resulting foams. It’s called functionalization.

Typically in the lab process, functionalization occurs on lignin that has already been purified. What we hope to do is integrate functionalization into the purification process, to reduce energy and raw material inputs, and improve the economics and sustainability of the process, too.

Purified lignin, used to make bio-foam. The resulting foam will likely be light or dark brown in color because of the color of the lignin. It would probably be used in applications where color does not matter (such as the interior of cushions/equipment).

Q: How did you get started in undergraduate research?

A: I came to Michigan Tech knowing I wanted to get involved in research. As a first-year student, I was accepted into the Undergraduate Research Internship Program (URSIP), through the Pavlis Honors College here at Tech. Through this program I received funding, mentorship, and guidance as I looked to identify a research mentor. 

Q: How did you find Dr. Ong, or how did she find you?

A: I wanted to work with Dr. Ong because I found the work in her lab to be very interesting and relevant to the world we live in, in terms of sustainability. She was more than willing to welcome me into the lab and assist me in my research when I needed it. I am very thankful for all her help and guidance. 

Q: What is the most challenging and difficult part of the work and the experience?

A: Not everything always goes according to plan. Achieving the desired result often takes many iterations, adjustments, and even restructuring the experiment itself. After a while, it can even become discouraging.

Lignin is like a glue that holds wood fibers together, giving trees their shape and stability, and making them resistant to wind and pests. Pictured above, a biofuel plantation in Oregon.

Q: What do you do when you get discouraged? How do you persevere?

A: I start thinking about my goals. I enjoy my research—it’s fun! Once I remind myself why I like it, I am able to get back to work. 

Q: What do you enjoy most about research?

A: I enjoy being able to run experiments in the lab that directly lead to new designs, processes, or products in the world around me. It’s wonderful to have the opportunity to think up new product ideas, then go through the steps needed to implement them in the real world. 

Q: What are your career goals and plans?

A: I plan to go to graduate school for a PhD in chemical engineering, to work in R&D for industry. I am very passionate about research—I want to continue participating in research in my professional career.


Lignin at the nanoscale, imaged with transmission electron microscopy (TEM). Raisa Carmen Andeme Ela, a PhD candidate working in Dr. Ong’s lab, generated this image to examine the fundamental mechanisms driving lignin precipitation.

Q: Why did you choose engineering as your major, and why chemical engineering?

A: I chose chemical engineering because the field is so large. Chemical engineers can work in industry in numerous areas. I liked the wide variety of work that I could enter into as a career. 

Michigan Tech translates research into the new technologies, products, and jobs that move our economy forward.

Did you know?

  • Michigan Tech has more than 35 research centers and institutes
  • 20 percent of all Michigan Tech patent applications involve undergraduate students
  • Students in any engineering discipline are welcome to give research a try
  • Research expenditures at Michigan Tech—over $44 million-—have increased by 33% over the last decade, despite increased competition for research funding. 
  • Michigan Tech research leads to more invention disclosures—the first notification that an invention has been created—than any other research institution in Michigan.



Brad King: Space, Satellites and Students

Pictured: the Auris signal trace, soon to be explained by Dr. Lyon (Brad) King on Husky Bites.

Lyon (Brad) King shares his knowledge on Husky Bites, a free, interactive webinar this Monday, May 18 at 6 pm. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Oculus deployed! In June 2019 Michigan Tech alumnus and Air Force Research Laboratory Space Systems Engineer Jesse Olson, left, celebrates with Aerospace Enterprise advisor Brad King. King’s son Jack was also on hand for the momentous occasion of the launch.

Turning dreams into reality is a powerful motivator for Lyon (Brad) King. He’s the Richard and Elizabeth Henes Professor of Space Systems in the Department of Mechanical Engineering-Engineering Mechanics, and leader of Michigan Tech Aerospace—a collection of research, development, and educational labs dedicated to advancing spacecraft technology.

King specializes in spacecraft propulsion — and the launching of student careers. He mentors a large team of graduate students in his research lab, the Ion Space Propulsion Lab, where teams develop next-generation plasma thrusters for spacecraft. Off campus, at the MTEC SmartZone, King is cofounder and CEO of the fast-growing company, Orbion Space Technology.

As the founder and faculty advisor of Michigan Tech’s Aerospace Enterprise, King empowers undergraduate students to design, build, and fly spacecraft, too. One of the team’s student-built satellites (Oculus) is now in orbit; their second small satellite (Stratus) is due to launch in March 2021, and a third (Auris) now in process.

“The desire to explore space is what drives me. Very early in my studies I realized that the biggest impediment to space exploration is propulsion. Space is just so big it’s hard to get anywhere. So I dedicated my professional life to developing new space propulsion technologies.”

