Author: Kim Geiger

Tech Students Take Home the Prizes

screen shot of certificate during the Zoom ceremony for NASA's Watts on the Moon Challenge
A Michigan Tech was a Grand Prize Winner of NASAs Watts on the Moon Challenge!

ME-EM Assistant Professor Paul van Susante’s Planetary Surface Technology Development Lab won $100K as a Grand Prize Winner of the NASA Watts on the Moon Challenge. Sixty teams submitted original design concepts aimed at meeting future needs for robust and flexible technologies to power human and robotic outposts on the Moon. Read more here

SAE Autodrive Challenge. NASA’s Watts on the Moon Challenge. US Department of Energy Solar Desalination Prize. And more. In this past challenging year—Michigan Tech students and faculty excelled. 

ME-EM Assistant Professor Sajjad Bigham and students in his Energy-X Lab were among eight teams (out of 162) selected as semi-finalists in the US Department of Energy Solar Desalination Prize. Their team, “Solar Desalt: Sorption-Based ZLD Technology” will receive $350K in funding to advance their research using solar-thermal energy to purify water with very high salt content, in the competition’s three-year, second phase. The team integrates standard multiple-effect desalination system (MED) technology with a high temperature desorption process and a low-temperature crystallization process in order to achieve zero liquid discharge (ZLD). Read more here.

Students and advisor stand in the lab around a small table displaying their crystal award plaque.
NASA’s Artemis Award, in Planet Surface Technology Development Lab. Congratulations!

Prof. Van Susante’s Planet Surface Technology Development Lab took home another top honor, the Artemis Award, in NASA’s Breakthrough, Innovative and Game-changing (BIG) Idea Challenge. Their design, a rover called “T-REX” (short for Tethered permanently shadowed Region EXplorer) deploys a lightweight, superconducting cable to keep other lunar rovers powered and provide wireless communication as they operate in the extreme environments of the moon’s frigid, lightless craters. Read more here.

The winning team! Left to right, MMET students Andrew Ward, Jake Lehmann, John Kurburski, and Alexander Provoast

Michigan Tech students in the Department of Manufacturing and Mechanical Engineering Technology were declared the Overall Champions of the 2021 National Fluid Fluid Power Association Vehicle Challenge, a national competition hosted by Norgren, a world leader in motion control and fluid technology based in Littleton, Colorado. The contest, dubbed “Hydraulics Meets the Bicycle,” combines human-powered vehicles along with fluid power and consists of three races—sprint, endurance, and efficiency. Senior Lecturer David Wanless advised the team, and MMET Lecturer Kevin Johnson contributed to their understanding of pneumatic and hydraulic circuits in his fluid power class. Read more here.

Two Michigan Tech teams, part of the student-run Built World Enterprise, captured First and Second place at the Airport Cooperative Research Program’s University Design Competition, a contest hosted by the National Academy of Sciences/Transportation Research Board. The teams are advised by CEGE Department Chair Prof. Audra Morse. Read more here.

Michigan Tech’s Wave Tank, located in the Department of Mechanical Engineering-Engineering Mechanics

Students in the SENSE Enterprise team at Michigan Tech, advised by Great Lakes Research Center Director Prof. Andrew Barnard, ECE Associate Professor Tim Havens, along with another team of students advised by ME-EM Professor Gordon Parker, were all selected to compete in the US Department of Energy’s 2022 Marine Energy Collegiate Competition. The students will use the Michigan Tech Wave Tank for this work. Read more here.

Michigan Tech’s SAE Autodrive Challenge team will soon need a bigger display case!

The four-year SAE Autodrive Challenge wrapped up on June 14 with Michigan Tech’s Prometheus Borealis team bringing home the second most trophies and earning 3rd place overall. Teams from University of Toronto and University of Waterloo earned first and second overall, making Michigan Tech’s team first among all the US contenders. ECE Assistant Professor Jeremy Bos and ME-EM Assistant Professor Darrell Robinette serve as advisors to the team. Next Up: SAE International and General Motors (GM) announced 10 collegiate teams selected to compete in AutoDrive Challenge II. Michigan Tech was on the list. Read more here.

Know of any more Michigan Tech student awards or engineering competitions? Email engineering@mtu.edu. We want to help share the good news!


Alumni Help Bring Advanced 3D Metal Printer to Michigan Tech

A look inside Michigan Tech’s new 3D Metal Printer. Direct metal printing is additive manufacturing. It starts with metal powders, added bit by bit.

Thanks to a group of generous mechanical engineering alumni, Michigan Tech has acquired a highly advanced 3D metal printer.

The 3D Systems ProX350, 3D Metal Printer and accessories arrived on campus at the end of March. Installation is taking place now, in a shared facility at Michigan Tech.

The new system can print using 11 unique metals, including bio-grade titanium (for biomedical applications), cobalt and chromium, several types of stainless steel at a resolution of 5 microns.

Faculty and graduate students will have access to the printer for research projects. Undergraduate senior design and Enterprise teams will, too.

Obtaining the new 3D metal printer was made possible by the generosity of seven Michigan Tech alumni.

For starters, ME-EM Department Chair Bill Predebon obtained a 20 percent discount on the $875K system from Scarlett Inc. Owner Jim Scarlett is an ME-EM alumnus.

In addition to Scarlett, six other Michigan Tech alumni donors pitched in. One anonymous donor provided over $600K , and five others made up the difference to meet the full cost of $673K. Those five are: Ron Starr, Don Drake, Frank Agusti, Todd Fernstrom, and Victor Swanson.

“This will be a game changer for Michigan Tech,” Predebon says. “It is one of the most accurate metal 3-d printers available. With approximately a 1-ft. cube size billet, which is an impressive size billet, you can make a full-size or scaled-down version of just about anything. Very few universities have a 3D metal printer of this quality and versatility.”

Coming soon: More photos and details on Michigan Tech’s new 3D metal printer.


Autonomy at the End of the Earth

Michigan Tech’s student team, Prometheus Borealis, designs, builds, and tests a fully autonomous vehicle, “Borealis Prime” for the SAE Autodrive Challenge.

Jeremy Bos and Darrell Robinette, mentors and advisors of Michigan Tech’s SAE Autodrive Challenge (and both Michigan Tech alums) share their knowledge on Husky Bites Live, on campus in the Rozsa Center at Alumni Reunion 2021. The session takes place Friday, August 6 at 1:30 pm ET. Everyone in attendance will learn something new, with time after for Q&A. 

