Tag: BME

Stories about Biomedical Engineering.

Sliding into the Future of Mont Ripley

A Michigan Tech student takes the ultimate study break: snowboarding at Michigan Tech’s Mont Ripley
Nick wearing his blue Mt Ripley Shirt
Nick Sirdenis, General Manager, Mont Ripley

Nick Sirdenis, General Manager of Mont Ripley, Michigan Tech’s very own ski area, plus Dan Dalquist, and Josie Stalmack generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of their session on YouTube. Get the full scoop, and see a listing of all the (60+) recorded sessions at mtu.edu/huskybites.

What are you doing for supper Monday night 1/23 at 6 ET? Grab a bite with Nick Sirdenis, general manager Mont Ripley Ski Area at Michigan Tech. Joining will be Dan Dalquist, ski instructor supervisor for the Ski & Snowboard School, as well as Josie Stalmack, senior in biomedical engineering and student president of the Mont Ripley Ski Patrol. They’ll share plans to some future plans for Mont Ripley, including an updated and larger chalet, a true beginner run from top to bottom, and more parking.

Dan skiing
Dan Dalquist, Mont Ripley Ski School Supervisor

Mont Ripley welcomes all snow enthusiasts. The ski area is owned by Michigan Tech and sits in the middle of Houghton and Hancock, just a mile from campus. Mont Ripley is a star attraction of the scenic Keweenaw Peninsula, home to the most snow in the Midwest. Although Mont Ripley has a great learning area, it is mostly well known for its challenging terrain, from urban backcountry glades to terrain parks with more than thirty features—including jumps and slides. During Husky Bites, Sirdenis will talk about some new features at Mont Ripley currently in planning stages, plus one now in the works.

Two people on a chair lift
Josie Stalmack studies biomedical engineering at Michigan Tech. Here she is with her dad, also an MTU alum, patrolling together on the Husky Ski Lift at Mont Ripley.

Sirdenis graduated in 1979 from the Ski Area Management program at Gogebic Community College. He managed Blackjack Ski Area from 1981-2000 and lived in Ironwood Michigan. He was hired as a consultant in 1998 to design the snowmaking system and to oversee the construction, and then was hired as the general manager of Mt. Ripley. Originally from Detroit, Sirdenis and his wife Julie have 3 children and his entire family enjoys skiing.

Dan Dalquist is a Houghton High School and Michigan Tech alum and started skiing at Mont Ripley in the 1966-67 season, and joined the Mont Ripley Ski Patrol in January 1971. He became a professional ski instructor in 2001. For Dan, skiing at Mont Ripley was, and still is, a family event. His children learned to ski at 2 years old and they both still ski. All 4 of his grandchildren also ski. Dan graduated from Michigan Tech with a BSBA in Marketing Management in 1976.

“Nick and I have known each other since he first started at MTU,” says Dalquist. “And Josie is a fellow ski patroller who I’ve been privileged to work with. As a matter of fact, Josie’s dad is an MTU grad. He came to Tech as a patroller, and I was on the Michigan Tech Ski Patrol at that time, too, so I helped introduce Thad to Mont Ripley.”

An uphill view of the chair lift on Mont Ripley
An especially gorgeous day on Mont Ripley at Michigan Tech

An Ann Arbor native, Josie Stalmack learned to ski as soon as she could walk and picked up snowboarding when she was about 7 years old. Skiing and snowboarding have always been a part of her life, as her dad is a member of the National Ski Patrol. What really drew her to Michigan Tech was Mont Ripley and the fact that she could get certified and join the ski patrol.

“Nick and I have known each other since he started at MTU,” says Dan. “Josie is a fellow ski patroller I have been privileged to work with. Her dad is a MTU grad, too. I trained him to become a ski patroller when he was at Tech!”

“I met both Nick and Dan by joining the Mont Ripley Ski Patrol. Both have such a loving passion for skiing and Mont Ripley. I am just happy to be a part of such a wonderful ski hill.”

Josie Stalmack
Josie does a happy jump in front of the Mount Rainier lodge sign
Josie took a recent trip to another Mont, this one in Washington state: Mount Rainier

Nick, what do you like to do in your spare time?
Skiing, fishing, motorcycle riding. We always have dogs and birds, right now Ziggy the whippet and Sylvia the Pug and Yani the canary. I love doing construction. You’ll usually find sawdust in my pocket.

Dan, what do you like to do in your spare time?
I list cross country skiing, ice skating and snowshoeing as my winter hobbies. I also bicycle: mountain bike and road bike, plus boating, fishing, and reading.

Josie, where did you grow up?
I grew up in Ann Arbor, Michigan. I am the youngest of four, with two older brothers and an older sister. I am also blessed with a wonderful brother-in-law, two nieces and a nephew. Lastly, I am engaged to be married, so I am also gaining a whole other family!

