Tag: ECE

LEAP Leaders: The Power of Near-Peer Mentoring

Just an ordinary day for the LEAP Leaders in the Department of Engineering Fundamentals at Michigan Tech. AJ Hamlin (far left) and Amber Kempppainen (second from left) are both in the front row.

AJ Hamlin and Amber Kemppainen have been recognized for their leadership in designing LEAP, a highly successful, best practice program for first-year engineering students at Michigan Tech

by Michael R. Meyer, Director, William G. Jackson CTL

College of Engineering Dean Janet Callahan has selected LEarning with Academic Partners (LEAP) co-directors AJ Hamlin and Amber Kemppainen. Hamlin and Kemppainen for the Spring 2020 Deans’ Teaching Showcase, for their leadership of the near-peer mentoring program in the first-year engineering. Both are Principal Lecturers in the Engineering Fundamentals (EF) Department and alumnae of Michigan Tech.

Hamlin and Kemppainen will be recognized at an end-of-term luncheon with other showcase members, and, as a team, are candidates for the CTL Instructional Award Series (to be determined this summer) recognizing introductory or large-class teaching, innovative or outside the classroom teaching methods, or work in curriculum and assessment.

Both are broadly versed in methods and implementations for active learning and have practiced active learning methods in their classrooms for nearly two decades.

In 2015, EF started considering an approach to first-year engineering that would be effective and scalable. The selected approach used flipped content delivery in a studio environment in which students would have ready access to near-peer mentoring. As soon as the mentoring component was included, Hamlin and Kemppainen stepped up as the two CoDirectors of the program. Working collaboratively, they learned the principles and implementations of two existing approaches: Supplemental Instruction (SI) (usually associated with the University of Missouri, Kansas City) and Learning Assistants (LA) (usually associated with the University of Colorado). From study and attending on-site workshops and conferences, the two developed a composite approach to near-peer mentoring that became the LEAP program.

In general, SI does not include a mandatory session for students. By contrast, the model pioneered by AJ and Amber did include a mandatory LEAP session between the near-peer leader and a group of not more than 24 students to augment instruction in the EF first-year engineering courses. This was a significant departure that proved very beneficial; first-year students often do not see value in a situation that augments what they do in “regular class.” In effect, the innovation by the LEAP CoDirectors made the LEAP lab section meeting a “regular class meeting.” Once LEAP was experienced by the students over time, they appreciated the nearness of a near-peer to help them.

Hamlin and Kemppainen also adapted the LA model, embedding LEAP Leaders as mentors for the work to be done in the larger flipped classrooms of the first-year engineering courses. The EF major classrooms are in Wadsworth Hall (capacity of 5 LEAP sections, or 120 students) and in Dillman Hall (capacity of 3 LEAP sections, or 72 students).

Dean Callahan’s nomination emphasizes this insight and innovation at Michigan Tech. “Using near-peer mentors is a best practice in teaching—AJ and Amber’s work as co-directors of the LEAP program has been an outstanding demonstration of how to engage students with their learning,” says Callahan.

The LEAP Leader training program was designed almost from scratch by Hamlin and Kemppainen. The training prepares the LEAP Leaders to be learner-centered, but to emphasize that the weight of learning is always the student’s. The LEAP Leader is taught how to mentor students, and the training emphasizes practical learning concepts such as effective scaffolding for a student. It also gives them opportunities to practice the needed pedagogical techniques.

After the rollout of the revised first-year engineering program in Fall, 2017, it became clear that the LEAP leader training and experience was highly educational for those near-peer leaders as well. With that realization, Amber and AJ embarked on developing and teaching leadership courses under the Pavlis Honors College heading. Three courses are now offered: a 2000 level course that Amber and AJ developed and teach collaboratively, and 3000 and 4000 level courses that were designed and taught by Amber. The three courses taken together form the required set of courses in the Leadership Minor, which is offered through Pavlis.

Hamlin and Kemppainen have recognized the power that near-peer mentoring can have to engage first-year students in their own education. They have designed and implemented a program that is now seen as essential for first-year engineering students.

