Category Archives: Features

When you mark something as “Features” you are forcing it to the top of the news page on news and events.

Western UP Science Fair this Tuesday at Tech: Free, fun, hands-on activities for K-8 students

Prepare to be amazed! Here, a member of Michigan Tech Mind Trekkers hand out samples of “shattered” graham crackers frozen with liquid nitrogen. Not pictured: the exciting result. Eat a small bite, exhale, and poof! You’ve got ‘dragon breath’!

The Western UP Science Fair and Science & Engineering Festival will be on campus at Michigan Tech, on Tuesday, March 19, from 4:30-7:30 pm.

All students in the Western Upper Peninsula of Michigan— kindergarten through the 8th grade, and their families—are invited to attend the Science & Engineering Festival from 4:30-7:30 pm, Tuesday, March 19 in the Memorial Union Building Commons (ground floor) at Michigan Tech. 

More than 60 Michigan Tech students from 15 Michigan Tech student organizations will engage participants in fun, hands-on engineering, physics, and chemistry activities, including Remotely Operated Vehicles, Fish Tank Fiber Optics, a K’NEX Wind-powered Water Lift, and Tracks & Trains. Design an egg package with toothpicks and marshmallows. Design and shoot a straw rocket! Make some Gel-o that mimics human tissue! Make art with glow in the dark paints! How about glitter slime and popsicle stick flashlights? More than 30 different fun things to try!

Schedule & Event Flyer

4:30-7:30 pm   Activity Stations open to the public (K-8 students and families)

5:00-6:00 pm    Public viewing of science fair projects in the Ballroom (2nd floor)

2019 STEM Festival-FLYER 031919

Don’t miss this super-fun event! The stellar list of Michigan Tech student organizations include:

  • FIRST Robotics Houghton Middle School
  • Society of Physics Student Chapter
  • Engineering Ambassadors                                         
  • Railroad Engineering Activities Club
  • Materials United – Materials Science Engineering
  • Women in Natural Resources
  • Society of Women Engineers
  • MTU Sustainability House
  • Dollar Bay SOAR
  • Mind Trekkers
  • Society of Environmental Engineering
  • Optics & Phototonics Society
  • Biomedical Engineering
  • Keweenaw Rocket Range
  • Tau Beta Pi

For more information: Joan Chadde, 906-487-3341 or jchadde@mtu.edu

Michigan Tech Hosts STEM Festival & Science Fair

Hundreds of Keweenaw area students visited the campus of Michigan Tech Tuesday as they took part in all sorts of fun and games, and all in the name of “Science.”

“We have some new organizations: the Keweenaw Rocketry Club, Biomedical Engineering is here, the Society of Physics students always come out and they have a lot of fun,” said Chadde.

Read more at the Keweenaw Report.

Michigan Technological University hosts 21st Annual Western Upper Peninsula Science Fair and STEM Festival

“What we want the students to see is how much fun science, technology, engineering, and math are,” said MTU Center for Science and Environmental Outreach director Joan Chadde. “They’re also interacting with some great role models.”

Projects from the fair that earn enough points will receive gold, silver, or bronze ribbons. All ribbon winners will be able to present their project at the Carnegie Museum in Houghton this April.

Read more and watch the video at Upper Michigan’s Source, by Tyler J. Markle.

Science Fair: Michigan Tech hosts 21st annual festival

“At this event we want to get kids interested in rocketry. That’s actually one of our mission statements for the organization,” said Dan Faber, vice president of the Keweenaw Rocket Range.

Younger students who want to join an organization before college were welcome to talk to the FIRST Robotics team, a robotics group for K-12 students.

Read more at the Mining Gazette.


Making a Difference in Motor City: Alternative Spring Break

Michigan Tech Alumnus Bruce Brunson during NSBE Alternative Spring Break in Detroit last year. Brunson earned BS degrees in Biomedical Engineering and Mechanical Engineering in 2018. He now works as an associate design engineer for Ethicon Endo-Surgery Inc. in Cincinnati, Ohio.

While some students travel for adventure during spring break, others travel for the greater good. The Michigan Tech Chapter of the National Society of Black Engineers (NSBE) will head to Motor City to spread the message of STEM.

Ten Michigan Tech engineering students will visit six middle and high schools to encourage students to consider college and a STEM (Science, Technology, Engineering, Math) careers as part of the chapter’s 8th Annual NSBE Alternative Spring Break trip to Detroit from March 11-13, 2019.

During the school day, the Michigan Tech students will make classroom presentations to middle and high school students encouraging them to continue their education after high school, consider going to college or community college, and choose a STEM career path. The NSBE students will also conduct evening Family Engineering events at three K-8 schools.

The goal of the NSBE classroom presentations and Family Engineering events are to engage, inspire, and encourage diverse students to learn about and consider careers in engineering and science through hands-on activities. These programs are designed to address our country’s need for an increased number and greater diversity of students skilled in STEM (math, science, technology, and engineering).