Any hobbies?
Outside of skiing and snowboarding, I really enjoy weightlifting, hiking and backpacking, reading, baking, and spending time with friends and family.

Ski patrol stand at Mont Ripley and talk.
Members of Mont Ripley Ski Patrol
lights on Mont Ripley twinkle in the distance
View of Michigan Tech’s Mont Ripley Ski Area from across Portage Canal

Click here to make a donation to the Mt. Ripley Expansion Fund

SWE Section Establishes Endowed Scholarship

Congratulations to Michigan Tech’s SWE Section as they announce the creation of a new endowed scholarship!

The Society of Women Engineers (SWE) Section at Michigan Tech is excited to announce the creation of a new endowed scholarship.

“The scholarship is in honor of our alumnae and alumni who have been part of our section since 1976,” says SWE advisor, Associate Teaching Professor Gretchen Hein.

“Eight years ago, in 2014, we hosted the SWE Region H Conference,” Hein explains. “With the funds received from SWE, we began saving with the goal of establishing an endowed scholarship. At long last, we have met our goal and will begin awarding an annual $1,000 endowed scholarship in 2026 to an active SWE section member.”

The new scholarship is in addition to the current section scholarships being awarded annually, notes Hein.

Michigan Tech SWE logo with gear

“As the President of SWE at Michigan Tech, I am excited that our section can provide an additional scholarship opportunity for our members,” said Aerith Cruz, a third year Management Information Systems student. “Our mission is threefold: ‘to stimulate women to achieve their full potential in careers as engineers and leaders, expand the image of the engineering profession as a positive force in improving the quality of life, and demonstrate the value of diversity.’ The establishment of our endowed scholarship demonstrates our dedication to support the future of SWE at Michigan Tech.”

Details regarding the scholarship application process will be announced in 2026. The process will mirror SWE’s current scholarship application where students complete a short essay, have a cumulative GPA of 3.0 or higher, and provide a copy of their resume and a letter of recommendation.

Adds Hein: “Members of Michigan Tech’s SWE section greatly appreciate the guidance and assistance received from Jim Desrochers, director for corporate relations at Michigan Tech, and also Michigan Tech SWE advisor Elizabeth Hoy, director of business and program development at Michigan Tech’s Great Lakes Research Center. And we thank the University and our current and alumni members for their support!”

Would you like to support the SWE Endowed Scholarship?

Donations are welcome! Contribute via check or credit card. Visit mtu.edu/givenow for online donations or to find the mail-in form.

Key points:

  1. Gift Type is “Make a one time gift”
  2. Enter your gift amount
  3. Gift Designation: Select “Other” and enter “SWE Endowed Scholarship #5471″

SWE Congratulates Our Graduating Seniors and Scholarship Recipients

The Society of Women Engineers (SWE) Section at Michigan Tech congratulates our graduating seniors: Sophie Stewart and Audrey Levanen (mechanical engineering) and Kiira Hadden (biomedical engineering). We look forward to hearing from them as alumnae!

The section awarded two scholarships to active upper-division students. We are so proud of the accomplishments of Natalie Hodges (dual major: electrical and computer engineering) and Alli Hummel (civil engineering).

We will be awarding two scholarships in the spring to first- and second-year active members and will be posting the application information during the spring semester.

By Gretchen Hein, Advisor, Society of Women Engineers.

How Can You Mend a Broken Heart? Flow Dynamics in Arrhythmias

Dr. Hatoum and PhD student Brennan Vogl test heart valves for overall performance and energetics, turbulence generated, sinus hemodynamics (aortic and pulmonic), as well as ventricular, atrial, pulmonic, and aortic flows.

Biomedical Engineering Assistant Professor Hoda Hatoum talks about her cardiovascular research along with PhD student Brennan Vogl, one of the first students to join her Biofluids Lab in the fall of 2020.

Dr. Hoda Hatoum

“One thing we can do in the lab is to study just how AFib ablation impacts the heart’s left atrial flow, says Hatoum.

Atrial fibrillation, when the heart beats in an irregular way, affects up to 6 million individuals in the US, a number expected to double by 2030. More than 454,000 hospitalizations with AFib as the primary diagnosis happen each year. Current treatment guidelines recommend antiarrhythmic drugs as initial therapy, but their efficacy is limited and comes with the risk of serious adverse effects. Another option, catheter ablation, electrically isolates the pulmonary veins—the most frequent site of AFib triggers—with more success and an excellent safety profile.

Brennan Vogl
An actual human heart is about the size of your fist, shaped like an upside down pear. Every cell in your body gets blood from your heart (except for your corneas).

“Our research seeks to better understand flow dynamics of the heart during arrhythmia, complex structural heart biomechanics, prosthetic heart valve engineering, and the structure-function relationships of the heart in both health and disease,” Hatoum says.