Jon Sticklen, chairp of Engineering Fundamentals summarizes: “AJ and Amber have definitely gone above and beyond in their positions as CoDirectors of our LEAP Program. LEAP has become the cornerstone of the First-Year Engineering Program, largely because the undergraduate students who are our LEAP Leaders are well trained and genuinely connected to their first-year engineering students. LEAP works because of the leadership and content training, as orchestrated by Amber and AJ.”

Dean Callahan confirms their exceptional impact, both for the first year students and the LEAP leaders. “Michigan Tech can rightly be proud of the work of AJ Hamlin and Amber Kemppainen. As CoDirectors of the LEarning with Academic Partners program, they have shown a true engineering viewpoint in addressing the needs of first-year students: to have a good role model, an effective mentor, and a learning coach—all rolled into one sophomore student to whom they can relate. They had the vision as a goal, they sought out how existing near-peer mentoring programs addressed the issues, and they developed a near-peer mentoring program that is a critical part of what makes of first-year engineering program ‘tick’. I am very proud of Hamlin’s and Kemppainenm’s work in support of our students.”

AJ Hamlin’s experience in teaching first-year engineering students dates from 2001. In this time, she has done research in and developed an assessment of spatial visualization skills and measured the effectiveness of inverted and blended courses. Among other awards, Hamlin won the 2010 Editor’s Award from the Engineering Design Graphics Journal, and in April 2015 the Michigan Tech Canvas Creative Course Contest (C4). She has served in various offices of the ASEE Multidisciplinary Division, including Secretary/Treasurer, Program Chair, and currently the Division Chair.

Amber Kemppainen, who began teaching in 2005, is now in the final phases of completing a PhD in applied cognitive science and human factors (ACSHF). Through her work for her degrees in the learning sciences, Kemppainen has been supported in part by a King-Chavez-Parks Future Faculty Fellowship (a State of Michigan program). Her areas of research have included qualitative and quantitative analysis and assessment skills in educational settings, and development, deployment, and assessment of online training programs. She won a C4 award in 2015.

Learn more about Michigan Tech’s LEAP program here.

Continue Reading


Design Expo 2020 Registration Now Open

Michigan Tech’s 20th annual Design Expo will highlight hands-on, discovery-based learning. More than 1,000 students on Enterprise and Senior Design teams will showcase their work and compete for awards.

Student registration is now open. Senior Design and Enterprise teams must visit the Design Expo website to register and review important instructions, deadlines and poster criteria. All teams must register by Monday, Feb. 10.

The Design Expo takes place from 8 a.m. to 4 p.m. Thursday, April 16 in the MUB Ballroom and all are welcome to attend.

A panel of judges made up of distinguished corporate representatives and Michigan Tech staff and faculty will critique the projects at Design Expo. Interested in judging at Design Expo? Sign up here.

Design Expo is co-hosted by the College of Engineering and the Pavlis Honors College. Learn more at mtu.edu/expo.

By the College of Engineering and Pavlis Honors College.

Continue Reading


New Engineering Faculty Fall 2020

Chemical Engineering

Kurt A. Rickard

Kurt Rickard, PhD

Kurt Rickard joins the faculty of Chemical Engineering as an instructor. Rickard earned a PhD from Purdue and a bachelor’s degree from Michigan Tech, both in chemical engineering.

He has experience as a control engineer with a strong theoretical background. He has experience with LyondellBasell Industries, ARCO Chemical Company, Quantum Chemical Company and Shell Chemical Company.

Civil and Environmental Engineering

Jeffery Pereira Hollingsworth
Jeffery Pereira Hollingsworth

Jeffrey Hollingsworth

Jeffrey Hollingsworth joins the faculty of the Department of Civil and Environmental Engineering as a professor of practice. He holds a Master’s of Science in civil engineering (GIS specialty) and a post-bac certificate in GIS from the University of Colorado Denver. In addition, he earned a BS in surveying from Ferris State University.

Prior to coming to Michigan Tech, Hollingsworth was an associate professor at the University of Alaska Anchorage and an instructor at the Pennsylvania College of Technology.

Xinyu Ye
Xinyu Ye

Xinyu Ye, PhD

Xinu Ye Joins the faculty of Civil and Environmental Engineering as a research assistant professor. She earned a PhD in environmental engineering from Michigan Tech, a master’s in civil engineering from Michigan State and a bachelor of resource environment and urban and rural planning from Harbin Normal University in China.