NSBE School Presentation Schedule ~ Monday-Wed, March 11-13, 2019
Morning High School Classroom Presentations (first 3 periods):
  • Western International High School
  • Communications and Media Arts HS
  • Ben Carson High School
Afternoon Middle School Classroom Presentations (2 periods after lunch) and K-8 Family Engineering Nights (3-5 pm):
  • Ronald Brown Academy
  • Thurgood Marshall K-8 School
  • Clippert Academy
This outreach effort is funded by General Motors, and the Michigan Tech Office of Admissions and College of Engineering, in partnership with Detroit Public Schools Community District. The effort is coordinated by the Michigan Tech Center for Science & Environmental Outreach.
High school students at these schools will also be encouraged to apply to participate in a 6-day Engineering & Environmental Science Exploration at Michigan Tech from July 20-27, or a 5-day Summer STEM Internship at Michigan Tech from July 15-19. Each participating student will be supported by a $700 scholarship. Application information is available here.
For many other students at Michigan Tech, For Michigan Tech students, spring break is a time to take the dedication, innovation and tenacity they bring to the classroom to a different venue. Read more about the wide range of alternative spring breaks taking place this year.

Safe Winter Roads, Explained by a Michigan Tech Snow Scientist

It’s the first week of March and so far we’ve had 175 inches of snow in Houghton County, with another couple of feet expected before the spring thaw. Despite all the snow, we manage to get around pretty well (most of the time). Snow scientist Russ Alger ’80, ’81 explains just what goes into the UP’s ‘secret sauce’ for safe winter roads.

Russ Alger, Chief Snow Scientist, Keweenaw Research Center

Russ Alger knows about snow. The head of Michigan Tech’s Institute of Snow Research is one of the world’s go-to guys for research on cold climate driving issues, with more than 25 years of experience and counting. Since earning his BS and MS in Civil and Environmental engineering Michigan Tech, Alger has developed a snow grader that can “pave” snow trails in Antarctica, and a product called SafeLane, an epoxy-aggregate mixture that is applied to roads, bridge decks, walkways and parking lots to give the surfaces better traction by reducing snow and ice. SafeLane is now marketed by Cargill and used widely, saving untold lives.

You are a snow scientist. How did you come to choose this path, or did it choose you?  My father, George Alger, was a civil engineering professor at Michigan Tech for many years. His expertise was in ice-covered rivers and cold regions engineering in general. Growing up in Dollar Bay and working with him on outdoor projects, as well as being an outdoorsman myself, pointed me down that path at a young age.  In 1976, my Dad, along with Michigan Tech civil engineering professors Ralph Hodek and Henry Sanford established a curriculum on Cold Regions Engineering. I started with them that very first year.

Are there best practices for using salt on roadways in winter? Road supervisors and crews rely heavily on the weather forecast.  Air temp, pavement temp, temperature trends, precipitation rates and total amounts, wind, time of day, and more all play into the decision making process. For example, if it is going to be below 15o F, it is likely that crews would consider adding something like calcium chloride to the mix since it is better at colder temps. They might just use sodium chloride above that temp since it works well and is much cheaper.  The amount of deicer needed also increases as temperature decreases and there is a point where it doesn’t pay to use deicer at all except for maybe as a “kicker” for sand applications.

Combining salt and stamp sands seems to work pretty well to help us get around amid all the snowfall here in the UP.  What all goes into it? Each maintenance entity uses a sand that is easiest in their operation. It depends on availability, and cost—where cost is actual material cost and transportation to the central staging areas. As it turns out, in most of Houghton County, stamp sand is used. It’s abundant, and the County owns some stamp sand property. On top of that, stamp sand is actually a pretty good ‘grit’ for this purpose. The grain size is right to result in traction, which is the purpose of sand. It isn’t too dusty, and most importantly, it is crushed rock, so it is angular. That means it has sharp edges that help it dig into icy pavements and grip tires. The addition of a small amount of deicer, mainly NaCl and CaCl2 liquid helps the sand piles from freezing up, but is also very effective at helping the sand particles to stick on the ice surface. A small amount of deicer makes the sand particles melt into the surface and stick, making a layer that acts like a piece of sand paper. This is a pretty effective way to increase grip of tires on the surface, which is the end goal of this operation.

 “Winter road maintenance is a science in itself, a very complicated undertaking. Each geographic location has its own challenges and ways of doing things that have evolved over the years. That said, there really is no miracle method.”

Are any elements of winter road prep unique to this area? As you drive across the UP and into Wisconsin and Lower Michigan it is evident that each entity has its own way of doing things.  Driving west through Twin Lakes and into Ontonagon County this is also quite evident. Each group has its own way of using deicers and each has a unique type of friction course (sand) that they use. The northern UP is also quite unique, as we get so much snow. Heavy snow areas are sometimes difficult areas in which to use deicers, since it takes so much chemical to keep up with the amounts of snow.