Why hearts? “It all started with my doctoral program,” Hatoum recalls. “I had the opportunity to work closely with clinicians, to attend their structural heart meetings, and to plan with them the appropriate therapy to be administered for patients. Every patient is very different, which makes the problem exciting and challenging at the same time.”

Hatoum earned her BS in Mechanical Engineering from the American University of Beirut and her PhD in Mechanical Engineering from the Ohio State University (OSU). She was awarded an American Heart Association postdoctoral fellowship, and completed her postdoctoral training at the Ohio State University and at Georgia Institute of Technology before joining the faculty at Michigan Tech.

“One of my goals is to evaluate and provide answers to clinicians so they know what therapy suits their patients best.”

Hoda Hatoum

Now, working in her own Biofluids Lab at Michigan Tech, Hatoum integrates principles of fluid mechanics, design and manufacturing, and clinical expertise with collaborators nationwide (including Mayo Clinic, Ohio State, Vanderbilt, Piedmont Hospital and St. Paul’s Hospital Vancouver)–all to find solutions for cardiovascular flow problems. 

Play Biomedical Engineering Biofluids Lab Aortic Valve Models video
Preview image for Biomedical Engineering Biofluids Lab Aortic Valve Models video

Biomedical Engineering Biofluids Lab Aortic Valve Models

These aortic valves open and close based via the contraction of a pump, controlled by a LabView program. See more during Husky Bites!

In her lab, Hatoum designed and built a pulse duplicator system—a heart simulator—that emulates the left heart side of a cardiovascular system. She also uses a particle image velocimetry system that allows her to characterize the flow field in vessels and organs.

Hatoum and her team of students use these devices to develop patient-specific cardiovascular models, conducting in vitro tests to assess the performance and flow characteristics of different heart valves. “We use idealized heart chambers or patient-specific ones. We test multiple commercially available prosthetic heart valves—and our in-house made valves, too.”

From the Biofluids Lab website: a wide array of current commercial bioprosthetic transcatheter mitral valves.

Hatoum’s team also designs their own heart valve devices.

“Currently, transcatheter heart valves are made of biological materials, including pig or cow valves, that are prone to degeneration. This can lead to compromised valve performance, and ultimately necessitate another valve replacement.”

To solve this problem, Hatoum collaborates with material science experts from different universities in the US and around the world to utilize novel biomaterials that are biocompatible, durable and suitable for cardiovascular applications. 

Which area of research pulls Dr. Hatoum’s heartstrings the most? “Transcatheter aortic heart valves,” she says. (Look closely at this photo to see the closed leaflets of an aortic valve.)

“With the rise of minimally-invasive surgeries, the clinical field is moving towards transcatheter approaches to replace heart valves, rather than open heart surgery,” she explains. “With the challenges that come with TAVs, and with the low-risk population targeted, I believe this is an urgent field to look into, so we can minimize as much as possible any adverse outcomes, improve valve designs and promote longevity of the device.”

The treatment of congenital heart defects in children is another strong focus for Hatoum, who devises alternatives for highly-invasive surgeries for pulmonary atresia and Kawasaki disease. She collaborates with multiple institutions to acquire patient data, then, using experimental and computational fluid dynamics, she examines the different scenarios of various surgical design approaches.

“One very important goal is to develop predictive models that will help clinicians anticipate adverse outcomes,” she says.

“In some centers in the US and the world, the heart team won’t operate without engineers modeling for them—to visualize the problem, design a solution better, improve therapeutic outcomes, and avoid as much as possible any adverse outcomes.”

Hoda Hatoum
Dr. Hoda Hatoum grew up in Lebanon. She’s a big fan of road trips.

Brennan Vogl was the first student to begin working with Hatoum in the lab when she arrived at Michigan Tech in 2020. “It is a great pleasure to work with Brennan,” says Hatoum. “He is very responsible and focused. He handles multiple projects, both experimental and computational, and excels in all aspects of them. I am proud of the tremendous improvement he keeps showing, and his constant motivation to do even better.”

Dr. Hatoum, how did you first get into engineering? What sparked your interest?

As a high-school student, I got the chance to go on a school trip to several universities and I was fascinated by the projects that mechanical engineering students did. That was what determined my major and what sparked my interest.

Hometown, family?

I was raised in Kab Elias, Bekaa, Lebanon. It’s about 45 kilometers (28 miles) from the Lebanese capital, Beirut. The majority of my family still lives there.

‘My niece took this image from the balcony of our house in Lebanon, located in Kab Elias. It shows the broad landscape and the mountains, and the Lebanese coffee cup that’s basically iconic.”

What do you like to do in your spare time?

I like to watch TV, read stories (thrillers) and go on road trips.

The sun temple in the Haidara ruins near Dr. Hatoum’s hometown of Kab Elias in Lebanon are believed to date back to the Roman era.
Snow on the ground in Kab Elias.