Can’t make it in person? Join us remotely. We’ll share a link to join the Zoom webinar on the Alumni Reunion website as the event draws near. Afterwards (weather permitting) you’re invited to join us out on the Walker Lawn. Meet the students of Prometheus Borealis and Robotics Systems Enterprise, get a close look at their autonomous vehicles—and be sure to bring your questions.

It’s a wild ride.

Starting with a Chevy Bolt, Michigan Tech students outfit it with sensors, control systems and computer processors to successfully navigate an urban driving course in automated driving mode. And, test it in blizzard conditions!

It’s also an ambitious project with an equally ambitious goal: Three years of the competition, with increasing levels of autonomy and more difficult challenges in each successive year. 

Michigan Tech’s team is Prometheus Borealis, after Prometheus, the Greek deity responsible for bringing technology to people, and Boreas, the purple-winged god of the north wind.The SAE Autodrive Challenge competition is jointly sponsored by General Motors (GM) and the Society of Automotive Engineers International (SAE).

Credit: Photographer Tim Cocciolone and fellow prankster John Marchesi (both Michigan Tech alums).

“The competition focuses on the electrical engineering, computer engineering, robotics engineering, and computer science skills needed to implement the sensors, signal processing and artificial intelligence needed to make the car drive itself,” says team co-advisor, ECE Assistant Professor Jeremy Bos. “Mechanical engineers and a wide range of other disciplines are represented on the teams, as well.”

ME-EM Assistant Professor Darrell Robinette is the team’s other co-advisor. Robinette worked as an engineer at GM for 9 years before joining Michigan Tech in 2014, with roles in transmission, NVH, electrification and calibration engineering groups. He is a longtime First Robotics Competition mentor, too.

A section of the mapping of Michigan Tech’s campus as seen from the road by Borealis Prime’s Velodyne LiDAR VLP-16 using Intel Internet of Things HW. Mapping done with Iterative Closest Point (ICP).

Student-driven Autonomy

On the student side, the AutoDrive Challenge project is spearheaded by Robotic Systems Enterprise (RSE), also advised by Bos and Robinette. RSE is part of Michigan Tech’s award-winning Enterprise program. “It’s one of the best places on campus to learn robotics,” says Bos. The team’s many projects come in many shapes and sizes, from designing a vision system for work with a robotic arm, to an automatic power management system for weather buoys. Clients include Ford Motor Company and Michigan Tech’s Great Lakes Research Center.

Jonathon Beute ’21 served as project lead for the VISSION subteam focused on Borealis Prime as part of the Robotic Systems Enterprise. He graduated in June and now works as an electrical engineer at Williams International in Grand Rapids, Michigan.

SAE Autodrive Challenge Final Results

The four-year challenge wrapped up on June 14 with Michigan Tech’s Prometheus Borealis team earning 3rd place overall, bringing home the second most trophies. Teams from University of Toronto and University of Waterloo earned first and second overall. Read the full results on the SAE Autodrive Challenge website.

Teams from eight North American universities competed:  Michigan Technological University, Michigan State University, Kettering University, University of Waterloo, University of Toronto, Texas A&M University, Virginia Tech, North Carolina A&T State University

“We’re going to need a bigger trophy case.”

Dr. Jeremy Bos, Michigan Tech co-advisor, Prometheus Borealis

Next Up: Autodrive Challenge II

Also in June, SAE International and General Motors (GM) announced 10 collegiate teams selected to compete in AutoDrive Challenge II. Michigan Tech was on the list. 

The start of Michigan Tech’s dynamic run at M-City for the 99% Buy Off Ride, part of the SAE International Autodrive Challenge. The team placed third in this event and third overall. See the full results here.

The competition continues the strong collaboration between GM and SAE in STEM education and will build on the groundbreaking success of the first iteration of AutoDrive Challenge. Teams will develop and demonstrate an autonomous vehicle (AV) that can navigate urban driving courses as described by SAE J3016™ Standard Level 4 automation.

The following 10 university teams will participate in AutoDrive Challenge II:

Kettering University, Michigan Technological University, North Carolina A&T State University, The Ohio State University, Penn State University, Texas A&M University

University of Toronto, University of Wisconsin – Madison, Queens University and Virginia Tech.

“At General Motors, we envision a future of zero crashes, zero emissions and zero congestion, and we have committed ourselves to leading the way toward this future,” said Dan Nicholson, GM vice president, global electrification, controls, software and electronics and executive sponsor of the competition. 

“The AutoDrive Challenge is a great way to give students the hands-on experience they need to find success,” he adds. “We are very excited to work with these talented students over the course of the competition and know they will make an immediate impact on the automotive industry upon graduation.”

“Michigan Tech’s SAE AutoDrive Challenge team has proven our students innovate to succeed.”

– Dr. Janet Callahan, Dean, College of Engineering

Dr. Robinette, how did you first get started in engineering? What sparked your interest? 

Sage advice from ME-EM Assistant Professor Darrell Robinette: “Be a doer and a thinker at the same time.”

When I was 5, my dad took me for a tour at his place of work, Detroit Edison’s Belle River Powerplant. It was awe inspiring seeing all the equipment and getting an explanation of how it worked and what it did. Pretty amazing that they hang the boilers from the ceiling, eh? Everything at the plant was just so cool, especially the controls and control room. 

My dad introduced me to all the engineers he worked with, and all of them were MTU grads. They played a part in encouraging me where to go for engineering, even though I was only 5 years old. My dad gave me a Babcock & Wilcox Steam book after the visit. Even though I didn’t understand all the engineering in it at the time, pictures of the power plant equipment, construction, assemblies all caught my interest. 

Also, like most engineers, l played with Legos during childhood. Lots and lots of Legos to build whatever my imagination could create.

Family, home, hobbies?

I go mountain biking whenever I can, also wake surfing, snowboarding, and cross country skiing. My wife, Tara, is an MTU alumna (Pre-Med/Biology ‘07). She is one of the Emergency Room physicians at Portage Health Hospital. We have two daughters: Adelyn, 3, and Amelia, one. I like building, tinkering and fixing (typical mechanical engineer stuff), and trying to be a super dad for my girls.

Dr. Bos, how about you? When did you first get into engineering? What sparked your interest?

