Category: Education

New for 9th and 10th Graders This Fall: the Husky Bites Challenge

We Challenge You, 9th and 10th graders.
Hey 9th and 10th Graders: Don’t Paws for a Minute! Sign up for the Husky Bites Challenge by Monday, Sept. 20.

Do you know a 9th or 10th grader up for a challenge? Here’s one they can take this fall! Sign up by Monday, Sept. 20.

At Michigan Tech, the College of Engineering and Center for Educational Outreach have teamed up to offer a free, six-week, virtual design challenge for 9th and 10th graders. Students will hear from leaders in the field of sustainability design and engineering via Husky Bites, a free 20 minute(or so) interactive Zoom webinar hosted by College of Engineering Dean Janet Callahan. They’ll be mentored by current Michigan Tech students and work as a team to put forward a design proposal for a U.S. Green Building Council (USGBC) LEED-certified school. Registration for the Husky Bites challenge is free, with great prizes, and students are welcome to register individually or as a team.

LEED is short for Leadership in Energy and Environmental Design, the most widely used green building rating system in the world. LEED provides a framework for healthy, highly efficient, and cost-saving green buildings with some very cool features.

Registration for this virtual challenge is free, and students are welcome to register individually or as a team. The deadline is Monday, September 20, but may be extended.


Jeremy Bos: Annual First-Year Engineering Lecture at Michigan Tech

ECE ProfessorJeremy Bos (right) and ME-EM Professor Darrell Robinette (left) at the Michigan Tech Rozsa Center in August. Today Bos will be back on stage at the Rozsa with Prometheus Borealis to deliver the annual First-year Engineering Lecture to incoming students.

“We have a tradition at Michigan Tech of having a first-year lecture that helps students see how their technological education can help make a difference in the world,” says Janet Callahan, Dean of the College of Engineering. This year, 1,010 first year engineering students will be in attendance, the largest incoming class since 1982.

Jeremy Bos, assistant professor of electrical and computer engineering will deliver that lecture today, Thursday, September 9 at 6 pm.

Bos is also an alum. He earned a BS in Electrical Engineering at Michigan Tech in 2000, then returned to earn his PhD in Electrical Engineering and Optics in 2012. On campus he teaches a range of robotics courses, and serves as advisor and manager of several student groups. One of those is the Robotics Systems Enterprise (RSE). “Imagine an industry-driven team of students, seeking to seamlessly integrate exceptional knowledge in electronics, robotics, and programming to solve real world engineering problems,” he says.

ECE Assistant Professor Jeremy Bos

RSE’s projects come in many shapes and sizes, from designing a vision system for work with a robotic arm, to an automatic power management system for weather buoys. Clients include Ford Motor Company and Michigan Tech’s Great Lakes Research Center. “We use more than just the skills and talents of computer science, electrical engineering, and mechanical engineering majors in RSE,” adds Bos. “All majors are welcome, just like in any Enterprise.”

Enterprise at Michigan Tech is when students work in teams on real projects, with real clients, in an environment that’s more like a business than a classroom. With coaching and guidance from faculty mentors, 25 Enterprise teams on campus work to invent products, provide services, and pioneer solutions.

Bos also serves as advisor to students taking part in the SAE AutoDrive Challenge. It all started four years ago, back when Michigan Tech was selected along with seven other universities to participate in the collegiate competition hosted by GM. Each was tasked with designing, building and testing a fully autonomous vehicle. 

The Michigan Tech team started with a Chevy Bolt, outfitting it with sensors, control systems and computer processors so that it could successfully navigate an urban driving course in automated driving mode. They named their vehicle “Prometheus Borealis” after Prometheus, the Greek deity responsible for bringing technology to people, and Boreas, the purple-winged god of the north wind.

The entire team is made up of 40 students and two faculty advisors: Bos and co-advisor Darrell Robinette, an assistant professor of mechanical engineering-engineering mechanics. Their impressive expertise in autonomous vehicles and vehicular networks—and industrial automation and controls—combines for exceptional student mentoring.

The four-year challenge wrapped up this summer on June 14, with Michigan Tech earning 3rd place overall and bringing home the second-most trophies. Soon after, SAE International and General Motors (GM) announced the 10 collegiate teams selected to compete in the next competition, AutoDrive Challenge II. Michigan Tech was on the list.