Professor Lyon (Brad) King, Michigan Tech

King has served as the Enterprise advisor ever since a couple of students came to him with the idea to form a team nearly two decades ago. “My current role now is more that of an outside evaluator,” he says. “The team has taken on a life of its own.”

Like all Enterprise teams at Michigan Tech, Aerospace Enterprise is open to students in any major. “It’s important for students to learn how to work in an interdisciplinary group,” says King. “In the workplace, they will never be on a team where every member has the same expertise. To design, build, manage and operate a satellite requires mechanical, electrical, computer science, physics, materials, everything — it really crosses a lot of boundaries and prepares them for a career.”

Adds King: “Michigan Tech has a history and reputation for hands-on projects, particularly its Enterprise Program. Our students don’t just write papers and computer programs. They know how to turn wrenches and build things. That’s been deeply ingrained in the University culture for years.” 

Last, but not least: “Aerospace Enterprise has a leadership and management hierarchy that is self-sustaining,” says King. “Current leaders are constantly working to mentor their successors so we have continuity from year-to-year.” 

“Dr. King provides excellent mentoring and high-level direction, but does not give students all the answers. It’s up to the students to figure it out. We work in small teams, which forces us to take on more responsibility. We’re thrown off the deep end. It’s hard, but worth it.”

Sam Baxendale, spoken as a former student. He’s now an engineer at Orbion Space Technologies
The Aerospace Enterprise team at Michigan Tech enjoys some well-deserved downtime at McLain State Park on Lake Superior.

The New Space Era

Commercialization is driving aerospace expansion in Michigan and across the nation. “We were ahead of it,” says King. “We certainly were feeding it and played a part in causing it. MTU’s products — which are our graduates — are out there, making this happen.” Aerospace Enterprise alumni are engineers, managers, technology officers and research scientists in a diverse array of aerospace-related industries and institutions, from the U.S. Army, U.S. Air Force and NASA to SpaceX, both startups and major manufacturers. King himself has hired several of his former students at Orbion Space Technology.

“The desire to explore space is what drives me,” says Lyon (Brad) King, Henes Professor of Space Systems at Michigan Technological University

Q: When did you first get into engineering? What sparked your interest?

A: I have always been interested in building things — long before I knew that was called “engineering.” I don’t recall when I became fascinated with space but it was at a very early age. I have embarrassing photos of me dressed as an astronaut for halloween and I may still even have an adult-sized astronaut costume somewhere in my closet — not saying. The desire to explore space is what drives me. Very early in my studies I realized that the biggest impediment to space exploration is propulsion. Space is just so big it’s hard to get anywhere. So I dedicated my professional life to developing new space propulsion technologies. There is other life in our solar system. That is a declarative statement. It’s time that we find it. The moons of Jupiter and Saturn hold great promise and I’m determined to see proof in my lifetime.

Q: Can you tell us more about your growing up? Any hobbies?

A: I was born and raised just north of Houghton (yes, there actually is some habitable environment north of Houghton). I received my BS, MS, and PhD from the University of Michigan. I spent time traveling around the country working at NASA in Houston, NIST in Boulder, and realized that all of my personal hobbies and proclivities were centered around the geography and climate of northern Michigan. I returned in 2000 and began my career as a professor at MTU. I enjoy fishing, boating, hockey, and spent more than 15 years running my dogsled team all over the Keweenaw Peninsula.


Michigan Tech’s Three Student-Built Satellites

OCULUS-ASR, a microsatellite now in orbit, provides new info to the Air Force. “It is the first satellite mission dedicated to helping telescope observatories understand what they are imaging using a cooperative target. “It’s a very capable little vehicle. There’s a lot packed into it.”

Aerospace Enterprise rendering of Stratus, a miniaturized satellite developed by the team. It will be launched from the International Space Station in March 2021.

Not hard to see how CubeSats get their name. Stratus is a 3U spacecraft, which means it’s composed of three units. This photo was taken in fall 2019.

STRATUS, a miniaturized satellite, will image atmospheric clouds to reconcile climate models. It’s funded by NASA’s Undergraduate Student Instrument Program and the CubeSat Launch Initiative. STRATUS will be carried to the International Space Station inside the SpaceX Dragon cargo capsule by a Falcon 9 rocket. The Dragon will dock to the ISS where STRATUS will be unloaded by the crew. STRATUS will then be placed in the Kibo Module’s airlock, where the Japanese Experiment Module Remote Manipulator System robotic arm will move the satellite into the correct position and deploy it into space. All this on March 21. Stay tuned!

Aerospace Enterprise rendering of its newest microsatellite, Auris, now in the works.

AURIS, a microsatellite, is designed to monitor and attribute telecommunications signals in a congested space environment. Funding comes from the Air Force Research Lab (AFRL)’s University Nanosatellite Program.