Within Houghton County a number of different entities perform our snow removal operations. MDOT takes care of the State and Federal trunklines, Houghton County takes care of all secondary roads, and some of the larger cities in the area take care of their own streets. Each of these entities have their own way of doing things. In fact, across the UP, there are counties that even take care of their own State and Federal Roads. There are some major difference in operations as you drive across the UP in a storm event.

Do you see any room for improvement?  There are always ways to improve, but in my experience traveling across the US and Canada through numerous storm events, our local entities have gotten really good at dealing with the extreme amounts of snow that we get. It always amazes me how well we can move around the Copper Country during and very shortly after a snow event. Hats off!!

Why does it seem that so many places elsewhere in the country are unprepared and shut down when even a few inches of snow falls? In areas that don’t get much snow, and not very often, it is hard to justify spending a lot on winter equipment and supplies. That has been a big problem this year since so much of the country is getting record snows.  On the other side of the coin, some areas, including some wealthier Detroit suburbs, the public has pushed for roads to be bare pavement at all times. These areas spend a lot of money on snow removal.

Could our method(s) be replicated and shared with other cities and towns? As researchers we always want to share or work and ideas with others. I’ve done a lot of deicer research over the years, some of which is public domain and some is for private companies.  We have also done a lot of work on methods over the years such as when to put deicers out, how to put them out, how much, how often, how to predict, and more.

 


Les Cayes, Haiti: Engineering World Health

Five engineering students from Michigan Tech’s chapter of Engineering World Health visited Les Cayes, Haiti in May 2018. Making the trip were electrical engineering student Megan Byrne, biomedical engineering students Gina Anderla and Kiaya Caspers, mechanical engineering student Brooke Breen, and materials science and engineering student Anna Isaacson.

Early last summer, five undergraduate engineering students from the Michigan Tech chapter of Engineering World Health took a trip to Les Cayes, Haiti. They were led by Megan Byrne, an electrical engineering undergraduate who organized the trip. They describe the experience as nothing short of life-changing.  

Engineering World Health inspires, educates and empowers young engineers, scientists and medical professionals to use their engineering skills to improve global health in the developing world.  The Michigan Tech chapter of EWH is now in its second year.

Along with Byrne on the trip were biomedical engineering students Gina Anderla and Kiaya Caspers, mechanical engineering students Lidia Johnson and Brooke Breen, and materials science and engineering student Anna Isaacson. To get to Haiti, the Michigan Tech engineering students bagged groceries, plus each spent $1,500 of their own to cover travel costs. A non-profit organization operating in Haiti, HUT Outreach, provided lodging for the Michigan Tech team during their stay, and invited them to help teach STEM subjects to a class of 7th graders in the new HUT Outreach secondary school.

Students in Haiti often drop out of school in the sixth grade, with a diminishing retention rate thereafter. HUT Outreach is trying to break that statistic. During their visit to Les Cayes, the Michigan Tech team tried to change how the high school students viewed education and experienced learning.

Kiaya Caspers teaches students about electrical circuits in Les Cayes, Haiti

“Project-based learning is a concept where students learn some theory, but also how to apply it outside the classroom, in the real world,” says Breen. “Our three day curriculum was focused around allowing Haitian students to think outside the box, being really inquisitive with hands-on learning projects. Our purpose was not only to expose them to a new way of thinking, but also to help HUT Outreach reform a new generation of Haitians who will be catalysts in creating a new way of approaching education in their country. Michigan Tech also gives us these tools and abilities—to be able to really hone in our leadership skills, and innovate ways to help create a better community around us, on a local-to-global spectrum.”

“Our EWH team wanted the students to learn the theory of series and parallel circuits, forces to build bridges, first aid, and how to build water filters,” says Byrne. “This was a challenge, because the students had not been exposed to any of these topics or hands-on learning, and they also spoke a different language.” Byrne is a peer mentor in the Learning with Academic Partners (LEAP) program for first-year engineering students in the Department of Engineering Fundamentals at Michigan Tech, which also provided support for the Haiti trip. Byrne was able put her LEAP experience to good use in Haiti.

“Thanks to our Haitian translator, Wesley, I was able to use a creative twist to help the students gain understanding of the difficult lessons in a way that would be impactful for them,” she says. “As a matter of fact, the lessons we taught in Haiti were very similar to LEAP sessions I have facilitated for first year engineering students at Michigan Tech.”

Using creativity, resourcefulness and critical thinking, EWH students from Michigan Tech repaired a broken oxygen concentrator, one of only two in the public hospital pediatric ward in Les Cayes, Haiti.