“My own contribution to this effort is called ‘Autonomy at the End of the Earth,’ says Bos. “My research focuses on the operation of autonomous vehicles in hazardous weather. Specifically, the ice and snow we encounter on a daily basis between November and April.”

“I ended up in engineering because I like to build things (even if only on a computer) and I like to solve problems (generally with computers and math).”

Dr. Jeremy Bos

More about Dr. Jeremy Bos, in his own words:

“I was born in Santa Clara, California just as Silicon Valley was starting to be a thing. I grew up in Grand Haven, Michigan where I graduated high school and moved to Michigan Tech for my undergraduate degree. I liked it so much I came back twice. The second time was from Maui, Hawaii, where I worked for the US Air Force Research Lab. I now live in Houghton with my wife, and fellow alumna, Jessica (STC ’00). We have a boisterous dog Rigel, named after a star in the constellation Orion, that bikes or skis with me on the Tech trails nearly every day. When I have time I bike, ski, hike, kayak, and stargaze. I have even tried my hand at astrophotography at Michigan Tech’s AMJOCH Observatory. (A telescope, hopefully, soon to be another robot).”

Advice for First Year Engineering Students, from Dean Janet Callahan:

“You are part of a community. It’s all about connecting, and reconnecting. I’d like to encourage you to join a student organization or club. The friendships you form in college are important. The people you meet end up being part of your lifelong community. So, be hands-on. Be sure to make time to do extra things, besides studying…but also make sure you go to class and do all your homework, because you will learn by doing.”

“This year, due to the pandemic, in-person attendance is limited. Attend via Zoom using this direct link. No registration required. Visit mtu.edu/ef for more information.”


Snehamoy Chatterjee Named Witte Family Endowed Faculty Fellow in Mining Engineering

Associate Professor Snehamoy Chatterjee, Witte Family Endowed Faculty Fellow in Mining Engineering

Associate Professor Snehamoy Chatterjee has been named the Witte Family Endowed Faculty Fellow in Mining Engineering

Chatterjee’s position as Fellow is made possible through the generous support provided by Nancy Witte and her family, in memory of her late husband Richard C. Witte, who received a BS in Metallurgical Engineering from Michigan College of Mining and Technology (now Michigan Tech) in 1950. After graduating from Michigan Tech, Witte went on to earn a Juris Doctorate from Indiana University School of Law in 1956, then worked for Proctor and Gamble as a patent attorney. Witte was admitted to the bars of Indiana and Ohio, US Court of Appeals, Federal Circuit, and the US Supreme Court, and filed more than 1400 patents before he retired in 1992 as vice president and chief patent counsel for Proctor and Gamble Worldwide. 

“Dr. Chatterjee has been instrumental in developing Michigan Tech’s new interdisciplinary Mining Engineering program,” said Aleksey Smirnov, Chair of the Department of Geological and Mining Engineering and Sciences (GMES). “He teaches courses in the program, and very skillfully incorporates research into his instruction.”

Decision-making under uncertainty, a research focus for Chatterjee, is one example, says Smirnov. “Students in one of Dr. Chatterjee’s courses, called Resource and Reserve Estimation, first learn how to quantify uncertainty based on spatial and temporal data. In his next course, Mine Planning and Design, they learn how to integrate that uncertainty into their mine plan using stochastic optimization methods.” 

“Dr. Chatterjee’s outstanding achievements and contributions to our newly reinstated mining engineering program make him an ideal candidate for this faculty fellow position.”

Janet Callahan, Dean of the College of Engineering

“The future of the mining industry is transforming in the digital age,” says Chatterjee. “Our students need to understand the traditional mining engineering techniques that have dominated the industry for generations, but also be technically savvy enough to see how the newest digital innovations might fit into a better decision making or engineering design process. I am grateful to Nancy Witte and the Witte family for this endowment and the tremendous support it provides toward this important endeavor.”

Chatterjee works with undergraduate student researchers in his lab, and encourages them to present their findings at national or international conferences. Several have published their studies in peer-reviewed journals, as well.