ECE Assistant Professor Jeremy Bos likes to ask new students: “What are your affinities? Knowing those, I can help point you in the right direction.”

My Dad ran a turn-key industrial automation and robotics business throughout most of my childhood. In fact, I got my first job at age 12 when I was sequestered at home with strep throat. I felt fine, but couldn’t go to school. My Dad put me to work writing programs for what I know now are Programmable Logic Controllers (PLCs); the ‘brains’ of most industrial automation systems.

I really liked these new things called ‘personal computers’ and spent quite a bit of time programming them. By the time I was in high school I was teaching classes at the local library on computer building, repair, and this other new thing called ‘The Internet’. I ended up in engineering because I like to build things (even if only on a computer) and I like to solve problems (generally with computers and math).

What do you like to do in your spare time?

I live in Houghton with my wife and fellow alumna, Jessica (STC ’00). We have a boisterous dog, Rigel, named after a star in the constellation Orion, who bikes or skis with me on the Tech trails nearly every day. When I have time I also like to kayak, and stargaze.

Learn More About Husky Bites


Everyone’s welcome at Dean Janet Callahan’s free interactive Zoom webinar, Husky Bites. Get the full scoop at mtu.edu/huskybites.

Launched by Dean Janet Callahan in 2020 near the start of the pandemic, Husky Bites is an interactive Zoom webinar that takes place each fall and spring.


“Feel free to invite a friend,” says Dean Janet Callahan about her Zoom webinar series, Husky Bites. “Everyone is welcome. It’s free, and it’s edifying.”

During the semester, every Monday at 6, rach “bite” is a suppertime mini-lecture, presented by a different Michigan Tech faculty member, who weaves in a bit of their own personal journey, and brings a co-host, as well—an alum or a current student who knows a thing or two about the topic at hand.

The Husky Bites weekly Zoom webinar series resumes starting Monday, Sept. 13.

“We’ve had attendees from nine countries, and a great mix of students, alumni, our Michigan Tech community and friends,” says Dean Callahan, who mails out prizes for (near) perfect attendance.

Get the full scoop at mtu.edu/huskybites.

Read more:

What’s Next After First

I Saw the Sign (End of the Earth)


Michigan Tech Students Form New Chapter of SASE

Civil engineering student Isaac Fong is the founding president of Michigan Tech SASE.

When Isaac Fong arrived at Michigan Tech as a student in 2019, he took note of the professional societies on campus with cultural identities: The National Society of Black Engineers (NSBE); Society of Hispanic Professional Engineers (SHPE); Society of Women Engineers (SWE); and American Indian Science and Engineering Society (AISES).

None existed, yet, for students of Asian heritage. But that was about to change.

“Some friends at other schools encouraged me to start a Michigan Tech chapter of the Society of Asian Scientists and Engineers (SASE). I started asking around my circles to find people who might want to join an interest group for SASE. I found a staff member who was willing to advise the chapter, and then a faculty member,” Fong says. “From there on, we found enough members, and SASE just took off.”

SASE was officially approved through Michigan Tech’s office of Student Leadership and Involvement in March, 2021.

Founded in 2007, SASE is the national go-to organization for talent and leadership development in science, engineering and technology. It’s also a community where students representing all of the pan Asian cultures connect and support each other.

“Any student at Michigan Tech is welcome to join SASE,” Fong says. “Faculty members can be honorary, non-voting members of SASE, too.”

The SASE logo, which features a blue gear combined with a green beaker.

Fiona Chow, a third year student in the College of Business, is a founding member of SASE.

“Growing up, I wasn’t surrounded by many other Asian individuals, other than family. So the opportunity to be a part of a supportive, relatable community is really appealing to me. In SASE we will help each other advance, both professionally and personally,” adds Chow.

“Isaac reached out, asking if I would be interested in joining and helping get SASE on its feet,” says Michigan Tech student Fiona Chow.

She looks forward to possibly attending the SASE national convention and regional conferences in the future. “These events will not only be a great networking opportunity but also a huge learning opportunity.”

“Our first meeting at Michigan Tech was a Zoom meeting with a handful of people,’ she adds. “The engagement and the excitement to be in one space, and to be starting something new, was so exciting and fantastic. I left the meeting filled with anticipation, for getting to know these people more, developing career skills with them, and seeing how the club will grow.”

Liz Fujita, academic advisor and outreach specialist in Michigan Tech’s Department of Electrical and Computer Engineering, serves as co-advisor of SASE. She’s also a Michigan Tech alumna. “I was so excited to hear about the formation of this group,” she says. “It’s one that I wish had been here when I was in college.” Fujita earned two bachelor degrees at Michigan Tech in 2012, Mathematical Science and Social Sciences.

“SASE is open to all students who are interested in the success of professional networking, development, and community among Asian and Asian American students,” says chapter co-advisor Liz Fujita.

SASE’s goal this fall is to have at least one event per month, adds Fujita. “We’ll host guest speakers, internal resume workshops, and social events, including events in partnership with other affinity-based organizations on campus.”

In the meantime, SASE members formed a summer book club, reading two books: Minor Feelings, by Cathy Park Hong and Interior Chinatown, by Charles Yu.

“When I was a student in college, I enjoyed being in various student organizations,” says Distinguished Professor Zhanping You, Michigan Tech SASE co-advisor. “As a faculty member, it has been my great interest to support them.”

Zhanping You, a Distinguished Professor of Transportation Engineering in the Department of Civil, Environmental and Geospatial Engineering, serves as the other Michigan Tech SASE co-advisor. “After years of service in various professional groups at Michigan Tech, I believe an organization of Asian students involved in science and engineering is really needed,” he says. “I am very happy to help the start of this new chapter of SASE.”

Dean of the College of Engineering, Janet Callahan, affirms her support of Dr. Zhanping You, Liz Fujita, and SASE. “This will provide a way for our students to connect, and build—and keep building upon these connections,” she says, adding: “And, I am reading Interior Chinatown, by Charles Yu, this summer, in support of SASE and their summer reading project!”

Within the Michigan Tech new chapter of SASE, an Asian Pacific Islander Desi American (APIDA) relations committee will work to amplify APIDA voices on campus and educate others through planned events. For students and working professionals alike, Fong says he hopes SASE activities and efforts will help educate and support students.

“We were all first supported and educated by others,” Fong says. “Now, through SASE, we have the chance to give back.”

Want to learn more about SASE? Contact Michigan Tech SASE co-advisor Liz Fujita.