How can a student request to join your Biofluids lab?

I currently work with two PhD students and two undergraduates. Usually, an email with interest in the research that I do is sufficient. Our lab employs both mechanical engineering students and biomedical engineering students because of our focus on mechanics. When a student first joins our lab, they do not have any idea about any of the problems we are working on. As they get exposed to to them, they add their own valuable perspective.

The student experience is an amazing one, and one that is rewarding.

Brennan, how did you first get into engineering? What sparked your interest?

I first got into engineering when I participated in Michigan Tech’s Summer Youth Program (SYP). At SYP I got to explore all of the different engineering fields and participate in various projects for each field. Having this hands-on experience really sparked my interest in engineering.

Hometown, family?

I grew up in Saginaw, Michigan. My family now lives in Florida, so I get to escape the Upper Peninsula cold and visit them in the warm Florida weather.

Brennan loves to ski in Houghton’s plentiful powder, but he’s an even bigger fan of warm, sunny weather.
Poppy is on the left and Milo is on the right.

Pets? Hobbies?

I enjoy skiing, and I have two Boston Terriers—Milo and Poppy. They live with my parents in Florida. I don’t think they would be able to handle the cold here in Houghton, as much as I would enjoy them living with me.

Engineering Students Place High in Computing[MTU] Showcase 2022

Trevor and Dominika stand next to their poster.
Trevor Petrin (left) and Dominika Bobik (right).

The Institute of Computing and Cybersystems (ICC) is pleased to announce the winners of the Computing[MTU] Showcase Poster Session of October 10. Congratulations and thanks to all the graduate and undergraduate students who presented their research posters!

Please visit the showcase’s Research Poster Session page to view the poster abstracts and photos from the event.

Undergraduate Winners

  • First Place: Dominika Bobik (ECE, Computer Engineering) — “An Educational Modeling Software Tool That Teaches Computational Thinking Skills”
  • Second Place: Niccolo Jeanetta-Wark (MEEM, Mechanical Engineering) — “Performance Measurement of Trajectory Tracking Controllers for Wheeled Mobile Robots”
  • Third Place: Kristoffer Larsen — “A machine learning-based method for cardiac resynchronization therapy decision support”

Graduate Winners

  • First Place: Shashank Pathrudkar (MEEM, Mechanical Engineering) — “Interpretable machine learning model for the deformation of multiwalled carbon nanotubes”
  • Second Place: Nicholas Hamilton — “Enhancing Visualization and Explainability of Computer Vision Models with Local Interpretable Model-Agnostic Explanations (LIME)”
  • Third Place (Tie): Zonghan Lyu (BME, Biomedical Engineering) — “Automated Image Segmentation for Computational Analysis of Patients with Abdominal Aortic Aneurysms”
  • Third Place (Tie): Tauseef Mamun — “When to be Aware of your Self-Driving Vehicle: Use of Social Media Posts to Understand Problems and Misconceptions about Tesla’s Full Self-Driving Mode”

Read more on the ICC Blog, by Karen Johnson.

SWE Hosts Evening with Industry in 2022

Event room with tables and presentation screen.

On September 20 the Society of Women Engineers (SWE) hosted its annual Evening with Industry (EWI). The event brought together over 115 students and sponsors from 23 companies. The highlight of the evening was keynote speaker Carrie Struss from Milwaukee Tool, who discussed career development and tips from her career journey.

The section would like to thank all who attended and participated in making the evening a success. “EWI has been held for 34 years. Its success is due to the involvement and commitment of the SWE Section and our EWI Committee,” said Gretchen Hein, the section’s advisor.

The EWI Committee comprised four students: Alli Hummel (civil engineering), Natalie Hodge (electrical and computer engineering), and Maci Dostaler and Kathleen Heusser (biomedical engineering).

The SWE section works closely with Career Services to ensure the sponsor registration and support runs smoothly. The section thanks the sponsors for their support and input. They are truly part of the Michigan Tech learning community. These corporate representatives visit with the students during EWI and guide the students through the transition from student to professional. These interactions greatly help students learn how to advocate for themselves and others as they begin their careers.

Many students commented about the benefits of EWI:

  • “I got to know the recruiters before Career Fair and was able to get an interview.”
  • “I talked with Gerdau after EWI and they pulled me aside, went through my resume, and did a mini interview!”
  • “The Textron recruiter I talked to was very excited about me coming to the Textron booth at Career Fair. I’m definitely applying to a company (CWC Textron) I hadn’t considered before today!”
  • “Last year, I stepped into a one-on-one meeting with Stellantis on a whim which led to a successful internship with them, changing my whole career direction!”

SWE has begun planning the 2023 EWI event. If you are interested in learning more about it, please contact us at SWEEWI@mtu.edu.