“While at Michigan Tech working with Dr. Chatterjee, Alex Miltenberger ’17, a geophysics major, presented his SURF research work at Geostat, an international conference in geostatistics,” notes Smirnov. Miltenberger is now postdoctoral researcher at Lawrence Berkeley National Laboratory & Stanford University.

“Another student working with Dr. Chatterjee, Katie Kring, published her SURF research in the International Journal of Rock Mechanics and Mining Sciences,” he adds. Before graduating from Michigan Tech with both a BS and MS in Geological Engineering, Kring interned at Freeport-McMoRan’s Chico Mine. She now works as a Civil Engineer at US Army Corps of Engineers.

Chatterjee also encourages his undergraduate research students to submit proposals for external funding. Current geophysics student Grace Ojala recently received a Michigan Space Grant Consortium (MSGC) grant to research mining slope movement using synthetic aperture radar data. 

Chatterjee has been recognized nationally and internationally through several professional and editorial awards, and invited presentations and seminar talks. Recently, Governor Gretchen Whitmer appointed him to the Michigan’s Future Mining Committee. Chatterjee was chosen to represent current or former research faculty members who hold a master’s or doctorate degree in mining or geology at a university in Michigan.

Richard Witte, throughout his career and even after his retirement, served on numerous federal, state and local commissions, delegations and boards, addressing a variety of international diplomatic and intellectual property policies.

“Dr. Chatterjee’s appointment as Witte Fellow aligns perfectly with the objectives formulated by the Witte family and Michigan Tech,” said Janet Callahan, Dean of the College of Engineering at Michigan Tech. “Our shared goal is to retain and attract high quality faculty who are at the top of their profession, inspire students to think beyond the classroom material, and integrate their research into the classroom.”


Michigan Tech Part of $15M Great Lakes Innovation Hub

In an effort to nurture a regional innovation ecosystem and move more discoveries from the research lab to the real world, the National Science Foundation (NSF) has established a Great Lakes Innovation Corps Hub and Michigan Technological University plays a key role.
 
The 11-university Hub is led by the University of Michigan (U-M), and it’s one of five Hubs across the country announced Aug. 26 as NSF continues to evolve the I-Corps program. Launched in 2011, the NSF Innovation Corps, or I-Corps, trains scientists and engineers to carry their promising ideas and technologies beyond the university and into the marketplace to benefit society.
 
In addition to Michigan Tech and U-M, the Great Lakes Hub includes Purdue University, the University of Illinois Urbana-Champaign, the University of Toledo, the University of Minnesota, Iowa State University, Missouri University of Science and Technology, the University of Akron, the University of Chicago, and the University of Wisconsin-Milwaukee.

The Impact of I-Corps

Each university in the Great Lakes Hub already has a successful I-Corps program. Michigan Tech has been part of the NSF I-Corps Site program since 2015. Over the past five years, Michigan Tech’s I-Corps Site has helped introduce the entrepreneurial mindset to over 300 researchers, faculty, staff and students, and helped teams assess the commercial potential of nearly 150 technologies.

Mary Raber is Chair of the Department of Engineering Fundamentals at Michigan Tech

The Great Lakes I-Corps Hub aims to connect people at a large scale to increase the “effective density” of the Midwest’s innovation ecosystem. Mary Raber, Michigan Tech I-Corps principal investigator and chair of the Department of Engineering Fundamentals, said Michigan Tech researchers will be able to engage with the other members of the Hub and benefit from the extensive resources available throughout the Great Lakes region.
 
“Being invited to join the Great Lakes Hub is reflective of the success of Michigan Tech’s I-Corps Site program and the number of teams that have been selected to attend the National I-Corps program,” said Raber.
 
Other members of the Michigan Tech I-Corps team include Lisa Casper (Pavlis Honors College), Jim Baker (Office of the Vice President for Research), Michael Morley and Nate Yenor (Office of Innovation and Commercialization), and Jonathan Leinonen (College of Business).
 

“Michigan Tech is an integral part of the Great Lakes I-Corps Hub.”