ISAAC FONG

President, Michigan Tech SASE
Major: Civil Engineering
Hometown: Canton, Michigan (Metro Detroit)
Campus Involvement: Husky Swim Club, ASCE, Success Center ExSEL Peer Mentor, RA
Summer 2021: LEAPS Project Engineer Intern at Barton Malow
How did you first get interested in STEM?
“I grew up playing with Lego sets. I was obsessed with airports and subway systems from a young age. I didn’t really consider a career in STEM until late in high school, when I learned how I could incorporate buildings and infrastructure into my career. Classes in physics, calculus, and humanities all helped pique my interest in civil engineering.”

FIONA CHOW

Founding Member, Michigan Tech SASE
Major: Management Information Systems
Campus Involvement: SENSE Enterprise (“Cool people. Cool projects. Cool advisors,” notes Chow.)
Hometown: Eagan, Minnesota (Twin Cities area)
Summer 2021: Data Engineer Intern at Polaris Inc.
How did you first get interested in STEM?
“It all began in third grade when I switched to a STEM elementary school with opportunities to explore various areas, from engineering to computer science. I started college majoring in Software Engineering and just recently switched to Management Information Systems. It’s a better fit and combination of things I am passionate about—combining people and technology.”


Students Choose Fei Long as ME Teacher of the Year

ME Teacher of the Year, Dr. Fei Long, was selected solely by students of the Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University

Congratulations to Fei Long, a lecturer in the Department of Mechanical Engineering-Engineering Mechanics, for winning the Department’s 2021 Mechanical Engineering Teacher of the Year award.

Dr. Long has been with the ME-EM department since 2013, first as a post-doctoral research associate for one year, and then as an instructor. He was hired as a lecturer in 2020. His areas of research expertise include nanomaterials and scanning probe microscopy (SPM). He earned his PhD from Shanghai Jiaotong University in China in 2011, then served as an application scientist for two years in the Nano Surfaces Division, Bruker Co., which manufactures scientific instruments.

The ME Teacher of the Year Award is selected solely by mechanical engineering students and conducted by the Mechanical Engineering Student Advisory Committee (MESAC). It is a two step process, similar to the process employed by the University teaching award. The first stage is the selection of the top three, voted upon by ME students. In the second stage MESAC students go into all the spring classes of the three finalists with a questionnaire, which contains several questions about their teaching, including why they believe they should be the ME teacher of the year.

Long received a certificate and his name is on the ME Teacher of the Year plaque with past winners in the lobby of the R. L. Smith ME-EM Building. The award was announced during the recent 2021 ME-EM Department Order of the Engineering Virtual Ceremony.

Runner ups were ME-EM senior lecturers Jaclyn Johnson and Aneet Narendranath.


Greetings from the Copper Country to our GMES Alumni and Friends!

A Note from the Chair

I hope you have stayed healthy and safe during these unusual times.
Spring has finally arrived at the Keweenaw after a long winter! As the cycle of Nature starts anew, so too does the process of regular Departmental Newsletters. This newsletter reaches you after a long hiatus, but the dormancy does not mean that progress ceased behind the scenes; on the contrary, we have been keeping busy, and many new exciting developments have occurred.


Aleksey Smirnov, Professor and Chair, Department of Geological and Mining Engineering and Sciences, Michigan Technological University

Any attempt to recap all the news and excitements over the last decade in a single letter would be impossible, so I encourage you to visit our Departmental News blog to read more about the achievements of our faculty, students, and staff in research and education. You may also want to check out our faculty and staff directories to see some new and not-so-new faces and learn more about our people and their activities.

An achievement that cannot go unmentioned is the reinstatement of our Bachelor of Science in Mining Engineering program in 2019. This success came through the dedicated and indefatigable efforts by Professor John Gierke, who served as department chair from 2014 to 2020, and our superb mining engineering faculty, Associate Professor Snehamoy Chatterjee and Senior Lecturer Nathan Manser (an MTU alumnus BSME ‘01), who joined the Department in 2014 and 2018, respectively. Several faculty from outside the department generously contribute their expertise in the education of our mining engineering students. I am delighted to report that, in spring 2020, we celebrated our first graduating class of mining engineers since 2004!

Our faculty and staff have worked tirelessly to keep our department moving forward positively through the global pandemic crisis. Our achievements and the success of remote and socially distanced learning and research are sources of pride for the department and the wider GMES community. Despite unprecedented challenges, our students and faculty performed extraordinarily well, especially since experiential geology learning is not easily amenable to virtual instruction. Their flexibility, resourcefulness, and perseverance have been exemplary.

Also deserving of praise are our 2020 and 2021 graduates and the student recipients of recognitions and awards.

Our faculty and research scientists have stayed very active in cutting-edge and societally relevant research, collaborating around the globe and providing hands-on, real-world experience for our students.

Many of these achievements have been possible only with your continuing support, encouragement, and interest in our efforts and accomplishments.

Your impact on the world is a great motivator for our students.

On behalf of our students, faculty, and staff, I would like to express my deepest gratitude to our alumni and friends who have donated to our department; this support has allowed us to keep offering the best instruction and resources to our students during these difficult times.

One of my overarching goals as chair is to maintain and expand a strong and committed alumni base. If you are ever back in town, I hope you will stop by to say hello and share your story. In the meantime, please don’t hesitate to email me any time at asmirnov@mtu.edu, or use this link to share your successes and achievements or offer suggestions. Your impact on the world is a great motivator for our students.

Finally, I invite you to stay connected to the department via Twitter, Instagram, Facebook, and our website.

Best wishes,
Aleksey Smirnov


Michigan Tech’s Department of Mechanical Engineering-Engineering Mechanics Academy Inducts Class of 2021

R.L. Smith Building, Michigan Technological University

05/14/2021—Michigan Technological University’s Department of Mechanical Engineering-Engineering Mechanics (ME-EM) held its 2021 ME-EM Academy induction ceremony May 14 via Zoom.

Eleven ME-EM alumni were welcomed into the academy by JS Endowed Department Chair William W. Predebon. 

“This year’s inductees have made a significant impact in their professions,” said Predebon. “They include alumni who have risen to the top levels of major corporations, professional societies and universities, and those who are successful entrepreneurs.”

Portraits and brief biographies of academy members are prominently displayed in the R. L. Smith ME-EM Building to serve as inspiration for future students.