By Gretchen Hein, Advisor, Society of Women Engineers.

Related

SWE, Aerospace Enterprise Represent MTU at Women in Aviation Day

Women in Aviation Day banner with image of Amelia Earhart.

On September 17, 2022, eight students from the Aerospace Enterprise and Society of Women Engineers represented Michigan Tech at the first annual Women in Aviation Day in Wausau, Wisconsin.

Participating students were:

From Aerospace: Heather Goetz, Seth Quayle and Nolan Pickett (mechanical engineering); and Zoe Knoper (cybersecurity).

From SWE: Sophie Stewart and Katherine Rauscher (mechanical engineering); Kathryn Krieger (environmental engineering); and Cailyn Koerber (engineering management).

This event was hosted by the Learn Build Fly organization, which does incredible volunteer work in engaging their community in aviation. As summarized by Wausau’s WSAW-TV News Channel 7, “The event aimed to get more women involved in recreational and professional aviation. Children had the chance to participate in ‘Young Eagle Flights’ by going for airplane rides, while other aviation organizations gave information about their programs.”

Visitors to the event had the opportunity to see a 3D model of the newest Aerospace Enterprise satellite design and learn how these students were designing and building satellites to go into space, while the SWE team worked with visitors on an outreach activity, Paper Circuits.

Participants’ comments included:

Nolan Pickett: “Our Enterprise was given the opportunity to not only celebrate the women in our program, but also promote STEM to the next generation of college students — and fly in a WWII era B-25!”

Kathryn Krieger: “I loved being able to see so many young girls getting excited about STEM. It was really inspiring to see the many ways kids are getting involved with aviation and other STEM disciplines from such a young age.”

Both SWE and the Aerospace Enterprise teams enjoyed volunteering at Women in Aviation, learning more about the history of aviation and meeting with folks interested in aviation careers. This was a unique outreach opportunity and they appreciated the support they received from Admissions and the College of Engineering.

By Gretchen Hein, SWE Advisor.

Aurenice Oliveira Named ELATES Fellow

Aurenice Oliveira wearing gear and using a laptop on the Portage Lift Bridge.
Aurenice Oliveira, PhD, ELATES Fellow ’22-’23, Drexel University Executive Leadership in Academic Technology, Engineering and Science

Associate Professor Aurenice Oliveira (ECE) has been selected for the Class of 2022-23 of Drexel University’s Executive Leadership in Academic Technology, Engineering and Science (ELATES) fellowship program.

Aurenice Oliveira is an associate professor of electrical and computer engineering at Michigan Tech, and also serves the University as a vice president for research faculty fellow.

ELATES is a national leadership development program designed to promote women in academic STEM fields, and faculty allies of all genders, into institutional leadership roles. Oliveira is also a recipient of the first ASEE ELATES fellow scholarship covering program costs and travel expenses. 

The ELATES Class of 2022-23 Fellows comprise a prestigious cohort of 30 faculty members from over 25 institutions of higher education across the U.S. and Canada. Fellows include experts in engineering, mathematics and science, all of whom have significant administrative experience on top of their scholarly accomplishments. Oliveira was nominated by Dean Janet Callahan (COE) and former interim Chair Glen Archer (ECE) for this intensive yearlong program, which includes personal and leadership development work as well as series of on-site work in the Philadelphia area.

“I am excited to participate in a program focused on training an amazing group of women to become leaders in academic STEM fields.”

Aurenice Oliveira

“I am excited to participate in a program focused on training an amazing group of women to become leaders in academic STEM fields,” said Oliveira. “I would like to be able to bridge people and ideas as well as to tap into our strengths to create and encourage growth in my department and at Michigan Tech.”

Oliveira’s research interests focus on hybrid communications and networking, including connected and autonomous vehicles communications.  She is currently the IEEE chair for Northeastern Wisconsin Region 4 and recently served as the chair of the NSF ADVANCE Advocates and Allies Advisory Board (A3B) and as equity (DEIS) advisor for Michigan Tech faculty and chairs search teams. She is faculty advisor for two Michigan Tech student organizations on campus, as well, the IEEE student chapter and Eta Kappa Nu (HKN) Honor Society.

Oliveira will be also serving as a Michigan Tech Vice President for Research Faculty Fellow for the 2022-23 academic year in the areas of research development and research integrity.

Facilitated by leaders in the fields of STEM research and leadership development, the ELATES curriculum is focused on increasing Fellows’ personal and professional leadership effectiveness, from the ability to lead and manage change initiatives within institutions, to the use of strategic finance and resource management to enhance organizational missions. Pairing online instruction and discussion with intensive, in-person seminar sessions, the program encourages Fellows to apply what they’ve learned at their home institutions. Ultimately, it aims to create a network of exceptional faculty who bring broad organizational perspectives and deep personal capacity to the institutions and societies they serve.