She is a recipient of a Dean’s Award for Outstanding Scholarship at Michigan Tech and has received graduate student awards at Michigan State. As an undergraduate, she was named an Excellent Student Leader at Harbin Normal.

Electrical and Computer Engineering

Trever Hassell
Trever Hassell

Trever Hassell

Trever Hassell joins the faculty of the Department of Electrical and Computer Engineering as a senior lecturer. His areas of interest include power electronics systems, Electric Drives and Machinery, Hybrid and Electric Vehicle Systems, and Microgrids.

Hassell earned both a bachelor’s and master’s in electrical engineering from Michigan Tech. For the past five years, he has been serving as an academic advisor/instructor in the ECE department at Michigan Tech. He is a registered professional engineer with experience in industry including time with ABB Inc., Cummins, Inc., Entergy/Vermont Yankee and Reinker Controls Inc.

Nagesh Hatti
Nagesh Hatti

Nagesh Hatti

Nagesh Hatti joined the faculty of Electrical and Computer Engineering as a professor of practice. He holds an MBA from Texas Christian University, a master’s in software engineering from Birla Institute of Technology and Science in India and a BE in telecommunication engineering from Bangalore University, India

Prior to coming to Michigan Tech, Hatti served as technical program manager for Schneider in Green Bay, manager of supply chain operations support from American Airlines in Fort Worth, Texas and various other positions in industry.

Geological Mining and Engineering Sciences

Luke Bowman, PhD

Luke Bowman has joined the faculty in Geological Mining and Engineering Sciences as a research assistant professor. Bowman has both a PhD and a master’s in geology from Michigan Tech and a bachelor’s degree from Hanover College.

Prior to joining the faculty, he was a curriculum development specialist with Mi-STAR and an adjunct assistant professor in GMES at Michigan Tech.

Xin Xi
Xin Xi

Xin Xi, PhD

Xin XI has joined the faculty of the Department of Geological Mining and Engineering Sciences as an assistant professor. Xi earned a PhD in atmospheric sciences from the Georgia Institute of Technology and a B Sc in Geoinformatics from Beijing Normal University, China.

Prior to his current position, Xi served as a research assistant professor at Michigan Tech. From 2016 to 2018 he was a research associate at the NOAA Center for Satellite Applications and Research (Maryland).

Mechanical Engineering – Engineering Mechanics

Jung Yun Bae
Jung Yun Bae

Jung Yun Bae

Jung Yun Bae joins the faculty of Mechanical Engineering – Engineering Mechanics and the College of Computing as an assistant professor. She earned a PhD from Texas A&M, and master’s and bachelor’s degrees in mechanical engineering from Hongik University in Seoul, Korea.

Prior to this appointment, she was a research professor in the Intelligent Systems and Robotics Laboratory at Korea University in Seoul. Her research interests include; robotics, multi-robot systems, coordination of heterogeneous robot systems and unmanned vehicles.

Susanta Ghosh
Susanta Ghosh

Susanta Ghosh, PhD

Susanta Ghosh has joined the Michigan Tech Faculty as an assistant professor in the Department of Mechanical Engineering – Engineering Mechanics and as a faculty member of the Center for Data Sciences at the Institute of Computing and Cybersystems (ICC).

He earned a PhD and MSc in civil engineering from the Indian Institute of Science in Bangalore and a BSE in civil engineering from the Indian Institute of Engineering Science and Technology in Shibpur, India.

For the past three years, he has served as a research assistant professor and instructor in ME-EM. Prior to coming to Michigan Tech in 2016, Ghosh was a visiting research investigator at the University of Michigan and a research collaborator at Duke.

Paul van Susante
Paul van Susante

Paul van Susante, PhD

Paul van Susante, who had been serving as a senior lecturer in the Department of Mechanical Engineering – Engineering Mechanics, started the fall semester as an assistant professor within that department.

He earned both a PhD and a master’s in engineering systems from the Colorado School of Mines. He also holds BS and MS degrees in civil engineering with an emphasis on building engineering from the Delft University of Technology in the Netherlands.

His research interests include advances in engineering education, engineering design process, extreme environment technologies and planetary science and exploration, among others.