The full ME-EM Academy now includes 88 members — less than 1 percent of all ME-EM alumni. 

“They indeed honor us through their accomplishments,” said Predebon. “It’s a fantastic leadership group.”

The Class of 2021 ME-EM Academy inductees are:

Brett R. Chouinard, BSME 1988
President and Chief Operating Officer — Altair Engineering Inc.

Brett R. Chouinard

As president and chief operating officer of Altair Engineering, Chouinard is responsible for worldwide sales, consulting, and field operations in 25 countries. His team supports users across diverse industries, including automotive, aerospace, electronics, defense, banking, and financial services.  

During his time at Altair, the company has become a market leader in the areas of physics-based simulation, high performance computing, optimization, and machine learning. Chouinard was a senior member of the executive team that executed Altair’s successful IPO in 2017. 

He began his career at General Electric Aircraft Engines as a structural engineer on the GE90 high bypass commercial engine program—at the time, the largest commercial aircraft engine in the world. 

Chouinard is a member of the ME-EM External Advisory Board, and supports STEM education in the community as a trustee of the Ann Arbor Hands-on Museum and Leslie Science and Nature Center. 

M. Margaret Cobb, BSME 1983
President — The Cobb Foundation, NW

M. Margaret Cobb

Early in her career after earning her degree at Michigan Tech, Cobb worked as a mechanical engineer in a number of industries: Wisconsin Electric Power and Snohomish County PUD; the Boeing Company, Sundstrand Data Control, then Microsoft and Apple.

During her 20-plus years at Microsoft, Cobb worked on Windows, Xbox, and PC design in a variety of leadership roles. She led a multi-billion-dollar technical sales/engineering team responsible for designing, engineering and producing PCs worldwide, and received Microsoft’s annual Circle of Excellence award for her exceptional work with independent software vendors. 

As a recipient of Michigan Tech’s Board of Control scholarship, Cobb has made it a career mission to give back to the community, serving on the board of directors for numerous organizations including The Epilepsy Foundation Northwest, and Minds Matter Seattle—a non-profit dedicated to helping low-income high school students get into college. 

Cobb and her family established The Cobb Foundation Northwest, dedicated to helping low-income students to ensure all have access to life-changing educational experiences not provided by public schools, including music lessons, book clubs, athletic lessons, robotic workshops, and more.

Juan Dalla Rizza, PE, BSME 1971
President & Principal Engineer — Dalla-Rizza & Associates Consulting Engineers, Inc.

Juan Dalla Rizza

Dalla Rizza was born in Havana, Cuba and immigrated to the United States in 1962, as part of the Catholic Relief Program known as Peter Pan. He grew up in Marquette, Michigan.

After earning his degree at Michigan Tech, Dalla Rizza moved to Miami in order to be closer to family members. He started work for H.J. Ross, a consulting engineering firm. In 1978 he obtained registration as a Professional Engineer. A few years later, he started his own firm.

Dalla Rizza & Associates today is a Miami-based engineering firm serving the commercial construction industry, involved in engineering projects throughout Florida and the Southeast. Projects include The Biltmore Hotel and Convention Center, and The Colonnade Complex (both in Coral Gables), The Freedom Tower in Miami, and The King and Prince Hotel Complex, Phase I, II, III in St. Simons Island, Georgia. Rizza’s firm offers engineering services to large management companies, as well, based on a solid relationship that spans many years. 

Dr. Kimberly L. Foster, BSME 1994
Dean, School of Science & Engineering — Tulane University 

Kimberly L. Foster

Foster was born in Cincinnati, Ohio, but spent her formative years growing up in Houghton, Michigan. While earning her BSME degree at Michigan Tech, she worked as a research assistant in the lab of MSE professor Walt Milligan, and as a tutor in the Mechanics Learning Center, where she realized how much she enjoyed teaching. 

Foster continued her education at Cornell, earning a PhD in Theoretical & Applied Mechanics, becoming fascinated by microelectromechanical systems. From there she headed to UC Santa Barbara, where she became full professor and chair of her department. In 2018 Foster became Dean of the School of Science & Engineering at Tulane University.

Foster is active in her professional community as a member of the Transducer Research Foundation, and fellow of ASME. She holds 12 US patents. She is married to John Foster, a physicist turned serial entrepreneur. Their co-inventions led to the development of Owl Biomedical, an exclusive cell sorting MEMS technology for cell therapy, cancer diagnostics and basic research.

Pamela Rogers Klyn, BSME 1993
Senior Vice President, Global Product Organization — Whirlpool Corporation

Pamela Rogers Klyn

Klyn joined Whirlpool soon after graduating from MIchigan Tech, with advancing roles in engineering, product development, global innovation, and marketing. She now leads all of the Washer, Dryer and Commercial Laundry platforms globally.

As the first female technology director for Whirlpool Corporation, Klyn is passionate about mentoring other women at the company, providing them with the tools, confidence and encouragement to pursue roles at the highest levels of the organization.

Klyn serves on the Board of Directors for the Boys and Girls Clubs of Benton Harbor, Michigan, and as co-leader of the Whirlpool United Way Campaign in support of her local community. She is also a member of the Board of Directors for Patrick Industries, a publicly traded company serving the RV, Marine, and Industrial and Manufactured Housing industries.

Klyn earned an MS in Mechanical Engineering from the University of Michigan and an Executive MBA from Bowling Green State University. She serves as a member of Michigan Tech’s ME-EM External Advisory Board and also serves on Michigan Tech’s College of Engineering External Advisory Board.

Karl E. LaPeer, BSME 1985
Partner — Peninsula Capital Partners, LLC 

Karl E. LaPeer

LaPeer is a partner at Peninsula Capital Partners, LLC, a Detroit-based $1.9 billion private equity firm. In 1995 LaPeer and his partners began with $20 million in capital and they have since invested over $1.5 billion in more than 140 small and mid-sized companies with operations in North America and throughout the world.

LaPeer began his career at Fanuc Robotics serving in engineering and operations roles both in the U.S. and Europe, then earned an MBA from the University of Michigan. He has served on dozens of small business boards of directors, helping these businesses succeed. He is an ordained pastor and evangelist.

LaPeer met his wife, Christine (BSMT, 1985) on their second day of classes at Michigan Tech. Together they were recipients of the 2019 Michigan Tech Humanitarian Award. 