The Michigan Tech team also visited a local hospital, where they fixed a broken oxygen concentrator, one of only two in the hospital pediatric ward. They also discovered a potential fire hazard at the hospital—auto headlight bulbs used as replacement bulbs on medical lamps. And they noticed a lack of surge protectors to protect medical equipment during power outages.

The EWH team wants to return to Haiti this year to continue to help prepare the next generation of Haitian students, and provide support to the small community where we served. They also want to provide the woman’s center in Les Cayes with its first portable ultrasound machine.

“We really bonded with the community in Les Cayes,” says  Isaacson. “We want to help in any way possible to make their lives better. I think we can all agree that all the people of Haiti became our second family the minute we stepped into the country.”

 

 

 

 

 

 

 


Bruce Lee: Smart Biomaterials Inspired by Mussel Chemistry

Self-healable and moldable nanocomposite gel as fit-to-shape sealant.
Bruce Lee exploits the ability of a Dopa, a unique catechol-based amino acid found in mussel adhesive proteins, in a new fit-to-shape sealant. It initially exhibits the ability to be remolded and adhered to the convex contour of a tissue surface. With time, the hydrogel is fixed in its new shape.

Bruce Lee, an associate professor of biomedical engineering at Michigan Tech, focuses on smart adhesives and biomaterials inspired by nature. More specifically, the natural glues made by mussels that anchor them to rocks, boats and docks. His past work on hydrogels and tissue adhesives led him to look more closely at what makes these adhesives work underwater—and how people could use them.

Lee’s research team exploits the ability of Dopa, a unique catechol-based amino acid found in mussel adhesive proteins. He currently has three active, federally funded research projects.
Bruce Lee, Associate Professor of Biomedical Engineering, Michigan Tech
Bruce Lee, Associate Professor of Biomedical Engineering, Michigan Tech

Smart Adhesive

As a participant in the Office of Naval Research (ONR) Young Investigator Program, Lee delves into not only what makes mussels sticky but also how to reverse that adhesion with an electrical charge. The YIP grant is awarded to scientists and engineers with exceptional promise for producing creative, state-of-the-art research that appears likely to advance naval capabilities. “There is no smart adhesive out there that can perform underwater,” he says. “The chemistry that we can incorporate into the adhesive, causing it to reversibly bond and de-bond, is quite new.”
Fit-to-Shape Sealant
Lee is also designing an injectable sealant and bioadhesive, funded by the National Institutes of Health (NIH). Lee and his research team developed a moldable nanocomposite hydrogel. “This material initially exhibits the ability to be remolded and adhered to the convex contour of a tissue surface,” says Lee. “With time, the hydrogel is fixed in its new shape and functions as a fit-to-shape sealant.” Their hydrogel uses no cytotoxic crosslinking reagent, and needs no mixing tip for mixing precursor solutions. It also demonstrates burst pressure potentially suited for sealing renal vein and even intestinal anastomosis. “One very valuable quality of this synthetic glue is its versatility,” adds Lee. “We can change the chemistry to make it as rigid or flexible as we need — while still maintaining its overall strength and durability.”
Smart Antimicrobial Microparticles
Lee just received new funding from the Office of the Assistant Secretary of Defense for Health (OASDH) to design smart microparticles from mussel-derived catechol. “The particles are pathogenic and able to promote healing,” Lee says. “Simply hydrating the microparticles in water causes them to generate hydrogen peroxide that can kill bacteria and inactivate viruses. This material can potentially function as a lightweight and portable disinfectant for a wide range of applications.”
Visit Lee’s research group online to learn more about their bio-inspired approach to the design of advanced functional materials.

May the Force Be with You: Sangyoon Han Brings Mechanobiology to Michigan Tech

Tracked adhesion population classified with Machine Learning. Sangyoon Han uses images like these to measure and compare force behavior.
Sangyoon Han uses images of live cells to measure and compare force behavior. Pictured here: tracked adhesion population, classified with Machine Learning.

Cancer cell metastasis. Stem cell differentiation. Atherosclerosis. All are strong mechanotransduction-related physiological and pathophysiological events. Just how do cells transduce mechanical force into biochemical signals? 

Assistant Professor Sangyoon Han, Department of Biomedical Engineering, Michigan Tech
Assistant Professor Sangyoon Han, Department of Biomedical Engineering, Michigan Tech.

“Cells are sensitive to mechanical forces outside the cell membrane,” says Sangyoon Han, who joined the Department of Biomedical Engineering at Michigan Tech as an assistant professor last fall. At their basal surface, however, cells are interfacing with something called the extracellular matrix (ECM), which supports the cell not only chemically but also mechanically.”

“Over the past 20 years, it has been revealed that the rigidity of the extracellular matrix can greatly influence the physiology and pathology of cells and tissues, including differentiation, survival, proliferation, altered drug response, and tumor progression,” adds Han. “In the case of a tumor, an increase in tissue stiffness—without any changes in genetic information and chemical environment—can cause tumor progression. There is also an evidence showing that cancer-targeting drugs do not work when cancer cells are highly contractile in a very tensed environment,” he says.