Learn more online at ELATES at Drexel.

By Michigan Tech’s Department of Electrical and Computer Engineering.

Michigan Space Grant Consortium Awardees for 2022-2023

Michigan Space Grant Consortium NASA

The University of Michigan – Michigan Space Grant Consortium has announced grant recipients. Michigan Tech faculty and staff researchers receiving grants are:

Faculty Led Fellowships for Undergraduates

Brendan Harville for “Seismic Amplitude based Lahar Tracking for Real-Time Hazard Assessment.”

Sierra Williams for “Understanding the Controls of Solute Transport by Streamflow Using Concentration-Discharge Relationship in the Upper Peninsula of Michigan.”

Graduate Fellowships

Espree Essig for “Analyzing the effects of heavy metals on vegetation hyperspectral reflectance properties in the Mid-Continent Rift, USA.”

Caleb Kaminski for “Investigation of Ground-Penetrating Radar Interactions with Basaltic Substrate for Future Lunar Missions.”

Katherine Langfield for “Structural Characteristics of the Keweenaw and Hancock Faults in the Midcontinent Rift System and Possible Relationship to the Grenville Mountain Belt.”

Tyler LeMahieu for “Assessing Flood Resilience in Constructed Streambeds: Flume Comparison of Design Methodologies.”

Paola Rivera Gonzalez for “Impacts of La Canícula (“Dog Days of Summer”) on agriculture and food security in Salvadoran communities in the Central American Dry Corridor.”

Erican Santiago for “Perchlorate Detection Using a Graphene Oxide-Based Biosensor.”

Kyle Schwiebert for “LES-C Turbulence Models and their Applications in Aerodynamic Phenomena.”

HONES Awards

Paul van Susante for “Lunabotics Competition Robot.”

Research Seed Grants

Xinyu Ye for “Analyzing the effects of potential climate and land-use changes on hydrologic processes of Maumee River Watershed using a Coupled Atmosphere-Lake-Land Modeling System.”

Pre-College Educational Programs

Jannah Tumey for “Tomorrow’s Talent Series: Exploring Aerospace & Earth System Careers through Virtual Job-Shadowing.”

Michigan Tech Teams Win at CMU’s 10th Annual New Venture Challenge

Congratulations to these Michigan Tech New Venture Challenge 2022 Award Winners! L to R: Husky Innovate Program Manager Lisa Casper, students Jordan Craven, Bayle Golden, Ali Dabas, Rourke Sylvain, Jakob Christiansen, and Husky Innovate Co-Director Jim Baker

Central Michigan University (CMU) and Michigan Tech collaborate each year to offer Michigan Tech students a chance to compete in CMU’s New Venture Challenge (NVC). This showcase event provides an opportunity for students at both universities to present their businesses and network with prospective investors, mentors and partners. Student participants at NVC compete for a total of $60,000 in prizes and in-kind services.

On Friday (April 22), four Michigan Tech student teams pitched their ideas and businesses in person at Central Michigan University in Mount Pleasant. Michigan Tech Husky Innovate co-director Jim Baker and program manager Lisa Casper attended the event to support teams, as well as strengthen innovation and entrepreneurship connections.

Michigan Tech engineering management student Bayle Golden presents her pitch for her new wearable child safety device, SafeRow, at the CMU New Venture Challenge.
Michigan Tech construction management student Jakob Christiansen delivers his two-minute pitch for his new supply chain e-commerce platform, ProBoard.

Students had an opportunity to compete in either the two-minute pitch competition or the seven-minute business model competition. There was also a gallery competition, where teams had tables with individual displays and took questions from attendees.

The competition took place out of town during the last hectic week of spring semester at Michigan Tech. But in the end, all their hard work paid off: Michigan Tech teams brought home $21K in prizes for their ideas.

“Congratulations to our Husky Innovate student teams—your ideas have the potential to change the world.”

Lisa Casper, Husky Innovate Program Manager

Michigan Tech’s New Venture Challenge award winners:

Two-Minute Pitch Competition

  • Jakob Christiansen (construction management) won first place and received $4,000. Christiansen pitched “ProBoard,” an e-commerce platform to solve issues in the construction material supply chain.

Seven-Minute Pitch Competition

  • Bayle Golden (engineering management) won first place in the Social Mission category and received $10,000. Golden pitched “SafeRow,” an innovative wearable device designed to keep children safe when every second counts.
  • Rourke Sylvain and Ali Dabas (both biomedical engineering) won second place in the High Tech High Growth category, receiving $5,000. Their pitch was “imi (integrated molecular innovations),” an electrochemical biosensor for T4 detection.
  • Jordan Craven (management information systems, minoring in computer science) won third place in the High Tech High Growth category and received $2,000. Craven pitched “Tall and Small Designs,” a technology company that provides software as a service to retailers who sell clothes online.