The LaPeer family volunteers around the world. They have opened four orphanages in India, installed water wells and large water purification systems in Peru, Nicaragua, and Ghana, served in medical clinics and provided humanitarian aid in Central and South America, and served as leaders of missions teams large and small. 

Robert S. Messina, BSME 1993
Senior Vice President, Global Product Development and Product Management — JLG Industries, Inc.

Robert S. Messina

At JLG Industries, Oshkosh Corporation’s Access Equipment segment, Messina is responsible for a team of engineers and product strategists in R&D facilities located in North America, Europe, China and India. His team develops world class mobile elevating work platforms, telescopic material handlers and towing and recovery equipment, focused on bringing operators home safely from work each day.  

Messina has served in various leadership roles across Oshkosh, including technology development in electrification, mobility systems, autonomy, active safety and connected products. During his tenure in Oshkosh Defense, he was instrumental in multiple strategic programs.

Messina sponsors STEM-related activities to foster tomorrow’s engineering community. He serves on the Oshkosh Corporation Foundation, the Oshkosh Venture Capital Investment Committee, and the advisory board for Construction Robotics.

Messina started his career at Chrysler soon after graduating from Michigan Tech, with roles in the design, development, and calibration of rear-wheel drive automatic transmissions and torque converters, including launching new production facilities. He earned an MS in Mechanical Engineering from Oakland University.

Douglas L. Parks, BSME 1984
Executive Vice President, Global Product Development, Purchasing & Supply Chain — General Motors Company

Douglas L. Parks

Parks began his career with GM as a tooling engineer soon upon graduation from Michigan Tech. He earned an MBA from the University of Michigan through the GM Fellowship Program.

Parks has served in numerous positions at GM. As Global Chief Engineer for Electric Cars, he was in charge of the Chevy Volt, among others. He was also Global Vehicle Chief Engineer for GM’s compact vehicles. 

As GM’s Vice President of Autonomous and Electric Vehicle Programs, Parks launched Super Cruise, the industry’s first hands-free driving technology for compatible highways on the 2018 Cadillac CT6. He was the leader of several engineering teams at GM that achieved major milestones in a few years’ time: one was the team for the Cruise AV, a production-intent autonomous vehicle built from the ground up. Without driver controls, it has all the hardware necessary to operate safely on its own. Another team led by Parks produced three self-driving test vehicle generations in approximately 16 months. Yet another developed GM’s all-new electric vehicle architecture, increasing the 2020 Chevrolet Bolt EV’s range to 259 miles per gallon with improvements in battery chemistry.

Gordon W. Renn, BSME 1982
President, CEO & Chairman — Fox Converting, Inc. and Accuracy Machine, LLC / Chairman – Loyality, Inc.

Gordon W. Renn

Renn is an entrepreneur who has made a career of pursuing and developing higher risk opportunities. Agile and effective loss control management is one of his key strengths.

He is a multiple small business owner. One of his companies, Fox Converting, Inc. manufactures FDA Class II Medical Devices, certified safe quality food packaging, and antiviral coated paper for consumer products. Another, Accuracy Pharmaceutical Machine, LLC, manufactures ultra clean, ultra-precise tooling for the pharmaceutical industry, to assist the industry to ultimately produce cures beyond conventional treatments. Loyality, Inc. affordably and effectively delivers sophisticated IT solutions typically beyond the budget of small and medium sized businesses. It also assists in large, enterprise company niches.

Renn has served higher education as a board member, donor, advisor, consultant and speaker at Michigan Tech and the University of Wisconsin Platteville. His community leadership is centered on youth organizations, including a Christian shelter serving homeless children and their families, a favorite of Renn’s for over 30 years. 

Renn enjoys time with his family, the great outdoors, a dog that regularly rescues him, and working with great people pursuing excellence. Renn credits his loving parents for guiding him to engineering and Michigan Tech. 

Dr. Sheryl A. Sorby, MSEM 1986, PhD ME-EM 1991

Sheryl A. Sorby

Professor of Engineering Education — University of Cincinnati / President of American Society for Engineering Education (ASEE)

Sorby graduated from Hastings High School in downstate Michigan, but spent every summer in the Upper Peninsula with her family. Just a few hours away was Michigan Tech, where Sorby earned a BS in Civil Engineering, an MS in Engineering Mechanics, and a PhD in Mechanical Engineering.

Sorby became a longtime faculty member at Michigan Tech: associate dean of engineering for academic programs and founding chair of the Department of Engineering Fundamentals, responsible for the development and delivery of the first-year engineering program, a legacy effort that remains in support of first-year engineering students to this day. 

At the National Science Foundation in Washington, DC, Sorby served as program director in the Division of Undergraduate Education and then became a Fulbright Scholar, conducting research at the Dublin Institute of Technology. 

In 1993 Sorby received her first grant to develop a course for helping engineering students develop their 3-D spatial skills—the abilities to translate 2-D objects to 3-D and to mentally rotate 3-D objects. She has received numerous follow-up grants to further this work, over $13 million. To advance spatial research and training worldwide, Sorby founded the nonprofit Higher Education Services (HES), an educational consulting firm.

Sorby is current President of the American Society for Engineering Education (ASEE). She is a Fellow of ASEE, and also received the Society’s Sharon Keillor award as an outstanding female engineering educator. In 2005 she received the Betty Vetter award for Research on Women in Engineering through the Women in Engineering Pro-Active Network (WEPAN) for her work in improving the 3-D spatial skills of engineering students. She has published more than 150 papers in journals and conference proceedings and is the author of seven textbooks.

Christopher K. Yakes, BSME 1995
Vice President, Global Engineering — Oshkosh Corporation

Christopher K. Yakes

At Oshkosh Corporation, Yakes designs and manufactures products that build, serve and protect communities around the world. 

He is responsible for matrix teams that support the company with wide subject matter expertise in advanced controls, data analytics, telematics, autonomy and active safety, advanced suspensions, powertrains, material and processes, and numerous other advanced efforts, tools and techniques. 

Yakes holds 29 patents related to hybrid systems, autonomous vehicles, vehicle architectures and components. He was part of the Oshkosh team awarded the SAE/Magnus Hendrickson Innovation Award in 2018.

Yakes led the development and capture efforts of various key production and research programs: MRAP All-terrain Vehicles (MATV), Joint Light Tactical Vehicle (JLTV), various DARPA activities, the Oshkosh® TerraMax™ unmanned ground vehicle system, a variety of Department of Defense and Department of Energy Research and Development programs, and most recently was instrumental in providing strategic direction on the USPS Next Generation Delivery Vehicle.