Vijaya V. N. Sriram Malladi
Vijaya V. N. Sriram Malladi

Vijaya Sriram Malladi, PhD

Vijaya V.N. Sriram Malladi has joined the faculty of the Department of Mechanical Engineering – Engineering Mechanics as an assistant professor. He holds MS and PhD degrees from Virginia Polytechnic Institute and State University and a BTech from the Indian Institute of Technology.

Prior to coming to Michigan Tech, Malladi was a research scientist at Vibrations, Adaptive Structures and Testing (VAST) lab at Virginia Tech. Prior to that, he served as chief research scientist (CEO) of GAiTE LLC.

Myoungkuk Park
Myoungkuk Park

Myoungkuk Park, PhD

Myoungkuk Park joins the faculty of the Department of Mechanical Engineering – Engineering Mechanics as a research assistant professor. He earned a PhD from Texas A&M, MS from Korea University and BS from Kyungkhee University, each in mechanical engineering.

Prior to coming to Michigan Tech, Park was a principal engineer/senior engineer with Samsung Electronics in Asan, Korea and a research assistant at Texas A&M.

His research interests include multi-robot system control, control of large-scale stochastic process and design of automated material handling.

Yongchao Yang
Yongchao Yang

Yongchao Yang, PhD

Yongchao Yang has joined Michigan Tech’s faculty in the Department of Mechanical Engineering – Engineering Mechanics as an assistant professor. Yang holds a PhD in structural engineering from Rice University and a B.E. in structural engineering from Harbin Institute of Technology, China.

Before coming to Michigan Tech he was a technical staff member at Argonne National Laboratory and a postdoctoral fellow at Los Alamos National Laboratory.

Continue Reading


Engineering Staff Recognized for 2019 Making a Difference Awards

Michigan Tech campus from Portage Canale.A total of 48 nominations have been submitted for the 2019 Making a Difference Awards. Everyone is invited to a reception honoring the nominees. The reception is scheduled for 2:00pm to 3:30 pm, Wednesday, Jan. 8, 2019 in the Memorial Union Ballroom. The recipients for each category will be announced at the reception.

In the College of Engineering, the following staff have been nominated:

Above and Beyond

Carol Asiala – Geological and Mining Engineering and Sciences

Behind the Scenes

Taana Blom – Chemical Engineering
Cindy Wadaga – Mechanical Engineering-Engineering Mechanics

Legacy Award

Owen Mills – Materials Science and Engineering
Alexis Snell – Chemical Engineering

Rookie Award

Rachel Griffin – Materials Science and Engineering
Rachel Store – Mechanical Engineering-Engineering Mechanics
Laura Wiinikka – Chemical Engineering

Serving Others

Pam Hannon – Civil and Environmental Engineering
Katie Torrey – Chemical Engineering

Unsung Hero

Brian Eggart – Mechanical Engineering-Engineering Mechanics
Paul Fraley – Materials Science and Engineering
Shelle Sandell – Civil and Environmental Engineering
Mark Sloat – Electrical and Computer Engineering
Stefan Wisniewski – Chemical Engineering

Continue Reading


Girls Scouts Learn How to “Think Like an Engineer” at Michigan Tech

Girl Scouts gathered at Michigan Tech this week, to learn about electrical engineering from members of Michigan Tech’s student chapter of the Society of Women Engineers.

Saturday afternoon, nearly 90 Girl Scouts learned what it means to be an engineer. It came through trying and failing. Then trying again and failing. Then eventually, trying and succeeding. “Seeing that look on their face when they finally get something to work, that’s the most rewarding part of it — to see them say, ‘Yes, I did this. I can do it even though it was hard to do,’” said Zoe Wahr, outreach director for Michigan Tech’s Society of Women Engineers (SWE) chapter, which organized the event.  Read more about the event in the Daily Mining Gazette.

The Girl Scouts, from kindergartners through 10th grade, arrived at Michigan Tech from across the Upper Peninsula and Wisconsin. The event, called “Think like an engineer” encouraged attendees to think about careers in science, engineering, technology and math. Read more at TV6 Upper Michigan Source.