Huskies in Space

Michigan Tech’s Aerospace Enterprise team designed their own logo.

Learn more about the team and its missions on Instagram and Facebook.

Find out how to join.

Read more about Aerospace Enterprise in Michigan Tech News:

And Then There Were Two: MTU’s Next Student Satellite Set to Launch in 2021

Enterprise at MTU Launches Spacecraft—and Careers

Countdown. Ignition. Liftoff. Huskies in Space!

Mission(s) AccomplishedMichigan Tech’s Pipeline to Space

Winning Satellite to be Launched into Orbit


Everything has to be made out of something. The question is out of what—and how do we make it?

Ferrosilicon inoculant is added to a stream of liquid iron. Sparks fly as the inoculant reacts with the liquid iron.

These are the questions engineers at Michigan Tech have been asking since the university’s founding in 1885. It’s the task that graduates from the Department of Materials Science and Engineering (MSE) have excelled at since its inception as one of the two founding departments at the Michigan School of Mines in Michigan’s Upper Peninsula in 1885. Back then, the department was known as Metallurgy, and its focus was on ways to extract valuable metals, such as copper or iron, from their naturally occurring states within minerals and underground deposits.  

Today the discipline of Materials Science and Engineering finds ways to use the fundamental physical origins of material behavior—the science of materials—to optimize properties through structure modification and processing, to design and invent new and better materials, and to understand why some materials unexpectedly fail. In other words, the engineering of materials.  

The Michigan Tech campus is located on the Portage Canal near Lake Superior.

Contemporary materials engineers (aka MSEs) work with metals and alloys, ceramics and glasses, polymers and elastomers; electronic, magnetic, and optical materials; composites, and many other emerging materials. That includes materials such as 2-D graphene, nanomaterials and biomaterials, materials that have been 3D printed or additively manufactured, smart materials, and specialized sensors.

Materials Science and Engineering (MSE) connects and collaborates with many other disciplines. The products and processes developed by MSEs are used by others to make new or improved products.

Materials Science and Engineering is inherently interdisciplinary—students interact and collaborate with students and scientists in other engineering disciplines, and also science disciplines, including chemistry and physics. 

Despite its legacy and historical central importance to all engineering endeavors, the materials discipline is relatively small compared to other engineering disciplines such as mechanical, electrical, civil, and chemical engineering. In fact, many universities do not have stand-alone materials departments.

“But this is one of the best aspects of being an MSE,” says Michigan Tech MSE Department Chair Steve Kampe, “Class sizes are small, and students build strong networks with classmates, the faculty and staff, and with likeminded colleagues from other universities from around the world,” he says. “It enables strong learning and collaborative environments with lots of personalized interaction and one-on-one mentoring.”

Not only is Kampe a member of the Michigan Tech faculty, he is also an alumnus, earning a Bachelor’s, Master’s, and PhD in Metallurgical Engineering, all from Michigan Tech. He joined academia after working in the corporate research laboratory for a major aerospace company, where scientists and engineers developed new products and technologies for the company’s future.

Examining material structure using the scanning electron microscope.

At Michigan Tech, the MSE department manages the university’s suite of scanning electron and transmission electron microscopes, including a unique, high resolution scanning transmission FEI Titan Themis. The facility also maintains excellent X-ray diffraction, X-ray photoelectron spectroscopy, and Auger electron spectroscopy capabilities. In the university’s Institute of Material Processing (IMP), also led by MSE faculty, processing capabilities include melt processing, deformation processing, microelectronic fabrication, and particulate (powder)-based processing capabilities. All students use these world-class facilities—even as undergraduates.

Students at Michigan Tech can join one of 24 Enterprise teams on campus to work on real projects, for real clients. Students invent products, provide services, and pioneer solutions. Advanced Metalworks Enterprise (AME) is a popular enterprise among MSE students. Small groups within the AME team take ownership of metallurgical manufacturing projects, working closely with industry sponsors.

The Advanced MetalWorks Enterprise team, AME, at Michigan Technological University

“Being on an Enterprise team helps students build a résumé, develop teamwork skills, form professional relationships, and learn what to expect in the workforce,” says Kampe. “We’re grateful for our corporate sponsors’ help in offering students an opportunity to take textbook skills from the classroom and apply them in practical ways, to experiment, and get results.”

MSE students also get involved in Materials United (MU), a student professional organization that exposes them to all aspects of Materials Science and Engineering—learning about industry, sharing research, developing personal skills, participating in professional societies, and traveling to international conferences. 

As one example of student success, MSE students from Michigan Tech won first place in ASM International’s Undergraduate Design Competition the last two years in a row, based on entries from their capstone senior design projects. Last year, the winning entry was based on a project entitled “Cobalt reduction in Tribaloy T-400” sponsored by Winsert, Inc. of Marinette, Wisconsin.