Dr. Mary Raber


“The Great Lakes region is home to many of the world’s leading research institutions, and many of our nation’s critical industries. Our goal with this I-Corps Hub is to leverage this intellectual depth to create a lasting economic impact on the region,” said Alec D. Gallimore, the U-M Robert J. Vlasic Dean of Engineering, the Richard F. and Eleanor A. Towner Professor, an Arthur F. Thurnau Professor, and a professor of aerospace engineering.
 
“We’ll do this by creating new businesses, by keeping our existing companies globally competitive and on the leading edge of technology, and by developing talent that not only has technical and cultural expertise, but also an entrepreneurial mindset,” he said.
 
The new Great Lakes Hub has set a goal of training 2,350 teams in the next five years and sending an additional 220 teams to a more in-depth National NSF I-Corps program.
 
In this way, I-Corps is helping to fill what Jonathan Fay, executive director of the U-M Center for Entrepreneurship, calls the “widening gap” between the cutting-edge research being done at universities and the development work of industry to turn research into societal benefit and economic gain.

Read the full story on Michigan Tech News.


Jeremy Shannon Named Carl G. Schwenk Endowed Faculty Fellow in Applied Geophysics

Michigan Tech Principal Lecturer Jeremy Shannon is the Carl G. Schwenk Endowed Faculty Fellow in Applied Geophysics

Jeremy Shannon was recently named the Carl G. Schwenk Endowed Faculty Fellow in Applied Geophysics

“For more than a decade Dr. Jeremy Shannon has been a key faculty in field geophysics at Michigan Tech,” said Aleksey Smirnov, chair of the Department of Geological and Mining Engineering and Sciences. 

“Dr. Shannon provides vital contributions to GMES instruction and advising, especially through the summer Field Geophysics course and specialized courses in the application of near-surface geophysics methods,” added Janet Callahan, Dean of the College of Engineering. 

The endowment was established by Carl G. Schwenk, who obtained a BS in both Geological and Geophysical Engineering from Michigan Tech in 1962 and 1965, respectively. He worked as a Field Geophysicist with Kennecott Copper Corporation and was instrumental in the discovery of the Flambeau copper-gold Mine in Wisconsin. Later, he worked with the  large iron company Vale do Rio Doce exploring for base metals in Brazil. After his return to the US he was hired as Great Lakes District Manager for Noranda Exploration where he led a successful State Supreme Court challenge to Wisconsin’s Geologic Disclosure Law. 

“Carl lives in Colorado and remains closely involved with our department, providing tremendous support to our students,” said Smirnov.

Shannon is also a Michigan Tech alumnus, and took the Field Geophysics class as an undergraduate in the summer of 1992. He was honored to take over the class in 2007 and has continued and built upon the legacy of applied geophysics education at GMES created by professors Lloyal Bacon, Jimmy Diehl, and Charles Young to deliver a unique field experience for students.

“I am humbled to receive this appointment and am extremely grateful to Mr. Schwenk and others who have made this possible,” said Shannon. “I look forward to using this gift to improve and advance educational opportunities in geophysics at Michigan Tech.”

“Shannon’s contribution to the department of Geological and Mining Engineering and Sciences perfectly aligns with the purpose of the fellowship, which is to provide leadership in mentoring and teaching students at Michigan Tech in the practical use of geophysics for characterization and discovery of subsurface resources,” added Callahan.

In addition to instruction in the field of applied geophysics, which includes specialized courses in the application of near-surface geophysics methods, Shannon serves as the academic advisor for undergraduate students majoring in Geology and Applied Geophysics.

Shannon generously lends his expertise to students working on senior design projects, as well as graduate students whose research involves field work, notes Smirnov. “Dr. Shannon helps students develop both practical knowledge and intuition. As a result, they are able to find their own best academic and professional pathways, leading to impactful and rewarding careers.” 

In recognition of his contributions to teaching, Shannon was also recently honored in the Michigan Tech Deans’ Teaching Showcase


Summer Youth Program and Women in Engineering

Madelyn Hachenski in front of UO Lab.
Madelyn Hachenski is interviewed in front of the Unit Operations Lab, an educational facility managed by the Department of Chemical Engineering.

HOUGHTON, Mich. (WLUC) – Since 1972, Michigan Tech University has held its Summer Youth Program, giving kids finishing sixth to eleventh grade an opportunity to take courses, ranging from Engineering to Computer Science.

