Category: Education

SWE, Aerospace Enterprise Represent MTU at Women in Aviation Day

Women in Aviation Day banner with image of Amelia Earhart.

On September 17, 2022, eight students from the Aerospace Enterprise and Society of Women Engineers represented Michigan Tech at the first annual Women in Aviation Day in Wausau, Wisconsin.

Participating students were:

From Aerospace: Heather Goetz, Seth Quayle and Nolan Pickett (mechanical engineering); and Zoe Knoper (cybersecurity).

From SWE: Sophie Stewart and Katherine Rauscher (mechanical engineering); Kathryn Krieger (environmental engineering); and Cailyn Koerber (engineering management).

This event was hosted by the Learn Build Fly organization, which does incredible volunteer work in engaging their community in aviation. As summarized by Wausau’s WSAW-TV News Channel 7, “The event aimed to get more women involved in recreational and professional aviation. Children had the chance to participate in ‘Young Eagle Flights’ by going for airplane rides, while other aviation organizations gave information about their programs.”

Visitors to the event had the opportunity to see a 3D model of the newest Aerospace Enterprise satellite design and learn how these students were designing and building satellites to go into space, while the SWE team worked with visitors on an outreach activity, Paper Circuits.

Participants’ comments included:

Nolan Pickett: “Our Enterprise was given the opportunity to not only celebrate the women in our program, but also promote STEM to the next generation of college students — and fly in a WWII era B-25!”

Kathryn Krieger: “I loved being able to see so many young girls getting excited about STEM. It was really inspiring to see the many ways kids are getting involved with aviation and other STEM disciplines from such a young age.”

Both SWE and the Aerospace Enterprise teams enjoyed volunteering at Women in Aviation, learning more about the history of aviation and meeting with folks interested in aviation careers. This was a unique outreach opportunity and they appreciated the support they received from Admissions and the College of Engineering.

By Gretchen Hein, SWE Advisor.

Pasi Lautala: Railroads—Back to the Future

The US rail network comprises nearly 140,000 miles of track—and more than 200,000 highway-rail grade crossings. Photo credit: Eric Peterson.

Pasi Lautala shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 9/26 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Pasi Lautala

What are you doing for supper this Monday night 9/26 at 6 ET? Grab a bite with Dean Janet Callahan and Pasi Lautala, associate professor of Civil, Environmental, and Geospatial Engineering at Michigan Tech.

Lautala directs Michigan Tech’s innovative Rail Transportation Program (RTP), preparing students to thrive and succeed in the rail industry—something he has done for the past 15 years.

Joining in will be Michigan Tech alumnus Eric Peterson, retired assistant chief engineer of public projects at CSX Transportation, who helped establish and grow the RTP at Michigan Tech.

During Husky Bites the two will share the secrets behind the energy efficiency of rail, and guide us from past railroads to what they are today. They’ll also discuss how railroads are securing a future in the era of rapid technology development. 

“Rail is considered more energy efficient. In many ways it is a more sustainable transportation mode compared to highway and air transport, says Lautala. “However, in order for rail transportation to keep up with the other modes of transportation, it must keep developing alongside them—and with an equal amount of passion. In the US, some of those challenges (but also opportunities) include long asset lives, non-flexible structures, and private ownership.”

Pat and Eric Peterson

Before moving to the US from Finland, Lautala worked for several summers with the Finnish Railway system. After graduating from Michigan Tech with his MS in Civil Engineering, he worked for five years as a railroad and highway engineering consultant in Chicago, before returning to Michigan Tech for his PhD in Rail Transportation and Engineering Education.

Michigan Tech’s Railroad Engineering Activity Club, aka REAC, is “for students interested in establishing contacts with, learning about, getting involved with, and a hair’s breadth away from being obsessed with the railroad and transportation industries in the United States of America and beyond.” Lautala and Peterson are honorary members.

“I first met Eric as a young consultant,” Lautala recalls. “He was one of the managers for our client, CSX Transportation. Once I returned to campus as a doctoral student, I learned Eric was a former classmate of my PhD advisor. Eric became an influential force and tireless supporter of our efforts to start the Rail Transportation Program. He still teaches some signals and communications lectures for us.”

“My wife, Pat, and I supported the startup of the Michigan Tech Rail Transportation Program with Pasi as the leader,” adds Peterson. “At the time, we were hiring engineers at CSX for all types of jobs, including field supervisors—people comfortable working both in the field and in the office. The rest of the rail industry was hiring, too.” 

“The railroad industry is still hungry for young people with interest and education in rail transportation,” says Lautala. When he first came to Michigan Tech from Finland in 1996 to earn an MS in Civil Engineering, Lautala brought the railroad bug with him. The son of a locomotive engineer, Lautala grew up in a culture that embraced rail transportation as a sustainable public transit alternative, as well as an efficient way to move freight.