Microstructure of Tribaloy T-400 containing a Co solid solution, a C14 Laves phase, and a Co solid solution-C14 Laves eutectic phase.

“Winsert currently uses an alloy similar to Tribaloy T-400, a cobalt-based alloy, in the production of internal combustion engine valve seats,” Kampe explains. “Cobalt is an expensive element with a rapidly fluctuating price, due to political instability in the supplier countries. The alloy contains approximately 60 wt. percent cobalt, contributing significantly to its price. There are also serious sustainability and environmental implications associated with the use of cobalt—both positive and negative,” he says. “Cobalt is one of the elements used as an anode material for lithium ion batteries that are now under heavy development for electric vehicles.” 

The student team investigated the replacement of cobalt with other transition elements such as iron, nickel, and aluminum using thermodynamic modeling. “All MSE senior design projects at Michigan Tech use advanced simulation and modeling tools, experimental calibration, and statistical-based analyses of the results,” notes Kampe. “The Winsert project utilized software called CALPHAD (Pandat) with a form of machine learning —Bayesian Optimization—to identify new and promising alloy substitutions. Such advanced techniques are rarely introduced at the undergraduate level in most other MSE programs.”

“Our department’s small size allows meaningful student involvement in hands-on laboratory activities, personal access to facilities, real participation in leading-edge projects, and close networking with peers, faculty and staff, alumni, and prospective employers,” adds Kampe. “The benefits of being a part of a strong professional network continues after graduation. Our strong learning community becomes our students’ first professional network after they graduate. It gives them a strong early foundation for a great career.”

A metal matrix composite created by infiltrating magnesium into a carbonized wood lattice. In this senior design project, the MSE team collaborated with Michigan Tech’s College of Forest Resources and Environmental Science.

Due to the importance of materials to the success of nearly all engineered products, MSEs enjoy employment opportunities in a wide range of industries and in a variety of functions. For example, MSEs are prominent within the automotive, aerospace, electronics, consumer products, and defense industries, performing duties such as new material design, material substitution and optimization, manufacturing science, and material forensics, such as material identification and failure analyses. 

MSE undergraduate students Kiaya Caspers, Jared Harper, Jonah Jarczewski, and Pierce Mayville.

“There are also rich opportunities in corporate and government research and development, since new products and functionalities often start with advancements in our understanding of materials, or in our ability to process them,” says Kampe. “MSE graduates from Michigan Tech enjoy nearly 100 percent placement at graduation due not only to the reputation of the department, but also due to the fact that just about all engineering-oriented companies rely on materials for their products.”


Design Expo 2020 Award Winners

A view of campus from across the Portage Canal, with light snow, and open water.

More than 1,000 students in Enterprise and Senior Design showcased their hard work last Thursday, April 16 at Michigan Tech’s first-ever virtual Design Expo. Teams competed for cash awards totaling nearly $4,000. Judges included corporate representatives, community members and Michigan Tech staff and faculty.

The College of Engineering and the Pavlis Honors College are pleased to announce award winners, below. Congratulations and thanks to ALL teams for a very successful Design Expo 2020. But first, a few important items:

Design Expo Video Gallery

Be sure to check out the virtual gallery, which remains on display at mtu.edu/expo.

20th Anniversary of Design Expo
This year marked the 20th anniversary of Design Expo. Read the Michigan Tech news story here.

SOAR’s SSROV Royale deployed in summers on Isle Royale National Park as part of the Enterprise partnership.
SOAR’s SSROV Royale deployed in summers on Isle Royale National Park as part of the Enterprise partnership

Special Note:
In addition to all the Michigan Tech teams, SOAR, a high school Enterprise from Dollar Bay High School in Michigan’s Upper Peninsula, also took part in this year’s virtual Design Expo. Advised by teacher Matt Zimmer, the team designs, builds, and deploys underwater remote operated vehicles (ROVs). SOAR partners with local community organizations to monitor, research, and improve the local watershed. Their clients include Isle Royale National Park, Delaware Mine, OcuGlass, and Michigan Tech’s Great Lakes Research Center. Check out the SOAR video here (SOAR is team 124).


Now, without further ado, here are the Design Expo award results!


ENTERPRISE AWARDS
Based on video submissions

Team photo with Baja vehicle outside on campus at Michigan Tech with Portage Canal in the background.