To investigate this, Han and his team established experimental and computational frameworks for force measurement and adhesion dynamics quantification. “We apply these frameworks, with cutting-edge computer vision techniques, on live-cell microscope images to find out the fundamental mechanisms underlying mechanosensation in normal cells, as well as the biomechanical signature in diseased cells whose signaling has gone awry.”

Han measures the force a cell transmits to the environment with traction force microscopy. “The force sensor, referred to as a focal adhesion, consists of a special receptor across the membrane and over 100 cytoskeletal adaptor proteins. These focal adhesion proteins have redundant and diverse roles in signaling and structural development of the adhesion,” he explains.

L to R: adhesion segmentation, displacement map, and tracking map. Photo credit: Sangyoon Han, Michigan Tech
L to R: adhesion segmentation, displacement map, and traction force map. Photo credit: Sangyoon Han, Michigan Tech

Using high-resolution imaging of living cells on a soft substrate, Han captures gel deformation and force-sensing protein trajectories at the same time. Han’s novel force-reconstruction software converts the measured gel deformation into a force map over a cell footprint. Using time-series data extracted from the image data, he monitors feedback between the cellular structure and its mechanical forces.

Han shares his Matlab-based, open-source software with the mechanobiology community. In his Mechanobiology Lab at Michigan Tech, Han is also building a physical device using bioMEMS for active force application to cells and tissue. “I firmly believe that engineers can make significant contributions to not only the biomedical industry, but also fundamental biological science.”

Before coming to Michigan Tech, Han was a postdoctoral researcher at the Harvard Medical School Lab of Computational Cell Biology, as well as the University of Texas Southwestern Medical Center. He earned a PhD in Mechanical Engineering at University of Washington in the area of cell mechanics, multiphysics modeling, and bioMEMS, and BS and MS in Mechanical Engineering at Seoul National University.

Color-coded map of deformation of a gel, quantified using the fluorescent beads. Photo Credit: Sangyoon Han, Michigan Tech

 

Red spots are the fluorescent beads coated on top of the gel, which we use to quantify the deformation of the gel. Green signal is the paxillin, one of the focal adhesion proteins of a Chinese Hamster ovary cell. Photo credit: Sangyoon Han, Michigan Tech
“Red spots are the fluorescent beads coated on top of the gel, which we use to quantify the deformation of the gel,” explains Sangyoon Han, assistant professor of biomedical engineering at Michigan Technological University. “Green signal is the paxillin, one of the focal adhesion proteins of a Chinese Hamster ovary cell.”

Study Abroad: Clean, Renewable Energy in Iceland

Zoe Ketola, Systems Engineering undergraduate, studied renewable energy in Iceland this summer.
Zoe Ketola, Systems Engineering undergraduate, studied renewable energy in Iceland this summer.
Zoé Ketola enrolled in the The Green Program, which offers short-term, experiential education about the world’s most pressing issues in sustainable development. Ketola took classes through Reykjavik University School of Energy, and also traveled extensively around Iceland. In Ketola’s group there were about 20 others students, coming from Penn State, University of Michigan, Colorado State, and some Canadian universities, to name a few.

Here at Michigan Tech, Ketola is turning her innovative ideas into a reality with a BSE degree in systems engineeringan engineering degree she can customize to fit her interests. She wants to work on improving and overhauling the US electrical grid—facilitating the transition from traditional to clean energy sources.

Why did you decide to go to Iceland for your study abroad?
Iceland is what fell into my lap. It is considered the world’s renewable energy capital and renewable and clean energy are my passion. I never set out looking to go to Iceland (or anywhere, really) but when the department chair of Engineering Fundamentals, Professor Jon Sticklen, told me about the opportunity I couldn’t think of a better place to learn about what I love. Plus, have you seen pictures of the place? It’s a dream if you like the outdoors.

What was your main project while you were there?
I worked on a project that detailed providing personal solar arrays to impoverished communities within the United States. My group focused on communities in West Virginia and we looked into providing the equipment, doing install, how we would run our company, etc. We did this outside of taking courses on hydropower, geothermal, biofuels, and icelandic culture/history.What did you learn about culture and society in Iceland?
The Icelandic people are very hearty. They are independent and they kind of do their own thing. The most interesting things to me included how independent the children are and just how important keeping their public places clean is. You don’t wear your shoes in homes or the public pools. The pools also have a monitor who makes sure you shower before swimming.

“Iceland changed my life. I know that sounds cliche but I felt like I was losing my fire to make things better. I met people who cared about the same things as me and wanted to save the world. Nothing felt better than that. I can never thank my professor enough for helping me to get there.”