The scouts first enjoyed brunch at Michigan Tech’s Wadsworth Residence Hall before breaking out into activity groups by age. Kindergarten (Daisies); 2-3 grade (Brownies); 4-5 grade (Juniors); and 6-10 grade (Cadettes and Seniors). The younger groups made paper circuits,  “squishy” circuits made out of dough, and mini wiggling “bots.” Older students visited Blue Marble Security Enterprise headquarters in the EERC building, where they learned to solder holiday-themed LED circuit boards.

At the end of the activities, all of the students gathered for a Q&A panel of SWE members. The scouts also developed a”Take-Action Plan” based on all they learned in their workshops.

“We’re excited to be a partner and to share the fields of electrical and computer engineering with these bright young people,” said Liz Fujita, ECE academic advisor and outreach specialist, who helped coordinate the event.

“The vast majority were from out of the area – only 14 girls are from Houghton County,” said SWE faculty advisor Gretchen Hein, a senior lecturer in the Department of Engineering Fundamentals. “The furthest away is Green Bay, Wisconsin.”

Continue Reading


Integrity Matters.

Five on a Treasure Island, by English author Enid Blyton, the first book in The Famous Five series.

Integrity matters. 

I learned about integrity from my parents, and from my teachers. I do remember a young-age incident, around first or second grade. My older sister and I broke into a locked room in our rented house (Olinbury House in Sussex, England) which held a treasure of books that we wanted to read. We knew we should not enter that room. However, we could see through the keyhole more books, in the very same enchanting series we loved. This was around 1968. Books still ruled the day—and we were already spending 100 percent of our allowance on books to read. So that was the temptation, more books. 

In the scullery, we noticed a set of keys that we tried against this locked room. In the bathtub, while reading this book, as my mother could not tear me away from it, somehow the truth came out.  Later that evening, I was punished a multiple factor more than I would have been, because of not being truthful about where I had “found” the book. My poor older sister was punished even more than me, “as she should have known better.” She was 9, and I was 7. 

I strongly remember another incident, in sixth grade. We were a set of students at different levels, all “learning” math (without actual instruction). I had fallen behind, and so I faked my homework, copying the answers from the back of the book. Mercifully, I was caught by the teacher, checking my work. I found this incident profoundly disturbing, and I remember feeling ashamed of myself. It was then, about age 11, that I fully realized it was my own decision what sort of integrity I would possess, across my life. In that moment, I believe, my character was set.

Fast forward. Throughout this past year, I’ve been in frequent correspondence with one of our engineering alumni. He lives in California and regularly sends me clippings from the LA Times concerning the admissions scandals at USC. While I do understand parents being concerned about their child’s education, I do not understand how a parent would compromise not only their own, but also their child’s integrity, out of a desire to have them be admitted to a university on a basis other than their own merit.

At Michigan Tech—of course, as you know—no one can earn a degree except through their own work. With this comes character. Along with character comes  confidence, courage, and conviction in the knowledge that with enough time and resourcesyou can do pretty much anything.

The picture below is from our Department of Mechanical Engineering’s senior dinner, where soon-to-be-graduates make an obligation to themselves to uphold the standards of the engineering profession, known as The Order of The Engineer.

Order of the Engineer ceremony, Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University.

That evening, in my first year as Dean of Engineering at Michigan Tech, I participated as well:

“As an Engineer, I, Janet Callahan, pledge to practice integrity and fair dealing, tolerance and respect; and to uphold devotion to the standards and the dignity of my profession, conscious always that my skill carries with it the obligation to serve humanity by making the best use of the Earth’s precious wealth. As an Engineer, I shall participate in none but honest enterprises. When needed, my skill and knowledge shall be given without reservation for the public good. In the performance of duty and in fidelity to my profession, I shall give my utmost.”

Now, if you’re interested in taking this oath (if you haven’t already) and you want to know more, please let me know—Callahan@mtu.edu.

Janet Callahan, Dean
College of Engineering
Michigan Tech

Continue Reading


Michigan Tech ECE welcomes Fulbright Scholar Koami Hayibo

Koami Hayibo, MS, a visiting Fulbright Scholar at Michigan Tech, from Energy Generation Academy in Lomé, Togo.

The Department of Electrical and Computer Engineering at Michigan Technological University welcomes Fulbright Scholar Koami Hayibo, from Togo, West Africa, population approximately 7.6 million.