First Place – $500
Blizzard Baja Enterprise
Team Leaders: Olivia Vargo, Mechanical Engineering, and Kurt Booms, Mechanical Engineering Technology
Advisor: Kevin Johnson, Mechanical Engineering Technology
Sponsors: General Motors, Aramco Americas, DENSO, SAE International, Magna, Fiat Chrysler Automobiles, Halla Mechatronics, Meritor, Oshkosh Corporation, Ford Motor Company, John Deere, Nexteer, IPETRONIK, FEV, Milwaukee Tool, Altair, Henkel, ArcelorMittal, TeamTECH, and Keysight Technologies
Overview: Building and innovating a single-seat, off-road vehicle for the SAE Collegiate Design Series-Baja events is the team’s focus. After passing a rigorous safety and technical inspection, they compete on acceleration, hill climb, maneuverability, suspension and endurance. The team also organizes and hosts the Winter Baja Invitational event, a long-standing university tradition dating back to 1981.


Team photo

Second Place – $300
Mining INnovation Enterprise (MINE)

Team Leaders: George Johnson, Mechanical Engineering; and Breeanne Heusdens, Geological Engineering
Advisor: Paulus Van Susante, Mechanical Engineering-Engineering Mechanics
Sponsors: Cignys, Cummins, General Motors, MEEM Advisory Board, Michigan Scientific Corporation, Michigan Space Grant Consortium, Milwaukee Tool, MISUMI, NASA, Raytheon, Wayland Wildcats
Overview: MINE designs, tests, and implements mining innovation technologies—in some hard-to-reach places—for industry partners. The team is developing a gypsum process to mine water on Mars funded by a grant from NASA. Gypsum is 20 percent water by weight and is found abundantly on the surface of Mars. A geological sub-team is developing methodology for deep sea mining research. Last but not least, MINE is creating a robot for the NASA Lunabotics competition, held every year at the Kennedy Space Center with 50 university teams in attendance.


Team photo near the Husky statue at Michigan Tech, in the snow.

Third Place – $200 (tie)
Innovative Global Solutions
(IGS)
Team Leaders: Nathan Tetzlaff, Mechanical Engineering; Marie Marche, Biomedical Engineering
Advisors: Radheshyam Tewari, Mechanical Engineering-Engineering Mechanics; and Nathan Manser, Geological and Mining Engineering and Sciences
Sponsors: Cummins, Milwaukee Tool, and Enterprise Manufacturing Initiative funded by General Motors
Overview: IGS pursues solutions for the needs of developing countries, making contributions toward solving the Grand Challenges, an initiative set forth by the National Academy of Engineering. The team has designed, built and tested an innovative vaccine container to improve the transport of viable vaccines and increase accessibility. They have developed a low-cost, multifunctional infant incubator to help decrease infant mortality rates. They are also working on an open-source-based 3D printer that can recycle plastic to meet basic community needs.


Stratus: Detailed render of the Stratus spacecraft deployed on-orbit.

Third Place – $200 (tie)
Aerospace Enterprise

Team Leaders: Troy Maust, Computer Engineering; and Matthew Sietsema, Electrical Engineering
Advisor: L. Brad King, Mechanical Engineering-Engineering Mechanics
Sponsors: Air Force Research Laboratory, NASA
Overview: Space mission design and analysis, vehicle integration, systems engineering, and comprehensive ground-testing and qualification are all going on within the Aerospace Enterprise at any given time. All members contribute toward achieving specific project goals. The Auris mission demonstrates the technical feasibility of a CubeSat to provide situational data, in collaboration with the Air Force Research Laboratory (AFRL). The Stratus mission involves collecting atmospheric and weather data from a CubeSat in collaboration with NASA—a pathfinder toward developing new, complex space systems leveraging the low-cost and small size of CubeSats to achieve the performance of traditional, monolithic systems.


Lost in Mazie Mansion, a game created by HGD shows an illustration of Mazie (small figure with golden hair, standing in what looks like a library, with 3 sets of bookcases behind her.

Honorable Mention – $100
Husky Game Development (HGD)

Team Leaders: Colin Arkens and Xixi Tian, Computer Science
Advisor: Scott Kuhl, Computer Science
Sponsor: Pavlis Honors College
Overview: Developing video games is the name of the game for HGD. Each year, the Enterprise breaks up into subteams of around six students who experience a full game development cycle, including ideation, design, and end product. HGD explores a wide variety of video game engines and platforms, including Windows, Android, Xbox, and an experimental Display Wall.


SENIOR DESIGN AWARDS
Based on video submissions

Blueprint-style drawing of the team's eddy current inspection in-line integration tester.

First Place – $400
Eddy Current Inspection In-line Integration

Team Members: Brett Hulbert, Austin Ballou, Britten Lewis, Nathan Beining, Philip Spillman and Sophie Pawloski, Mechanical Engineering
Advisor: Wayne Weaver, Mechanical Engineering- Engineering Mechanics
Sponsor: MacLean-Fogg Component Solutions-Metform
Overview: Eddy current testing (ECT) is a non-destructive method for testing metal surfaces for defects using electromagnetic induction to detect surface flaws in conductive materials. The team was tasked with developing an eddy current tester that would non-destructively test a washer for surface cracks and flaws before it is assembled with a nut. They created a testing operation that spins, tests, and ejects washers based on whether they pass or fail, all within the existing assembly cell.