How has studying abroad impacted or changed your outlook?
Well, I’m itching to go back to Iceland and have been since I landed back stateside. I’m now looking more seriously at pursuing a masters dealing with energy, maybe even in Iceland.  Iceland reignited my passion to help the planet and to focus on improving the renewable/clean energy sector.

Through the Green Program, Zoé Ketola studied abroad in Iceland with a strong focus on clean renewable energy
Through the Green Program, Zoé Ketola studied abroad in Iceland with a strong focus on clean renewable energy

What was your most memorable experience?
I hiked a little over 10 miles at Fimmvörðuháls in the Icelandic highlands. When we got to the top of our hike, I couldn’t believe I was there. I was standing in between two glaciers with 20 fantastic people from all over the world and it was so surreal. The world is so big yet we all ended up there together.

Outside of working and studying, what was everyday life like? What did you do for fun?
Mostly spent time outside. I hiked everywhere it feels like, including near the southern coast and in the highlands (where I also camped). We visited hot springs, public pools, mountains, glaciers, and a local hostel where we got to meet a band we had started listening to that morning on the bus. We also visited Iceland’s largest geothermal plant and two hydropower plants, one of which was built in the 1960s.

What are your career goals?

I want to work on improving and overhauling the US electrical grid and facilitating the transition from traditional energy sources to clean energy sources. I don’t know what that means yet because it doesn’t look like anyone is doing exactly what I feel like needs to happen but I’ll figure it out along the way. If I quit every time I wasn’t sure of how to move forward I would never get anything done.

Michigan Tech Brings Global Experts in Sustainable Iron and Steel to Houghton

Advanced Sustainable Iron and Steel Making at Michigan Tech
Advanced Sustainable Iron and Steel Making Laboratory (ASISC) at Michigan Tech

International industry leaders and research engineers from mining and mineral processing are on the Michigan Tech campus Thursday and Friday for the 7th annual meeting of the Advanced Sustainable Iron and Steelmaking Center (ASISC). The meeting features speakers from India, China, Chile, Brazil, United Kingdom, Sweden, South Africa, Columbia and the U.S., as well as Michigan Tech faculty and students.

A total of 25, 30-minute presentations will take place during the meeting. This year’s theme: “New Paradigms in Mineral Processing.”

ASISC members pool resources to address a diverse spectrum of interdisciplinary research questions. During the annual meeting, they share their work and experiences to further the development of a new generation of sustainable, economical mineral processing technologies.

The meeting kicked off with Komar Kawatra, professor of chemical engineering at Michigan Tech and founder and director of ASISC, welcoming participants. Todd Davis, area manager of Tilden Mine Plant Operations for Cleveland-Cliffs, delivered the first presentation. Following Davis, Anna Edigar, also of Cleveland Cliffs spoke about the role of government relations in the iron ore industry. She also shared an update on the Cliff iron ore operation.

Janet Callahan, dean of the College of Engineering at Michigan Tech, welcomed attendees at today’s lunch at 1 p.m.

Callahan holds a PhD in materials science, an MS in metallurgy, and a BS in chemical engineering, all from the University of Connecticut at Storrs, where she is a member of the Academy of Distinguished Engineers. “Bringing together world experts to focus on sustainable ways to process iron and steel is important,” she remarked. “Each gain we make has a multiplying effect across the world.”

A Pilot Scale Carbon Dioxide Scrubber for the Michigan Tech Steam Plant

Sam Root and Sriram Valuri at work on the carbon dioxide scrubber
Sam Root and Sriram Valuri at work on the carbon dioxide scrubber

Meanwhile at Michigan Tech, chemical engineering undergraduate Sam Root, along with Kawatra and chemical engineering PhD student Sriram Valluri are making plans to install a pilot scale carbon dioxide scrubbing column in the Michigan Tech steam plant.

“The new equipment will scrub carbon dioxide from a sample stream of less than one percent of the main exhaust from the steam plant,” Root explains. “This will allow us to study the effects of real flue gas on carbon dioxide capture. The findings of this research will be applied in the future when designing a full-scale scrubbing operation.”

“The Michigan Tech steam plant currently produces a flue gas that is 10 percent carbon dioxide by volume,” says Kawatra. “Our goal is to use the scrubber to reduce those emissions to zero.”

The steel industry currently produces a flue gas that is 16 percent carbon dioxide by volume, adds Kawatra. Carbon dioxide scrubbers are not yet widely used in the steel industry, at least not yet.

“Making our scrubber compatible with real flue gas is the biggest challenge we’ve faced on this project. Flue gas is released from the boiler at high temperatures. It contains particulates that may be harmful to the packing inside the column. The equipment used to filter and cool the flue gas must be carefully selected to ensure that all materials are chemically compatible with the flue gas,” Root explains.