“We have classes on everything,” said Jannah Tumey, the Assistant Director of MTU’s Center for Educational Outreach, “from Aviation to Forensic Science to Michigan Species of Concern and other ecology-type classes and Chemistry.”

Read more and watch the video at WLUC TV6, by Matt Price.


Alumni Help Bring Advanced 3D Metal Printer to Michigan Tech

A look inside Michigan Tech’s new 3D Metal Printer. Direct metal printing is additive manufacturing. It starts with metal powders, added bit by bit.

Thanks to a group of generous mechanical engineering alumni, Michigan Tech has acquired a highly advanced 3D metal printer.

The 3D Systems ProX350, 3D Metal Printer and accessories arrived on campus at the end of March. Installation is taking place now, in a shared facility at Michigan Tech.

The new system can print using 11 unique metals, including bio-grade titanium (for biomedical applications), cobalt and chromium, several types of stainless steel at a resolution of 5 microns.

Faculty and graduate students will have access to the printer for research projects. Undergraduate senior design and Enterprise teams will, too.

Obtaining the new 3D metal printer was made possible by the generosity of seven Michigan Tech alumni.

For starters, ME-EM Department Chair Bill Predebon obtained a 20 percent discount on the $875K system from Scarlett Inc. Owner Jim Scarlett is an ME-EM alumnus.

In addition to Scarlett, six other Michigan Tech alumni donors pitched in. One anonymous donor provided over $600K , and five others made up the difference to meet the full cost of $673K. Those five are: Ron Starr, Don Drake, Frank Agusti, Todd Fernstrom, and Victor Swanson.

“This will be a game changer for Michigan Tech,” Predebon says. “It is one of the most accurate metal 3-d printers available. With approximately a 1-ft. cube size billet, which is an impressive size billet, you can make a full-size or scaled-down version of just about anything. Very few universities have a 3D metal printer of this quality and versatility.”

Coming soon: More photos and details on Michigan Tech’s new 3D metal printer.


Autonomy at the End of the Earth

Michigan Tech’s student team, Prometheus Borealis, designs, builds, and tests a fully autonomous vehicle, “Borealis Prime” for the SAE Autodrive Challenge.

Jeremy Bos and Darrell Robinette, mentors and advisors of Michigan Tech’s SAE Autodrive Challenge (and both Michigan Tech alums) share their knowledge on Husky Bites Live, on campus in the Rozsa Center at Alumni Reunion 2021. The session takes place Friday, August 6 at 1:30 pm ET. Everyone in attendance will learn something new, with time after for Q&A. 

Can’t make it in person? Join us remotely. We’ll share a link to join the Zoom webinar on the Alumni Reunion website as the event draws near. Afterwards (weather permitting) you’re invited to join us out on the Walker Lawn. Meet the students of Prometheus Borealis and Robotics Systems Enterprise, get a close look at their autonomous vehicles—and be sure to bring your questions.

It’s a wild ride.

Starting with a Chevy Bolt, Michigan Tech students outfit it with sensors, control systems and computer processors to successfully navigate an urban driving course in automated driving mode. And, test it in blizzard conditions!

It’s also an ambitious project with an equally ambitious goal: Three years of the competition, with increasing levels of autonomy and more difficult challenges in each successive year. 

Michigan Tech’s team is Prometheus Borealis, after Prometheus, the Greek deity responsible for bringing technology to people, and Boreas, the purple-winged god of the north wind.The SAE Autodrive Challenge competition is jointly sponsored by General Motors (GM) and the Society of Automotive Engineers International (SAE).

Credit: Photographer Tim Cocciolone and fellow prankster John Marchesi (both Michigan Tech alums).

“The competition focuses on the electrical engineering, computer engineering, robotics engineering, and computer science skills needed to implement the sensors, signal processing and artificial intelligence needed to make the car drive itself,” says team co-advisor, ECE Assistant Professor Jeremy Bos. “Mechanical engineers and a wide range of other disciplines are represented on the teams, as well.”

ME-EM Assistant Professor Darrell Robinette is the team’s other co-advisor. Robinette worked as an engineer at GM for 9 years before joining Michigan Tech in 2014, with roles in transmission, NVH, electrification and calibration engineering groups. He is a longtime First Robotics Competition mentor, too.