CAD drawing of the team's
hospital washer with data optimization sensors.

Second Place – $250
Hospital Washer Auto Sampler Usage & Data Optimization
Team Members: Nick Golden and Jeremy Weaver, Biomedical Engineering; Jack Ivers, Mechanical Engineering
Advisors: Bruce Lee and Sangyoon Han, Biomedical Engineering
Sponsor: Stryker
Overview: Hospitals use wash systems to clean and sterilize instruments after use. Factors of the wash environment can harm surgical instruments. To solve this problem, the team designed a device that actively senses conditions inside a hospital washer to provide information on the effects of the wash environment, allowing for wash cycle optimization.


A 3D-printed pattern cast in aluminum by sponsor Mercury Marine

Third Place – $150
Direct Casting with Additive Manufactured Patterns
Team Members: James Driesenga, Riley Simpson, Camden Miner, Zach Schwab, TC Swittel, and Sean Frank, Mechanical Engineering
Advisor: Bob Page, Mechanical Engineering-Engineering Mechanics
Sponsor: Mercury Marine
Overview: The team developed a lost-foam style casting process that uses a 3D printed pattern instead of expanded polystyrene in metal casting. The use of expanded polystyrene allows for complete part filling, but cost and time required to create a new pattern are high. The 3D printing of patterns eradicates the need for pattern tooling and significantly reduces the time required to produce a pattern.


Medtronic’s radiofrequency ablation platform: Accurian System

Honorable Mention (1) – $100
Radiofrequency Ablation Modeling and Validation of Cannula Design
s
Team Members: Clare Biolchini, Matthew Colaianne, and Ellen Lindquist, Biomedical Engineering; Samuel Miller, Electrical Engineering
Advisor: Jeremy Goldman, Biomedical Engineering
Sponsor: Medtronic
Overview: Predictable lesion formation during radiofrequency (RF) ablation for pain control is a function of many factors and the subject of decades of research. Of specific interest to Medtronic is lesion formation in non-homogeneous tissues and structures. The team developed mathematical models and physical model validation for treatment scenarios, including knees and shoulders. Photo courtesy of Medtronic.


Solidworks model of deicing fluid collection cart

Honorable Mention (2) – $100
Airport Needs Design Challenge
Team Members: Derek Cingel, Jared Langdon, Bryce Leaf, Ruth Maki, and Douglas Pedersen, Mechanical Engineering
Advisor: Paul van Susante, Mechanical Engineering-Engineering Mechanics
Sponsor: Airport Cooperative Research Program
Overview: To help reduce the contamination of deicing fluid in small airports, the team developed a cart specially designed to collect a significant amount of the fluid that comes from the wings. Saving and reusing deicing fluid will save money, and reduce the runoff into streams and waterways.


A prototype of the testing system, shown on a workbench

Honorable Mention (3) – $100
Validation Test System for Boston Scientific IPP
Team Members: McKenzie Hill, Ahmed Al Dulaim, Nathan Halanski, and Katherine Wang, Biomedical Engineering
Advisors: Orhan Soykan and Sangyoon Han, Biomedical Engineering
Sponsor: Boston Scientific
Overview: Performing analyses, simulations, and engineering calculations, the team was able to estimate and predict the movement of IPP cylinders and resulting stress/strain. They designed new test procedures to perform physical testing and fabricated a physical test system.


Team members from left: Brian Parvin, Paul Allen, David Brushaber, Alex Kirchner, Kurtis Alessi

Honorable Mention (4) – $100
Road Marking Reflectivity Evaluator
Team Members: Brian Parvin, Mechanical Engineering; Paul Allen, Electrical Engineering; and David Brushaber, Kurtis Alessi and Alex Kirchner, Computer Engineering
Advisor: Tony Pinar, Electrical and Computer Engineering
Sponsor: SICK, Inc.
Overview: When road stripes wear off, auto accidents increase. To solve this problem, the team developed software that uses reflectivity values obtained using a SICK lidar unit. Their new software identifies deterioration of road stripes and recommends timely repainting, which will also aid in the safety and reliability of self-driving vehicles on roadways. The team constructed a prototype to demonstrate functionality–a pushable cart that evaluates road markings. An intuitive user interface displays the markings being evaluated, and indicates if they meet necessary levels of reflectivity. With their project, the team is taking part in the TiM$10K Challenge, a national innovation and design competition.