Prior to his work at Oshkosh Corporation, he was a component development engineer for various engines and their components at Detroit Diesel Corporation.

Yakes was instrumental in the implementation of the STEM program at Oshkosh, actively involved with mentoring the next generation of engineers and problem solvers within Oshkosh.


Tau Beta Pi Honor Society at Michigan Tech initiates 39 new members

Each chapter of Tau Beta Pi has its own bent statue. On campus at Michigan Tech campus it is located between Rekhi Hall and the Van Pelt and Opie Library.

The College of Engineering inducted 38 students and one eminent engineer into the Michigan Tech Michigan Beta chapter of Tau Beta Pi this academic year.

A nationally-recognized engineering honor society, Tau Beta Pi is the only one that recognizes all engineering professions. Members are selected from the top eighth of their junior class, top fifth of their senior class, or the top fifth of graduate students who have completed 50 percent of their coursework.

Tau Beta Pi celebrates those who have distinguished scholarship and exemplary character and members strive to maintain integrity and excellence in engineering. The honor is nationally recognized in both academic and professional settings. Alumni embody the principle of TBP: “Integrity and Excellence in Engineering.”

The new Tau Beta Pi logo in blue, with Tau Beta Pi symbol, "the bent" which resembles an old watch winding key.

Fall 2020 Initiates:

Undergraduate students
Evan DeLosh, Mechanical Engineering
Nolan Pickett, Mechanical Engineering
Ben Holladay, Electrical Engineering
Jacob Stewart, Civil Engineering
Malina Gallmeyer, Environmental Engineering
Caleigh Dunn, Biomedical Engineering
Mikalah Klippenstein, Electrical Engineering
Savannah Page, Biomedical Engineering
Katie Smith, Chemical Engineering
Cole Alpers, Mechanical Engineering
Ben Pokorny, Mechanical Engineering
Kyrie LeMahieu, Mechanical Engineering
Anna Hildebrandt, Materials Science & Engineering

Graduate students
Shankara Varma Ponnurangam, Mechanical Engineering
Koami Soulemane Hayibo, Electrical Engineering
Kaled Bentaher, Chemical Engineering
Nicholas Hendrickson, Mechanical Engineering

Spring 2021 Initiates:

Undergraduate students
Anders Carlson, Mechanical Engineering
Brian Geiger, Mechanical Engineering
Emily Street, Mining Engineering
Jacob Lindhorst, Mechanical Engineering
John Benz, Mechanical Engineering
John Hettinger, Computer Engineering
Joshua King, Materials Science & Engineering
Laurel Schmidt, Mechanical Engineering & Theatre Technology
Matthew Fooy, Chemical Engineering
Matthew Gauthier, Mechanical Engineering
Max Pleyte, Biomedical Engineering
Nick McCole, Engineering
Nick Niemi, Biomedical Engineering
Tom Morrison, Chemical Engineering
Zach Darkowski, Mechanical Engineering

Graduate students
Aiden Truettner, Chemical Engineering
Iuliia Tcibulnikova, Geological & Mining Engineering & Sciences
Rajat Gadhave, Mechanical Engineering
Ranit Karmakar, Electrical & Computer Engineering
Sreekanth Pengadath, Mechanical Engineering
Fnu Vinay Prakash, Electrical & Computer Engineering

Professor Tony Rogers, Michigan Tech

Eminent Engineer
Dr. Tony Rogers, Department of Chemical Engineering


Jared Wolfe: “Molti-Colored” Migratory Birds

Jared Wolfe shares his knowledge on Husky Bites, a free, interactive webinar this Monday, April 19 at 6 pm ET. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites

Dr. Jared Wolfe

What are you doing for supper this Monday 4/19 at 6 ET? Grab a bite with Dean Janet Callahan and Jared Wolfe, Wildlife Biologist and Assistant Professor in the College of Forest Resources and Environmental Science at Michigan Tech. Joining in will be Wolfe’s longtime colleague and friend, Erik Johnson, Director of Bird Conservation, Audubon Louisiana. 

Dr. Erik Johnson

During Husky Bites, get ready for a wide-ranging, free-wheeling conversation about wild bird research, education and conservation. Be sure to bring your questions for these two world experts. 

“Here in the Upper Peninsula of Michigan, there is an incredible diversity of birds that show up to breed in the summer, but many of these birds are decreasing in abundance—they are diminishing,” says Wolfe. “We’ve lost 2.5 billion birds in North America over the past 30 years,” he adds. “Why?” 

For Wolfe and Johnson, much of their life and work has become dedicated to finding both why, and how. The two began collaborating at Louisiana State University, where they both earned their PhDs. Among their many joint projects is a book, Molt in Neotropical Birds; Life History and Aging Criteria. The volume, published in collaboration with the American Ornithological Society, describes molt strategies for nearly 190 species based on information gathered from a 30-year study of Central Amazonian birds.

Wolfe has spent 15-plus years working with tropical birds in Africa, Central and South America where he studies effects of climate and habitat change on sensitive bird species and wildlife communities. In North America, he works with managers to integrate wildlife management and conservation into sustainable forest stewardship.

Molt in Neotropical Birds, by Erik Johnson and Jared Wolfe, CRC Press, 2017, 412 pp.

Wolfe joined Michigan Tech in 2018, Determining how birds adapt lifecycle events to climate change and subsequent shifts in food resources is a central facet of his research. He uses monitoring data from California, Hawaii, Costa Rica and Brazil to measure changes in breeding and molting phenology, and survival relative to climate. He also studies bird communities within human dominated landscapes and adjacent habitat patches. 

Bird migration is an important focus in the Wolfe Lab at Michigan Tech. “Seasonal movements of birds have captured the imagination of naturalists for millennia,” he says. “The advent of diminutive tracking devices ushered in an era of discovery, where connectivity between breeding and wintering grounds are continually being revealed.” 

Wolfe and Johnson both employ geolocators and other technologies to study migration to better understand the movements of temperate birds. Photo credit: Erik Johnson

​Johnson has over 15 years of applied ornithological research experience in five countries. He completed his dissertation work studying the effects of forest fragmentation on avian communities at the Biological Dynamics of Forest Fragments Project (BDFFP) in coordination with the Instituto Nacional de Pesquisas da Amazônia (INPA). His primary focus now at Audubon Louisiana involves avian conservation challenges along the Gulf Coast of the United States.