While at Michigan Tech, Hayibo will study electrical engineering with a specialization in power systems. “I plan to focus on the production of energy through renewable energy sources,” he says.  “Togo is a small country in Africa and is only able to produce about 30% of its consumption of electricity. I became interested in this area because I suffered from this lack of electricity when I was in high school. I had to study for my high school degree using old-fashioned kerosene lamps and candles and that’s still the case for a lot of children living in the countryside. That’s why I am doing my best to help bring electricity to remote areas. And I hope my time at Michigan Tech will give me with skills to address this issue in a more effective way.”

Hayibo specializes in solar energy. He earned a Master’s in Engineering and a Master’s in Science both at Université de Ouagadougou in Burkina Faso. He came to Michigan Tech from Energy Generation Academy, based in Lomé, Maritime, Togo, where Hayibo serves as Technical Manager. Energy Generation is a pan-African organization that supports young Africans in addressing their generation’s most pressing challenges (in energy, agriculture, health) through entrepreneurship and technology. Its main guidelines are to provide basic electrification to every household in Africa, while empowering youth and offering them alternative employment perspectives, and also to provide a complete tracking of the innovative projects produced by African youth and ensuring  their success.

Michigan Tech has a record number of Fulbright Scholars on our campus this year, with a total of 17 students – 14 master’s and three PhD students, studying in 10 different programs.

The students are from Afghanistan, Egypt, Indonesia, Kazakhstan, Laos, Lesotho, Mauritius, Morocco, Pakistan, Russia, Serbia & Montenegro, Togo, and Ukraine. Such diversity in backgrounds and academic interests brings a richness to Tech and makes our Graduate School like no other.

The mission of the Fulbright Program is to increase international understanding and respond to critical global issues. It is funded and overseen by the State Department, with 155 countries participating in the Program. Fulbrighters exemplify the power of international academic exchange to transform lives, bridge geographic and cultural boundaries and promote a more peaceful and prosperous world.

Continue Reading


Seismic Reflections: Siting the Gordie Howe Bridge

The Gordie Howe International Bridge connecting Windsor, Ontario, and Detroit, Michigan is currently under construction and expected to be complete in 2024 at a cost of $5.7 billion.  The bridge is named in recognition of the legendary hockey player, a Canadian who led the Detroit Red Wings to four Stanley Cup victories.

The construction of any large infrastructure project requires a strong foundation, especially one with the longest main span of any cable-stayed bridge in North America—namely, the Gordie Howe International Bridge over the Detroit River. More than a decade before ground was broken, careful siting of the bridge began to take place. By 2006 the list of possible crossings had been narrowed down to just two options.

Historical records from the early 1900s indicated that solution mining for salt had taken place on both sides of the river close to where the bridge was to be built. On the Michigan side, collapsed salt cavities caused sink holes located on nearby Grosse Isle. It was imperative that any salt cavities in the bridge construction area be found and avoided.

Seismologists Roger Turpening and Carol Asiala at Michigan Technological University

Seismologists Roger Turpening and Carol Asiala at Michigan Technological University were tasked by American and Canadian bridge contractors to select the best seismic method for searching for any cavities in the two proposed crossings—referred to at the time as “Crossing B” and “Crossing C”—and to interpret all resulting seismic images.

“Given the task to image a small target deep in the Earth, a seismologist will quickly ask two important questions: How small is ‘small?’ and How deep is ‘deep’? That’s because these two parameters conflict in seismic imaging,“ Turpening says.

“Seismic waves—vibrations of the Earth—are attenuated severely as they propagate through the Earth,” he explains. “Imaging small targets requires the use of high-frequency, seismic energy. When seismic sources and receivers are confined to the Earth’s surface, which is the usual case, waves must propagate downward through the Earth, reflect off of the target, and return to the surface. Soil, sand, and gravel in the surface layer overwhelmingly cause the greatest harm to image resolution, and the ray paths must pass through this zone twice.”

Turpening was one of the early developers of a technique called vertical seismic profiling, or VSP. “Seismic receivers are placed inside a vertical hole near the target. With the seismic source placed on the surface some distance from the hole, it’s possible to explore a region around the hole with ray paths that need to pass through the surface layer only once,” he says. “If the target is very important, we can drill a second hole and place the seismic source in it. Now we have even higher resolution because all of the ray paths are in the rock formations with low attenuation.”