20th Anniversary “People’s Choice” Award – $100
Based on receiving the most text-in votes during Design Expo

A CAD drawing of the actuator showing two UGVs connected by the coupling and actuating system

Connector and Coupling Actuator for Mobile Electrical Microgrids
Team Members: Trevor Barrett, Nathan Bondi, and Sam Krusinski, Mechanical Engineering; Travis Moon, Electrical Engineering
Advisor: Cameron Hadden, Mechanical Engineering-Engineering Mechanics
Sponsor: Center for Agile and Interconnected Microgrids
Overview: Imagine how someone living through a natural disaster like Hurricane Katrina or Hurricane Dorian must have felt—scared and helpless, with no way to call for assistance or let loved ones know they were okay. It could be days or weeks before first responders are able to restore power to the area. That is where our project comes in. Our team was tasked to design, prototype, and test a connector and coupling actuator that can establish an electrical connection between two unmanned ground vehicles that will be used to build temporary microgrids in areas that desperately need it.


DESIGN EXPO IMAGE CONTEST
Based on team photos submitted during Design Expo registration

First Place – $200
Formula SAE Enterprise

F-276 Racecar racing by on a speedway with the driver shown in his black helmet.
F-276 Racecar. Photo Credit: Brendan Treanore, 4th year, MSE

Second Place – $100
Flammability Reduction in Magnesium Alloys for Additive Manufacturing

Two orange-yellow flames jet up from a pike of ashes.
Flammability test of a magnesium AZ61 alloy. Photo Credit: Max Urquhart, 3rd year, ECE

Third Place – $50
Velovations Enterprise

Three fat tired bikes are parked in the snow along the Michigan Tech "Tech Trails" groomed trail system, covered in snow, with sunshine and trees in the background.
Velovations Enterprise: Testing dropper posts in the snow Photo Credit: Somer Schrock, 3rd year, ME

DESIGN EXPO INNOVATION AWARDS
Based on application
. Learn more here.

The Husky Innovate logo shows a lightbulb with blue, green and teal dots flowing out in the rough profile of a Husky dog.
Microphoto of master alloy nanoindentation array of Al25Mn, courtesy of MSE 4th year student Ryan Lester
Microphoto of master alloy nanoindentation array of Al25Mn. Credit: Ryan Lester

First Place – $250
Increasing the Young’s Modulus of Cast Aluminum for Stiffness-Limited Applications

Team Members: Joel Komurka, Ryan Lester, Zeke Marchel, and
Wyatt Gratz, Material Science and Engineering
Advisor: Paul Sanders, Materials Science and Engineering
Sponsor: Eck Industries


Benchtop design which simulates physiological conditions in HLHS patients for testing of our stent prototype. (photo taken by Kelsey LeMay)
The team’s benchtop design, which simulates the physiological conditions in HLHS patients used to test infant heart stent prototype.

Second Place – $150
Transcatheter Sign Ventricle Device (BME)

Team Members: David Atkin, Kelsey LeMay, and Gabrielle Lohrenz, Biomedical Engineering
Advisors: Smitha Rao and Jeremy Goldman, Biomedical Engineering
Sponsor: Spectrum Health—Helen DeVos Children’s Hospital


a prototype of the vaccine transporter, which is about the size of a large breadbox, and fits inside a duffel bag.
Second iteration of the IGS team’s vaccine cold transport container for developing countries, which fits neatly inside a duffel bag.

Third Place – $100
Innovative Global Solutions (IGS)

Team Leaders: Nathan Tetzlaff, Mechanical Engineering; Marie Marche, Biomedical Engineering
Advisors: Radheshyam Tewari, ME-EM and Nathan Manser, Geological and Mining Engineering and Sciences
Sponsor: Enterprise Manufacturing Initiative funded by General Motors, Cummins, Milwaukee Tool

2020 ENTERPRISE AWARDS
Based on student, advisor, faculty and staff nominations.

The Michigan Tech Enterprise Program logo, created over a decade ago by a Michigan Tech student, features a yellow lower case "e" in the shape of a swoosh


Student Awards
Outstanding Leadership: Allysa Meinburg, Consumer Product Manufacturing

Rookie Award: Bryce Traver, Alternative Energy Enterprise

Innovative Solutions: Travis Wavrunek, Alternative Energy Enterprise

Industry/Sponsor Relations: Jordan Woldt, Blue Marble Security/Oshkosh Baja Suspension Team

Faculty/Staff/Sponsor Awards
Outstanding Enterprise Advisor: Dr. Tony Rogers, Consumer Product Manufacturing

Outstanding Enterprise Sponsor: Michael Bunge, Libbey Inc.

Behind the Scenes: Steven Lehmann, Biomedical Engineering


THANKS TO ALL!

Now, be sure to check out all the awesome Enterprise and Senior Design team projects at mtu.edu/expo.


Design Expo is Today!

Join today us online at mtu.edu/expo. All are welcome!