“Carbon dioxide levels are increasing, and this contributes to climate change. Capturing carbon dioxide on a large scale would be a huge step forward in mitigating anthropogenic climate effect. I am excited to work on such an important project as a young engineering student.” – Sam Root,  chemical engineering senior at Michigan Tech

Master Machinist Jerry Norkol and Research Associate Stefan Wisniewski, both staff in the Department of Chemical Engineering, worked with the students to design the new scrubbing column, and also built the experimental setup. Larry Hermanson, director of energy management for Michigan Tech Facilities, is also involved in project planning and installation. In just a few months, once the test pilot scrubber is installed on the steam plant, the team will begin to examine how impurities in flue gas, such as sulfur dioxide and nitrogen oxide, as well as depleted oxygen levels, affect its ability to absorb carbon dioxide.

A Long Time In the Making
Kawatra and his graduate students have spent the past 15-plus years developing the scrubbing column technology at Michigan Tech with support from Carbontec Energy Systems in Bismarck, North Dakota. Carbontec is a developer of technologies for the energy, oil and gas and iron and steel industries. John Simmons, chairman of Carbontec, earned a BS in metallurgical engineering at Michigan Tech in 1953. He is a member of the Chemical Engineering Academy at Michigan Tech, a native of Ironwood, Michigan, and a strong supporter of Michigan Tech.

Root and Valluri will present a poster on the pilot carbon dioxide scrubber project at the ASISC annual meeting poster session.

Speakers at the ASISC Annual Meeting
THURSDAY, AUGUST 9
Dr. Komar Kawatra, Michigan Tech
Todd Davis, Tilden Mine, Cleveland Cliffs
Anna Ediger, Cleveland Cliffs
Dr. Sandra De Moraes, IPT, Brazil
Dr. Natasia Naude, University of Pretoria, South Africa
Samira Rashid, Thyssenkrupp Industrial Solutions
William Irani, Gaustec Magnetic Technology
Esau Arinwae, Solvay
Professor Yuexin Han, Northeastern University, Shenyang, P. R. China
Dr. Janet Callahan, Dean of Engineering, Michigan Tech
Professor Shaoxian Song, Wuhan University of Technology
Maria Bjorkvall, LKAB
Dean Connor, Metso Minerals Industries
John Simmons, Carbontec Energy

FRIDAY, AUGUST 10
Dr. Luis Cisternas Universidad de Antofagasta, Chile
Michael Archambo, Michigan Tech
Victor Claremboux, Michigan Tech
Sriram Valluri, Michigan Tech
Dr. Rajiv Ganguli, University of Alaska Fairbanks
John Carr, Solvay
Dr. Tathagata Ghosh, University of Alaska Fairbanks
Dr. Latika Gupta, Michigan Tech
Scott Moffat, Solvay


Study Abroad: Designing Water Systems in Rural Panama

A community woman uses buckets to carry water for her family in Nidori, in the province of Bocas del Toro, Costa Rica
A community woman uses buckets to carry water for her family in Nidori, in the province of Bocas del Toro, Panama

In 2014, an I-Design team from Michigan Tech advised by Civil and Environmental Distinguished Professor David Watkins traveled off the grid to rural Panama to partner with the Ngöbe, a group of indigenous people in Nidori, in the province of Bocas del Toro. The team assessed the needs of the community, gathered data on existing water sources, and completed a survey for a new water distribution system. Below is the story of their experience.

But first, what are these Michigan Tech alumni doing now?

  • Kellie Heiden earned her BS in Environmental Engineering at Michigan Tech in 2015. She is now a Project Engineer at August Mack Environmental, Inc.
  • Tia Scarpelli earned a BS in 2015 and MS in 2016, both in Environmental Engineering. She is now a graduate student at Harvard University.
  • Adam Tuff earned a BS in Civil Engineering in 2014. He is now a Construction Inspector at HDR in Bellevue, Washington.
  • Madie Martin earned a BS in Civil Engineering in 2015. She is now a Engineer II at Kiewit in Houston, Texas.
  • Logan Anderson earned a BS in Civil Engineering in 2015. He is a world traveler and teacher at VIPKid and Rustic Pathways.
Michigan Tech students L to R: Kellie Heiden, Tia Scarpelli, Madie Martin, Logan Anderson, and Adam Tuff
Michigan Tech CEE students L to R: Kellie Heiden, Tia Scarpelli, Madie Martin, Logan Anderson, and Adam Tuff

Grueling journey
“It was very difficult just to make it to the community,” recalls team member Adam Tuff. “To get there we flew into Panama City, took a bus to David District and stayed  there for the night, then in the morning took a bus to Chiriqui Grande, then a small boat. The community is definitely off the grid.”

The rural area is part of the Ngöbe-Buglé Comarca, one of the areas set aside by the government for the various indigenous groups of Panama. The Ngöbe people rely on water transportation throughout the community, often by canoe, due to the location of the homes and schools, as well as the rough surrounding terrain.