The downside? “We can only make images of the region between the two holes. But if the target is extremely important in a limited area, we can use many boreholes and many images in the search. Given enough boreholes, a block of earth can be imaged with cross-well seismic reflection techniques.

A cross-well, seismic reflection image between test boreholes. The cavity is sharply seen because the shale stringers in the B-Salt (at the bottom of the image) are abruptly terminated. The cavity is approximately 375 ft. wide.

To site the Gordon Howie bridge, Turpening and Asiala chose a frequency band of 100Hz to 2 KHz—much higher than could be used with surface sources and surface receivers—for surveys on both sides of the river. This yielded high resolution seismic images, crucial for detecting cavities—and indeed they found one—on the Canadian side.

“The high-resolution imaging made it easy for us to spot missing shale stringers in the B-Salt layer in that image,” says Turpening. “This made the final selection of the bridge location simple. We found the cavity between boreholes X11-3 and X11-4, thus forcing the Canadians to chose Crossing B.  Obviously, the Michigan group had to, also, choose Crossing B.”

On the US side of the river geologist Jimmie Diehl, Michigan Tech professor emeritus, provided corroborating borehole gravity data.

Continue Reading


Yooper Lights: Blue Marble Security Enterprise mentors 7th graders on an eCYBERMISSION

The Yooper Lights eCybermission team, L to R: Olivia Shank, Rebecca Lyons, Chloe Daniels, and Jenna Beaudoin

Students attending Lake Linden-Hubbell schools who live within one mile of their school are not eligible to take the school bus. Many walk to school, often in the dark, early morning hours. The same is true for students in another nearby school district, Calumet-Laurium-Keweenaw.

A small group of 7th grade students from Lake Linden-Hubbell High School in Michigan’s Upper Peninsula—Jenna Beaudoin, Chloe Daniels, Rebecca Lyons, and Olivia Shank—decided to do something to help improve safety for students who walk to school. Each was highly motivated, for personal reasons.

“I have three younger siblings who walk to school, and they aren’t always aware of their surroundings,” said Daniels.

“My uncle was biking one night and didn’t have a helmet or a reflector and he got hit by a car. He had brain trauma and now has trouble remembering certain things,” said Beaudoin.

“I want to be able to walk safely by myself or with my dogs in the early morning or in the evening when it gets dark,” said Shank.

“We live in a really snowy area, and kids can get hit,” said Lyons.

Helping kids and others walk safely in the dark is their mission, but it was more than that—it is their eCYBERMISSION, a national science competition sponsored by the Army Educational Outreach Program. Nationwide, students in grades 6-9 work in small teams for over a year to develop a process or product that will benefit their community. Locally, the Lake Linden Middle School eCYBERMISSION team is advised by Michigan Tech Engineering Fundamentals instructor Gretchen Hein, and chemical engineering senior Ryan Knoll.

Because none of them knew anything about circuits, the team contacted Glen Archer, interim chair of the Department of Electrical and Computer Engineering at Michigan Tech. Archer introduced the seventh graders to electrical engineering student John Robinault, outreach manager of Blue Marble Security.

Born out of the Michigan Tech Enterprise program, Blue Marble Security is a virtual company comprised undergraduate students focused on securing the future through thoughtful use of technology.

Twice a week, Beaudoin, Daniels, Lyons and Shank met with Robinault and computer science major Tyler Arthur in the Blue Marble Security lab, located in the EERC building on campus.

The girls modeled the casing of their LED reflector using Siemens NX software, created their circuit using National Instruments Multisim™ software, and modeled their circuitboard using Eagle PCB design software. They had never used the software or soldered. The Blue Marble students demonstrated how to model and solder, but the girls did the work.

Arthur was a brand new member of Blue Marble Security Enterprise when he began working with the girls. “It gave me an opportunity to teach some of the material that I was already familiar with, while also learning new things along the way,” he said. “We worked together to get familiar with CAD modeling, for instance.