The 20th Design Expo starts today (April 16). Watch the Kick-off event live via Zoom and Facebook Live starting at 10 a.m. Register to virtually attend this event before 10 a.m. via Zoom, or tune into the Pavlis Honors College Facebook Page. No registration required to watch via Facebook Live.

Starting at 4 p.m. we will live stream the Awards Presentation via Zoom and Facebook Live.

Register to virtually attend this event before 4 p.m. via Zoom or tune into the Michigan Tech Facebook Page. No registration required to watch via Facebook Live.

Use Text in Voting to vote for your favorite video using the number 919-351-8683. Participants can vote for as many competitors as they like but can only vote once for each competitor. Text in voting will take place from 10 a.m. to 3 p.m. today.

To vote, a participant might text the following case sensitive message to the phone number above: “101” to vote for Blizzard Baja or “201” to vote for Medical Device Ball Bearing Temperature Test Fixture. Team numbers and videos will be available via the Design Expo website, and all who register for Live Webinars.

Get more details in “MTU Design Expo Unveils Student Innovations” on Michigan Tech News.


Michigan Tech Students Receive NSF Graduate Research Fellowships

Seth A. Kriz in the lab.
Seth A. Kriz does undergraduate research on gold nanoparticles interacting with different viruses.

Three Michigan Tech students, Greta Pryor Colford, Dylan Gaines and Seth A. Kriz, have been awarded National Science Foundation (NSF) Graduate Research Fellowships. The oldest STEM-related fellowship program in the United States, the NSF Graduate Research Fellowship Program (GRFP) is a prestigious award that recognizes exceptional graduate students in science, technology, engineering and mathematics (STEM) disciplines early in their career and supports them through graduate education. NSF-GRFP fellows are an exceptional group; 42 fellows have gone on to become Nobel Laureates, and about 450 fellows are members of the National Academy of Sciences.

The Graduate School is proud of these students for their outstanding scholarship. These awards highlight the quality of students at Michigan Tech, the innovative work they have accomplished, the potential for leadership and impact in science and engineering that the county recognizes in these students, and the incredible role that faculty play in students’ academic success.

Dylan Gaines is currently a master of science student in the Computer Science Department at Michigan Tech, he will begin his doctoral degree in the same program in Fall 2020. Gaines’ research, with Keith Vertanen (CS), focuses on text entry techniques for people with visual impairments. He also plans to develop assistive technologies for use in Augmented Reality. During his undergraduate education at Michigan Tech, Gaines was a member of the cross country and track teams. Now, he serves as a graduate assistant coach. “I am very thankful for this award and everyone that supported me through the application process and helped to review my essays” said Gaines. Commenting on Gaines’ award, Computer Science Department Chair Linda Ott explained “All of us in the Department of Computer Science are very excited that Dylan is being awarded a NSF Graduate Research Fellowship. This is a clear affirmation that Dylan is an excellent student and that even as an undergraduate he demonstrated strong research skills. It also is a tribute to Dylan’s advisor Dr. Keith Vertanen who has established a very successful research group in intelligent interactive systems.”

Seth A. Kriz is pursuing his doctoral degree in chemical engineering, with Caryn Heldt (ChE). He completed his undergraduate education, also in chemical engineering, at Michigan Tech and has previously served as the lead coach of the Chemical Engineering Learning Center. His research focuses on developing improved virus purification methods for large-scale vaccine production so as to provide a timely response to pandemics. “I am extremely proud to represent Michigan Tech and my lab as an NSF graduate research fellow, and for this opportunity to do research that will save lives. My success has been made possible by the incredible family, faculty, and larger community around me, and I thank everyone for their support. Go Huskies!” said Kriz. Commenting on the award, Kriz’s advisor, Heldt said “Seth embodies many of the characteristics we hope to see in our students: excellence in scholarship, high work ethic, and a strong desire to give back to his community. I’m extremely proud of his accomplishments and I can’t wait to see what else he will do.” In addition, Kriz sings with the Michigan Tech Chamber Choir.

Greta Pryor Colford earned her bachelor’s degree in mechanical engineering and a minor in aerospace engineering from Michigan Tech in spring 2019. She is currently a post-baccalaureate student at Los Alamos National Laboratory, where she previously worked as an undergraduate and summer intern. At Los Alamos National Laboratory, Colford is part of the Test Engineering group (E-14) of the Engineering, Technology and Design Division (E). At Michigan Tech, she was a leader of the Attitude Determination and Control Team of the Michigan Tech Aerospace Enterprise, a writing coach at the Multiliteracies Center, and a member of the Undergraduate Student Government.

The fellowship provides three years of financial support, including a $34,000 stipend for each fellow and a $12,000 cost-of-education allowance for the fellow’s institution. Besides financial support for fellows, the GRFP provides opportunities for research on national laboratories and international research.

By the Graduate School.