“The results speak to the tireless efforts of our students—and the impact of the programs provided by Husky Innovate and its partners.”

Jim Baker, Husky Innovate Co-Director
Michigan Tech biomedical engineering students Ali Dabas and Rourke Sylvain discuss their electrochemical biosensor start-up, “imi”

In preparing for the New Venture Challenge, Michigan Tech students participated in a number of Husky Innovate workshops and review sessions. They also benefited from resources and expertise available within MTEC SmartZone, the local state-funded technology business incubator, and the Upper Peninsula Regional Small Business Development Center, which is hosted by Michigan Tech’s Office of Innovation and Commercialization in collaboration with the College of Business.

“Thanks go out to our distributed team of mentors and our sponsors at Michigan Tech, including the Pavlis Honors College, Office of Innovation and Commercialization, College of Business, College of Engineering, Biomedical Engineering, and Civil Engineering,” said Casper. “We also thank Central Michigan University, and especially Julie Messing, director of the Isabella Bank Institute for Entrepreneurship, for the collaboration and congenial hospitality.”

Michigan Tech management information systems student Jordan Craven pitched “Tall and Small Designs,” a new kind of software for retailers who sell clothes online

Student Awards Announced for Michigan Tech’s 2022 Design Expo

More than 1,000 students in Enterprise and Senior Design showcased their hard work last Thursday at Michigan Tech’s 22nd Annual Design Expo event. As we’ve come to expect, the judging for Design Expo is often VERY CLOSE. This year we had several ties. 

Teams competed for cash awards totaling nearly $4,000. Judges for the event included corporate representatives, community members and Michigan Tech staff and faculty.

The Enterprise Program and College of Engineering are proud to announce the award winners. Check them out here, or visit the Design Expo website, at mtu.edu/expo, where you can view videos and project info submitted by all the teams who took part. Congratulations and a huge thanks to everyone for a very successful Design Expo!

ENTERPRISE AWARDS (Based on video submissions)

First Place (2-way tie)
CinOptic Communication/Media
Team Leaders: Matthew Brisson, Communication, Culture, and Media; Julianna Humecke, Scientific and Technical Communication
Advisor Erin Smith, Humanities
Sponsors: Isle Royale National Park, NSF CAREER Grant
Video

Velovations
Team Leaders: Jorge Povich and Eamon McClintock, Mechanical Engineering
Advisor Steve Lehmann, Biomedical Engineering
Sponsors: Cleveland Cliffs, Senger Innovations, Enterprise Program
Video

Second Place (2-way tie)
Aerospace Enterprise
Team Leaders: Nolan Pickett and Kyle Bruursema, Mechanical Engineering
Advisor: L. Brad King, Mechanical Engineering-Engineering Mechanics
Sponsors: Auris: Air Force Research Laboratory, Stratus: NASA
Video

Supermileage Systems Enterprise
Team Leaders: Luis Hernandez, Mechanical Engineering and Olivia Zinser, Electrical Engineering
Advisor: Rick Berkey, Manufacturing and Mechanical Engineering Technology
Sponsors: General Motors, Aramco Americas, A&D Technology, Dana Inc., SAE International, Halla Mechatronics, Meritor, Oshkosh Corporation, Ford Motor Company, John Deere, Caterpillar, Henkel, BRP Inc., RapidHarness, Wetherington Law Firm, Danaher, Watermark, Top Flight Automotive, Shipley Energy, TEAMTECH, Gamma Technologies, Velocity USA, Enterprise Manufacturing Initiative funded by General Motors
Video

Third Place: 
Clean Snowmobile Challenge
Team Leaders: Katy Pioch and Daniel Prada, Mechanical Engineering
Advisor: Jason Blough and Scott Miers, Mechanical Engineering-Engineering Mechanics
Sponsors: GM (General Motors), Aramco, A&D, Dana, Milwaukee Tool, Caterpillar, Meritor, Oshkosh, Ford, John Deere, BRP (Ski-Doo), Kohler, Mahle, Yamaha, Castle, Gamma Technologies, Quincy Compressor, Shipley Energy, Top Flight Automotive, Superior Graphics
Video

Honorable Mention: 
Formula SAE
Team Leaders: John Herr and Luke Quilliams, Mechanical Engineering
Advisor: James DeClerck, Mechanical Engineering-Engineering Mechanics
Sponsors: General Motors, Aramco Americas, A&D Technology, Dana Inc., SAE International, Yamaha, Halla Mechatronics, Meritor, Oshkosh Corporation, Ford Motor Company, John Deere, Caterpillar, Henkel, BRP Inc., RapidHarness, Wetherington Law Firm, Danaher, Watermark, Top Flight Automotive, Shipley Energy, Superior Graphics, TEAMTECH, Gamma Technologies, Enterprise Manufacturing Initiative funded by General Motors
Video