While the US has the most extensive and efficient freight rail system in the world, the development of railroads had been on the back burner for decades, while the rest of the world kept moving forward, he observes. 

In 2007 Lautala established the RTP at Michigan Tech in order to advance rail education to a wide range of students, with integrated coursework, for both undergraduate and graduate students, and a minor in rail transportation. CN, Canadian National Railway Company, quickly came on board as a major sponsor of the program. The RTP also collaborates closely with many industry companies, associations and alumni. Their involvement provides professional networking, education, field trips, conferences, and guest speakers for Michigan Tech students involved in the Railroad Engineering and Activities Club (REAC), the first student chapter ever established by the American Railway Engineering and Maintenance of Way Association (AREMA).

“Students can also take part in hands-on rail industry-sponsored research projects across disciplines. Some topic areas include grade crossing and trespasser safety, materials research on railway equipment, locomotive emissions, the impact of climate change on railroads, and more,” says Lautala. Learning by doing is a central component of RTP’s approach to rail education.

Rail companies actively work with RTP to fill openings with Michigan Tech RTP students, whether for for full time jobs, internships or co-ops. And the RTP Experience wouldn’t be complete without the Railroad Night, an over 15 year tradition at Michigan Tech.

“Rail just makes sense, and it’s something this country needs.”

Pasi Lautala
Michigan Tech RTP students conduct field work

Lautala initially founded RTP’s innovative Summer in Finland program, which integrated an international component to rail education. It was an intensive five-week program, a collaboration among Michigan Tech, the Tampere University of Technology, and the North American and Finnish railroad industry. “That program created sufficient interest from the students and industry to officially launch the Rail Transportation Program,” Lautala says.

Outside Michigan Tech, Lautala serves as chair of National Academies’ Research Transportation Board Rail Group. “There are so many research possibilities—everything from infrastructure, with automated track-monitoring systems and recycled materials in railroad ties, to energy efficient equipment and operations,” he says.

Team Lautala!

Lautala’s own engineering research currently involves connected and autonomous vehicle communications at grade crossings, with fellow Civil, Environmental, and Geospatial Associate Professor Kuilin Zhang. The two are working to develop safe and efficient driving and routing strategies for autonomous vehicles at railroad grade crossings. Reduced energy consumption, emissions, and potential time delays are some of their goals. Their research is supported with two separate grants from the Federal Railroad Administration (FRA).

Dr. Lautala, how did you first get into engineering? What sparked your interest?

Prof. Lautala likes to fish, hunt, and play the accordian.

Probably my early summer internships, first at a rail construction site, and then with Finnish Railways.

Hometown?

Kangasala, Finland. I have split my life evenly between Finland and the US, twenty-five years each. I recently spent a year in Finland with my wife and two rascals (children): Olavi (10) and Ansel (8).

What do you like to do in your spare time?

Hobbies, you name it…..soccer (including coaching), hockey, golf, and many other sports. Three accordions and an equal number of bands. I’ve done some acting, too (though that’s been pretty quiet recently).

A rail adventure!

Eric, how did you first get into engineering? What sparked your interest?

I saw the Mackinac Bridge while it was under construction. A few years later when our subdivision was expanded, I spent the summer watching the grading contractor.  

Boating is another hobby. We have a 17’ boat for water skiing and a 20’ sailboat we use each summer for a few weeks on Crystal Lake near Frankfort, Michigan, when our family vacations together.

One of your most memorable accomplishments?

Training as a locomotive engineer.

Hometown?

I was born in Detroit and moved to Bloomfield Township when I was in the 4th grade. I am an only child. I married Patricia Paoli in 1970.

Eric and Pat thus far have three married adult children, and nine grandchildren.

What do you like to do in your spare time

My dad exposed me to both model railroading and real railroads. My primary hobby is model railroading in O Scale 2 rail, which is 1/48 scale. My work was all in the railroad industry.

Read more:

See Tracks? Think Train!

The Michigan Department of Transportation and Michigan Operation Lifesaver are partnering together to raise rail safety awareness. Most Americans today know the dangers associated with drunk driving, distracted driving or texting while crossing the street, But many are unaware of the risks they are taking around railroad tracks.

Husky Bites: Join Us for Supper This Fall!

Husky dog with plaid shirt and glasses sitting at a table with a bowl of dog bones
What are you doing for supper each Monday night at 6 pm ET this fall? Join us for some brain food, via Zoom or Facebook Live. Get the full scoop at mtu.edu/huskybites.