In the process, Arthur learned a lot about working with younger students, something he hadn’t ever done. “The fact that the team members are all good friends made for an interesting group dynamic, because was easy for them to distract each other while working on the project.” Even so, the girls persevered. Throughout the fall, the team completed their research and designed their reflector. They took their preliminary design to their 7th grade science classes for feedback. Based on that, they updated the design, completed the circuit board and went back to the school for more feedback, this time visiting both 7th and 10th grade science classes, asking the students to compare their LED reflector to a plain reflector. After receiving more valuable feedback, the team modified their design.

At that point, they began testing their LED reflector—calling it the “Yooper Light”, and themselves, the Yooper Lights.

Outdoor testing was completed on a straight, flat road near their school, over a distance of 170 feet. Pedestrians (students grades 7-9), and drivers (students grades 10-12, plus college students and adults) were asked to report when they could see a person walking and wearing either the plain reflector or the Yooper light LED reflector.

Yooper Lights team tested their LED reflectors at night, with help from volunteers.

Due to weather conditions, only the college students and adults tested outside. The remaining tests were completed inside the school, in a dark hallway lit only by security lights. The Yooper Lights found that everyone could both see the LED reflector and the person wearing it over the entire testing distance.

They decided to conduct another, independent test to see just how far their LED reflector was visible. The maximum visibility was found to be 91.3 meters—over twice the previous testing distance.

Yooper Lights submitted their report to eCYBERMISSION, learning in March that they had made it to the virtual regional competition. Once again, Michigan Tech helped them out. The girls presented to judges at the Jackson Center for Teaching and Learning with help from Associate Director Jeff Toorangian.

In late April, Yooper Lights became the first place 7th grade team in Michigan—and a finalist in the North Central Region. In a word: Success! They were going to compete in Washington, DC at the national competition.

During the weeklong event in DC last June, the Yooper Lights team bonded with their eCYBERMISSION mentor, Michigan Tech alumna Sasha Teymorian, now a chemist in the US Army Research Laboratory. Teymorian graduated with her doctorate in Chemistry from Michigan Tech in 2015. Together they enjoyed a bevvy of cool activities, including one called “Houston, We Have a Problem,” that tasked the girls with engineering a solution to the Apollo 13 mission. They worked with radio-controlled cars and conducted ballistics on balloons, and even designed autonomous vehicles at the National Inventors Hall of Fame.

While in DC, Beaudoin, Daniels, Lyons and Shank also visited their Congressional representatives. They first met with Representative Jack Bergman, and then with Robert Curis, a staff member in Senator Debbie Stabenow’s office, sharing just how they used engineering to develop their LED light.

Finally, the Yooper lights presented their project to a team of eCybermission judges. “Although the team did not win the national competition, they gained a great deal from the experience,” said advisor Gretchen Hein.

What’s next for the team? Something they’re calling “Yooper Power”. Collaborating again with students from the Blue Marble Security Enterprise, as well as Michigan Tech student chapter of the Society of Women Engineers (SWE), the girls, now in 8th grade, will develop outreach activity kits for fifth and sixth graders. Their new mission: introduce more young students to the field of electrical and computer engineering.

Yooper Lights team member Olivia Shank models the casing of the LED reflector using Siemens NX software.

Chloe Daniels and Rebecca Lyons learn how to solder, with help from electrical engineering major John Robinault, a member of the Blue Marble Security Enterprise at Michigan Tech.

The team created two sizes and colors of 3D printed cases to test with their LED reflectors.

The Yooper Lights team used the Design Thinking process to develop their Yooper Lights. Design Thinking training is offered on campus through the Pavlis Honors College.

With more help from volunteers, the Yooper Lights team also tested their LED reflectors in a long, dimly lit hallway at Lake Linden-Hubbell High School.

 

Continue Reading


Engineering Students Comment on Volunteer Work

Students make a difference by pulling weeds.Instead of sleeping in on a rainy Saturday, more than 500 Michigan Technological University students planted flowers, helped out at the Lake Superior Performance Rally and joined in on other projects as part of Tech’s 13th annual Make a Difference Day.

“I love having a day where I can give back with all of my fellow students,” said Amanda Moya, a fifth-year mechanical engineering student.

“I like to take advantage of the opportunity to give back and make a difference in the world,” said Blue Key member Jacob Allen, a third-year electrical engineering major.

Read more at the Mining Gazette, by Garrett Neese.

Continue Reading