SENIOR DESIGN AWARDS (Based on video submissions)

First Place
IoMT Device Security
Team Members: Jacson Ott, Stu Kernstock, Trevor Hornsby, and Matthew Chau, Cybersecurity
Advisor:Guy Hembroff, Applied Computing
Sponsor: Dept. of Applied Computing
Video

Second Place
MR Compatible Transseptal Needle with Integrated System for Confirming Left Atrial Access
Team Members: Lydia Ragel Wilson, Natalie Reid, Jared Martini, Braxton Blackwell, and Aydin Frost, Biomedical Engineering
Advisor: Hoda Hatoum and Jeremy Goldman, Biomedical Engineering
Sponsor: Imricor
Video

Third Place
Britten Water Filtration System
Team Members: Nika Orman and Nick Hoffebeck, Electrical Engineering, Matt Zambon, Kyle Clow, Luke Schloemp, and Gabby Sgambati, Mechanical Engineering, and Evan McKenzie, Computer Engineering
Advisor: Tony Pinar, Electrical and Computer Engineering
Sponsor: BoxPop powered by Britten, Inc.
Video

Honorable Mention 1
Locomotive Pinion Cutter Feed System
Team Members: Seth Jensen-Younk, Sam Barwick, Matt Krause, Nick Sand, and Stephen Mleko, Mechanical Engineering
Advisor: Cameron Hadden, Mechanical Engineering-Engineering Mechanics
Sponsor: Dr. Pasi Lautala, Civil, Environmental, and Geospatial Engineering
Video

Honorable Mention 2
Rapid Corrosion Screening of Engineered Structural Fastener Coating Systems for Treated Lumber
Team Members: Sophie Mehl, Isabelle Hemmila, and Kendal Kroes, Materials Science and Engineering and Luke Owens, Mechanical Engineering
Advisor: Paul Sanders, Materials Science and Engineering
Sponsor: Altenloh, Brinck & Company US, Inc
Video

Honorable Mention 3
Cycle Time Improvements in Medical Device Manufacturing – Laser Welding
Team Members: Abigail Martin, Hannah Loughlin, Zachary Alesch, and Megan Cotter, Biomedical Engineering
Advisors: Jeremy Goldman and Chunxiu (Traci) Yu, Biomedical Engineering
Sponsor: Boston Scientific (BSC)
Video

Honorable Mention 4
Stromberg Carlson Electric Tongue Jack Redesign Phase 2 Application Development
Team Members: Dustin Duclos, Sean Parker, and Shane O’Brien, Computer Engineering
Advisors: Trever Hassell and Mark Sloat, Electrical and Computer Engineering
Sponsor: Stromberg Carlson
Video

DESIGN EXPO IMAGE CONTEST (Based on image submitted by the team)

First Place: 
Aerospace Enterprise — “Physical Model of Auris Spacecraft.”

Physical Model of Auris Spacecraft. Photo credit: Aerospace Enterprise

Second Place: 
Blizzard Baja Enterprise — “Blizzard Baja Competition Vehicle.” Photo credit: Andrew Erickson

Blizzard Baja Competition Vehicle. Photo credit: Andrew Erickson

Third Place
Dollar Bay School SOAR — “A member of the SOAR team troubleshoots one of the service grade ROVs.”

A member of the SOAR team troubleshoots one of the service grade ROVs. Photo credit: Dollar Bay Soar High School Enterprise

DESIGN EXPO INNOVATION AWARDS (Based on application)

First Place
Lydia Ragel Wilson, MR Compatible Transseptal Needle with Integrated System for Confirming Left Atrial Access, Department of Biomedical Engineering
Sponsor: Imricor

Second Place
Veronika Orman, Britten Water Filtration System, Department of Electrical and Computer Engineering
Sponsor: Britten, Inc.

Third Place
Jerod Warren, HACK Cybersecurity Kit, Department of Applied Computing 

DESIGN EXPO AUDIENCE CHOICE AWARD (Based on receiving most text-in voting during Design Expo)

Enterprise
Consumer Product Manufacturing
Video

Senior Design
Britten Water Filtration System
Video

ENTERPRISE STUDENT AWARDS

Rookie Award: Brian Geiger, CFO, Multiplanetary Innovation Enterprise (MINE)

Innovative Solutions: Pete LaMantia, ITOxygen

Outstanding Enterprise Leadership: Brooke Bates, Consumer Product Manufacturing

ENTERPRISE FACULTY/STAFF AWARDS

Behind the Scenes Award: Tania Demonte Gonzalez, PhD Student Researcher, Department of Mechanical Engineering-Engineering Mechanics. 

Outstanding Enterprise Advisor: Tony Rogers, Associate Professor and Faculty Advisor, Consumer Product Manufacturing, Department of Chemical Engineering