Quebrada y pozo
“Our project was a little complicated, as we serviced one community with two smaller aqueducts,” explains team member Kellie Heiden. “The first portion of our project came from the newly found quebrada ‘mountain stream’ water source. We utilized this source by designing a stream dam that siphoned water through PVC pipes to five homes that currently have no water distribution system at all. This  means that they carry buckets to and from a water source a few times a day to get adequate water. The second portion of our project collected water from the pozo ‘spring’ water source. This required the designing of a spring box and a distribute tion line that feeds into a concrete tank. The water collected in the tank will be used to service twelve homes that have a water distribution system only during the wet season.”

The team designed a stream dam that siphoned water through PVC pipes to five homes that had no water distribution system at all
The team designed a stream dam that siphoned water through PVC pipes to five homes that had no water distribution system at all

Working closely with community members
“It was difficult to figure out how we could design a simple system that would last,” adds Tuff. “It is not the same as designing a system in America where the people and parts needed to fix problems are readily available.” The team worked closely with the community members to figure out what they would be able to maintain.

Good prep for the Peace Corps
Back on campus, they produced a report in both English and Spanish detailing the design process, technical design components, construction, maintenance, feasibility, recommendations, and impact their project will have on the community.

“Our time in Panama was difficult due to factors like weather—full days of rain—and access limitations. Just getting to the sites was an adventure,” says team member Tia Scarpelli. “But the field experience was very rewarding. The people of Nidori really wanted to know how they could help.”

Adds Scarpelli: “Studying abroad and especially programs like iDesign are very helpful if you’re considering something like the Peace Corps—it will give you a great snapshot of what that sort of experience is like without the full-on commitment.”


Study Abroad: Investigating Myocardial Graft Materials in Hannover

Michigan Tech MSE student Jacob Braykovich studied abroad at Leibniz University Institute of Materials Science.
Michigan Tech MSE student Jacob Braykovich studied abroad at Leibniz University Institute of Materials Science.

Jacob Braykovich, a materials science and engineering major at Michigan Technological University, had spent two years working in the Michigan Tech Surface Innovations lab, helping to develop biodegradable zinc-based cardiac stents. He had a summer internship at start-up InPore Technologies, working on polymeric water filtration systems. But he wanted to do something different during the last summer before earning his undergraduate degree. 

Braykovich thought about going overseas, and began looking into options. That’s when he discovered the RISE program, or Research Internships in Science and Engineering. The RISE program is for students in the USA, Canada, or UK who want to spend a summer researching science or engineering at German universities. Braykovich applied for and won a scholarship to attend Leibniz University in Hannover, Germany.

Braykovich joined a team of researchers at Leibniz University Institute of Materials Science working on myocardial graft materials. Myocardial grafts, both biological and synthetic, are used to help restore damaged myocardium, or heart muscle. Whether from heart attack or disease, damage to the myocardium can result in scar tissue, which can diminish the heart’s ability to contract and pump blood effectively.

“The Liebniz team, led by Hans Jürgen Maier, has developed a biodegradable magnesium alloy scaffold designed to mechanically support a myocardial graft and then gradually lose its function as the graft develops its own strength,” Braykovich explains.

Biodegradable scaffolds are cut with a water jet at Leibniz University Institute of Materials Science
Biodegradable scaffolds are cut with a water jet at Leibniz University Institute of Materials Science

“The work was similar to my research here at Michigan Tech, so I was able to hit the ground running,” he says. Braykovich worked on perfecting the abrasive water injection jet cutting strategy employed to produce the scaffolds—analyzing design, cutting-edge roughness, and burr generation. “I ultimately determined the optimum pressure, flow rate, abrasive size and material, traverse rate, and orifice diameter of the cutting technique,” he says.

He started each day with coffee and a pastry from a local bakery and headed to work on the train. His tasks at work ranged from cutting samples in the manufacturing facility to using the 3D laser microscope to take images of the cuts, which he then analyzed.

“Through the experience, I found the hierarchy of the education/research system at Liebniz to be much different than what I have known, and with that the expectations were much different. But through making mistakes, I gradually began to understand and appreciate the diverse culture,” he says.

Leibniz University Institute of Materials Science
Leibniz University Institute of Materials Science

Outside the lab each weekend Braykovich traveled solo to a new city or country. Berlin, a short 90-minute train ride from Hannover, was his favorite city. “There are people living in Berlin from almost every country you can possibly imagine, making the cultural dynamic something unlike I have ever experienced,” he says.

“Ultimately, working in a foreign country has allowed me to see past my current horizon onto new ideas and experiences,” adds Braykovich. “It taught me how to take a leap of faith into any unknown situation.”

Jacob Braykovich earned a BS in Materials Science and Engineering at Michigan Tech in 2015. He is now a PD Quality Engineer at Ford Motor Company in Dearborn, Michigan, where he is responsible for delivering quality of all interior functions for future Ford F-150 trucks.