Bos earned his BS at Michigan Tech in 2000, and returned to earn his PhD in 2012, both in Electrical Engineering. Robinette earned a BS in 2004 and a PhD in 2007, both in Mechanical Engineering.

A section of the mapping of Michigan Tech’s campus as seen from the road by Borealis Prime’s Velodyne LiDAR VLP-16 using Intel Internet of Things HW. Mapping done with Iterative Closest Point (ICP).

Student-driven Autonomy

On the student side, the AutoDrive Challenge project is spearheaded by Robotic Systems Enterprise (RSE), also advised by Bos and Robinette. RSE is part of Michigan Tech’s award-winning Enterprise program. “It’s one of the best places on campus to learn robotics,” says Bos. The team’s many projects come in many shapes and sizes, from designing a vision system for work with a robotic arm, to an automatic power management system for weather buoys. Clients include Ford Motor Company and Michigan Tech’s Great Lakes Research Center.

Jonathon Beute ’21 served as project lead for the VISSION subteam focused on Borealis Prime as part of the Robotic Systems Enterprise. He graduated in June and now works as an electrical engineer at Williams International in Grand Rapids, Michigan.

SAE Autodrive Challenge Final Results

The four-year challenge wrapped up on June 14 with Michigan Tech’s Prometheus Borealis team earning 3rd place overall, bringing home the second most trophies. Teams from University of Toronto and University of Waterloo earned first and second overall. Read the full results on the SAE Autodrive Challenge website.

Teams from eight North American universities competed:  Michigan Technological University, Michigan State University, Kettering University, University of Waterloo, University of Toronto, Texas A&M University, Virginia Tech, North Carolina A&T State University

“We’re going to need a bigger trophy case.”

Dr. Jeremy Bos, Michigan Tech co-advisor, Prometheus Borealis

Next Up: Autodrive Challenge II

Also in June, SAE International and General Motors (GM) announced 10 collegiate teams selected to compete in AutoDrive Challenge II. Michigan Tech was on the list. 

The start of Michigan Tech’s dynamic run at M-City for the 99% Buy Off Ride, part of the SAE International Autodrive Challenge. The team placed third in this event and third overall. See the full results here.

The competition continues the strong collaboration between GM and SAE in STEM education and will build on the groundbreaking success of the first iteration of AutoDrive Challenge. Teams will develop and demonstrate an autonomous vehicle (AV) that can navigate urban driving courses as described by SAE J3016™ Standard Level 4 automation.

The following 10 university teams will participate in AutoDrive Challenge II:

Kettering University, Michigan Technological University, North Carolina A&T State University, The Ohio State University, Penn State University, Texas A&M University

University of Toronto, University of Wisconsin – Madison, Queens University and Virginia Tech.

“At General Motors, we envision a future of zero crashes, zero emissions and zero congestion, and we have committed ourselves to leading the way toward this future,” said Dan Nicholson, GM vice president, global electrification, controls, software and electronics and executive sponsor of the competition. 

“The AutoDrive Challenge is a great way to give students the hands-on experience they need to find success,” he adds. “We are very excited to work with these talented students over the course of the competition and know they will make an immediate impact on the automotive industry upon graduation.”

“Michigan Tech’s SAE AutoDrive Challenge team has proven our students innovate to succeed.”

– Dr. Janet Callahan, Dean, College of Engineering

Dr. Robinette, how did you first get started in engineering? What sparked your interest? 

Sage advice from ME-EM Assistant Professor Darrell Robinette: “Be a doer and a thinker at the same time.”

When I was 5, my dad took me for a tour at his place of work, Detroit Edison’s Belle River Powerplant. It was awe inspiring seeing all the equipment and getting an explanation of how it worked and what it did. Pretty amazing that they hang the boilers from the ceiling, eh? Everything at the plant was just so cool, especially the controls and control room. 

My dad introduced me to all the engineers he worked with, and all of them were MTU grads. They played a part in encouraging me where to go for engineering, even though I was only 5 years old. My dad gave me a Babcock & Wilcox Steam book after the visit. Even though I didn’t understand all the engineering in it at the time, pictures of the power plant equipment, construction, assemblies all caught my interest. 