Prof. Wolfe, how did you first get into Wildlife Biology? What sparked your interest?

Jared Wolfe and his crew from Central Africa. Wolfe co-founded the Biodiversity Initiative in 2013. It seeks protect all wildlife–including forest elephants, gorillas, chimpanzees, and hundreds of bird species – and conserve the rainforest across central Africa.

Growing up in downtown Sacramento, there wasn’t much opportunity to recreate in nature or see wildlife outside the city. There was a strip of riparian forest bordering the American River which served as a refuge from the city. Just a short bike ride from my house I would see coyotes, migratory birds, waterfowl, and beavers all seeking refuge, like me, from the city. These formative experiences helped develop a passion for wild places and wild things which led to a lifelong fascination with plants and animals. Luckily, I learned about the profession of wildlife ecology when I was 18, and never turned back!

What do you like to do in your free time?

I love to go fishing, birding, hiking, camping, hunting, anything that gets me away from social media and my computer!

Wolfe founded a banding station at Michigan Tech’s Ford Center and Forest in Alberta, Michigan. “High capture rates and diversity make this a wonderful location to study bird populations,” says Wolfe.

Could you tell us a little about your family?

Sure, I am from Sacramento, California. My wife, Dr. Kristin Brzeski is a conservation geneticist who is also a professor at CFRES. We have one son, a covid baby, 7 month old Lawrence. We went into the pandemic barely pregnant, and to the surprise of our colleagues, are emerging with an infant! 

Prof. Johnson, how did you first get into Wildlife Biology? What sparked your interest?

Erik Johnson, Audubon Louisiana

I suppose I’ve always been into birds. My parents tell stories of me when I was little, being more interested in the pigeons than the lions, elephants, and zebras when we visited zoos. I started really picking up binoculars when I was about 10 and starting keeping bird lists when I was 11. My mom and aunt are casual bird watchers, and my whole family was an outdoorsy sort of family, so they embraced my interest from the beginning. From there I became focused on wildlife biology, ecology, and conservation more broadly.

What do you like to do for fun?

I really love to do anything outdoors—travel, hike, bike, garden. And of course, bird watching. Lately, I’ve been interested in photographing insects, with a particular interest in leafhoppers, planthoppers, and treehoppers. I dabble in guitar and violin, and used to really be into snowboarding, which is much harder to do in Louisiana!

Family and growing up?

On this Downy Woodpecker, can you spot it? Differences in coloration provide valuable information about a bird’s age. Find out how on Husky Bites this Monday 4/12 at 6 pm ET. Photo credit: Erik Johnson, Audubon Louisiana.

I live in Sunset, Louisiana, but grew up in Pittsburgh and was born in Boston. I have family all over the eastern US—my parents are still in Pittsburgh, my younger brother is in New Hampshire, and I have aunts, uncles and cousins in Ohio, North Carolina, New York, and Massachusetts, and more distant connections to Germany, where my mom was born. My wife, Ceci, is from Metairie, Louisiana (just outside of New Orleans), and we’ve been married 15 crazy years.

Read more

Fine Feathers: Migration and Molt Affect How Birds Change Their Colors

Watch

Where Research Goes Outdoors


Mary Raber is the New Chair of Engineering Fundamentals at Michigan Tech

Mary Raber is the new chair of the Department of Engineering Fundamentals at Michigan Tech.

The College of Engineering at Michigan Technological University is pleased to announce that Mary Raber has accepted the position of chair of the Department of Engineering Fundamentals, beginning July 1, 2021.

“I am delighted that Dr. Raber will be chair of Engineering Fundamentals and I look forward to her joining the leadership team of the College,” states Dean Janet Callahan. “Her experience with design thinking, innovation and the principles of lean together inform her approach to solving problems. Dr. Raber’s industry background is an additional asset. Her experience will help us strongly align the engineering foundational first year with what we prepare our engineering graduates to accomplish.”

After a 14-year career in the automotive industry, Raber joined Michigan Tech in 1999 to lead the implementation and growth of the highly distinctive undergraduate Enterprise Program. She helped found the Pavlis Honors College, where she facilitated learning in leadership, human-centered design, and lean start-up and most recently served as assistant dean for academic programs.

A design-thinking and innovation enthusiast, Raber loves to help others embrace the tools and mindsets of innovation to effect positive change. She serves as co-director of Husky Innovate, Michigan Tech’s resource hub for innovation and entrepreneurship, and  she leads IDEAhub, Michigan Tech’s collaborative working group for educational innovation, as its Chief Doing Officer.

Raber earned a BS in Mechanical Engineering from The University of Michigan and an MBA from Wayne State University. Her PhD in Mechanical Engineering was earned at Michigan Tech, with a focus on engineering education.

What first brought you to Michigan Tech?

In part, it was a decision to move back to the area to be closer to family, but the timing couldn’t have been better, as the innovative Enterprise Program had just received NSF funding and Michigan Tech needed someone to get the program up and running.  It was a perfect fit for my interests and background, and with a lot of support from our industry partners who immediately saw the benefits of the program we have been able to grow it into the award-winning educational experience it is today. That experience set me on a path of educational innovation and curricular program development focused on experiential learning through high-impact practices. It’s a passion that continues today through my work with IDEAhub and the Pavlis Honors College. I look forward to bringing these experiences with me to the Department of Engineering Fundamentals.

What do you enjoy most about your research and teaching?

My interests lie at the intersection of innovation, education and learning. The connections between these three can bring about transformational change to the learning experience, and better prepare students to fulfill their personal and professional goals. Teaching allows me the opportunity to connect with students and build empathy for their challenges and hopes. In turn, these insights can lead to innovations in the classroom, so that courses and programs are designed with the needs of the students in mind. 

What are you hoping to accomplish as chair?

I look forward to working with, and learning from, the Engineering Fundamentals team, and to help continue their tradition of educational innovation. We share many of the same passions for student success with a goal to strengthen and enhance the role of the first-year engineering learning experience in order to best prepare students to meet the needs of the 21st Century. 

As a key partner in delivering the strategic mission and vision of the College and University, the Engineering Fundamentals team plays an essential role in helping students transition into their college life. It will be a privilege to work with the team that helps students begin their path toward successful careers in engineering.