Also, like most engineers, l played with Legos during childhood. Lots and lots of Legos to build whatever my imagination could create.

Family, home, hobbies?

I go mountain biking whenever I can, also wake surfing, snowboarding, and cross country skiing. My wife, Tara, is an MTU alumna (Pre-Med/Biology ‘07). She is one of the Emergency Room physicians at Portage Health Hospital. We have two daughters: Adelyn, 3, and Amelia, one. I like building, tinkering and fixing (typical mechanical engineer stuff), and trying to be a super dad for my girls.

Dr. Bos, how about you? When did you first get into engineering? What sparked your interest?

ECE Assistant Professor Jeremy Bos likes to ask new students: “What are your affinities? Knowing those, I can help point you in the right direction.”

My Dad ran a turn-key industrial automation and robotics business throughout most of my childhood. In fact, I got my first job at age 12 when I was sequestered at home with strep throat. I felt fine, but couldn’t go to school. My Dad put me to work writing programs for what I know now are Programmable Logic Controllers (PLCs); the ‘brains’ of most industrial automation systems.

I really liked these new things called ‘personal computers’ and spent quite a bit of time programming them. By the time I was in high school I was teaching classes at the local library on computer building, repair, and this other new thing called ‘The Internet’. I ended up in engineering because I like to build things (even if only on a computer) and I like to solve problems (generally with computers and math).

What do you like to do in your spare time?

I live in Houghton with my wife and fellow alumna, Jessica (STC ’00). We have a boisterous dog, Rigel, named after a star in the constellation Orion, who bikes or skis with me on the Tech trails nearly every day. When I have time I also like to kayak, and stargaze.

Learn More About Husky Bites


Everyone’s welcome at Dean Janet Callahan’s free interactive Zoom webinar, Husky Bites. Get the full scoop at mtu.edu/huskybites.

Launched by Dean Janet Callahan in 2020 near the start of the pandemic, Husky Bites is an interactive Zoom webinar that takes place each fall and spring.


“Feel free to invite a friend,” says Dean Janet Callahan about her Zoom webinar series, Husky Bites. “Everyone is welcome. It’s free, and it’s edifying.”

During the semester, every Monday at 6, rach “bite” is a suppertime mini-lecture, presented by a different Michigan Tech faculty member, who weaves in a bit of their own personal journey, and brings a co-host, as well—an alum or a current student who knows a thing or two about the topic at hand.

The Husky Bites weekly Zoom webinar series resumes starting Monday, Sept. 13.

“We’ve had attendees from nine countries, and a great mix of students, alumni, our Michigan Tech community and friends,” says Dean Callahan, who mails out prizes for (near) perfect attendance.

Get the full scoop at mtu.edu/huskybites.

Read more:

What’s Next After First

I Saw the Sign (End of the Earth)


Portage Health Foundation Research Excellence Fund Awards Spring 2021

Trisha Sain
Trisha Sain
Hyeun Joong Yoon
Hyeun Joong Yoon

The Health Research Institute is pleased to announce the Spring 2021 Portage Health Foundation Research Excellence Fund (PHF-REF) awards.

We would like to thank the reviewers, deans, department chairs and applicants for their efforts on this internal award process. The following are the faculty award recipients in engineering programs.

PHF-REF Research Seed Grant (PHF-REF-RS) Recipients

Trisha Sain (ME-EM)  
Hyeun Joong Yoon (BioMed) 

More information about REF awards and the application process can be found on the Research Excellence Fund page.


Graduate School Announces Summer 2021 Award Recipients

The Graduate School proudly announces the recipients of the Doctoral Finishing Fellowships for the summer 2021 semester. The following are award recipients in engineering graduate programs.

Doctoral Finishing Fellowship Award Recipients in Engineering

Sri Ram Kumar ValluriChemical Engineering
Rajput OudumbarMechanical Engineering-Engineering Mechanics
Nathan D. SpikeMechanical Engineering-Engineering Mechanics

Congratulations to all nominees and recipients. Read more information on the awardees who provided bios on the Graduate School Newsblog.