Craving some brain food? Join Dean Janet Callahan and special guests each Monday at 6 p.m. ET this for a 20-minute (or so) interactive Zoom webinar, with plenty of time after for Q&A. Grab some supper, or just flop down on your couch. This family friendly event is BYOC (Bring Your Own Curiosity). All are welcome. Get the full scoop and register⁠—it’s free⁠—at mtu.edu/huskybites.

Guests include Michigan Tech faculty members, who share a mini lecture and weave in a bit of their own personal journey to their chosen field. Also invited to join in during the session—their colleagues, mentors, former students, or current students.

“We created Husky Bites for anyone who likes to learn, across the universe,” says Callahan. “We aim to make it very interactive, with a ‘quiz’ (in Zoom that’s a multiple choice poll), about every five minutes. Everyone is welcome, and bound to learn something new. Some entire families enjoy it,” she adds.

Those who join Husky Bites via Zoom can take part in the session Q&A, one of the best parts of Husky Bites. But there are a few ways to “consume” the webinar. Catch the livestream on the College of Engineering Facebook page. Or, if you happen to miss a session, watch any past session on Zoom or youtube. (Scroll down to find the links on mtu.edu/huskybites).

On Monday (September 26), we’ll launch the season with “Railroads—Back to the Future, with Dr. Pasi Lautala, alumnus, director of Michigan Tech’s Rail Transportation Program, and associate professor of Civil, Environmental and Geospatial Engineering. Prof. Lautala will be joined by Eric Peterson ’70, ’71, retired former assistant chief engineer of public projects at CSX—and one of Michigan Tech’s greatest supporters and advocates of railroad activities and education.

About Husky Bites

Dean Callahan first launched Husky Bites June 2020, after the the first few months of the pandemic. Since then, she has hosted attendees from Michigan Tech’s campus community, across the US, and even attendees from various countries around the world. “There’s something of interest for all ages,” she adds. “A lot of folks turn it on in the background, and listen or watch while preparing, eating or cleaning up after supper,” she says. Dean Callahan awards some really great prizes for attendance. Also, high school students qualify for a nifty swag bag.

Get the Full Scoop

Want to see full schedule details? Just go to mtu.edu/huskybites. You can register from there, too. Husky Bites is presented by the College of Engineering at Michigan Technological University.

Kueber Watkins and Middlebrook Selected for 2022 CTL Instructional Awards

Melanie Kueber Watkins
Melanie Kueber Watkins

The Jackson Center for Teaching and Learning (CTL) congratulates the 2022 Deans’ Teaching Showcase members who have been selected to receive 2022 CTL Instructional Awards. Mark your calendars for the following fall semester events, where instructors will discuss the work that led to their nominations. After each presentation they will receive formal recognition and $600 in additional compensation.

CTL Instructional Award Series Schedule:

  • Sept. 29 — Innovative or Out-of-Class Teaching: Kristin Brzeski (CFRES) and Melanie Kueber Watkins (CEGE)
  • Oct. 13 — Large Class Teaching: Loredana Valenzano-Slough (Chemistry)
  • Nov. 8 — Curriculum Development or Assessment: Chris Middlebrook (ECE) and Josue Reynoso (CoB)
Christopher Middlebrook
Christopher Middlebrook

All events will take place from 3:45–4:45 p.m. Detailed presentation titles, topics and registration links for the events will be announced later.

The CTL would also like to thank previous instructional award recipients who were instrumental in the selection process.

We’re looking for nominations for the upcoming (2023) Deans’ Teaching Showcase during spring semester. Please consider suggesting (to your dean or chair) instructors whom you’ve seen make exceptional contributions in curriculum development, assessment, innovative or out-of-class teaching, or large class teaching.

By the Jackson Center for Teaching and Learning.


The Jackson Center for Teaching and Learning will recognize Kristin Brzeski (CFRES) and Melanie Kueber Watkins (CEGE) as co-recipients of the CTL Instructional Award for Innovative or Out of Class Teaching on Sept. 29 at 3:45 p.m.

Watkins’ award presentation is titled “Collaborative Classroom Cloud Computing.”

From the abstract:

“Dr. Watkins will highlight her use of project-based learning to enhance student computing skills and job preparedness. Her approach involved integrating new concepts and skills into courses for 2D hydraulic modeling with lidar data, including Linux scripting.”

Aurenice Oliveira Named ELATES Fellow

Aurenice Oliveira wearing gear and using a laptop on the Portage Lift Bridge.
Aurenice Oliveira, PhD, ELATES Fellow ’22-’23, Drexel University Executive Leadership in Academic Technology, Engineering and Science

Associate Professor Aurenice Oliveira (ECE) has been selected for the Class of 2022-23 of Drexel University’s Executive Leadership in Academic Technology, Engineering and Science (ELATES) fellowship program.

Aurenice Oliveira is an associate professor of electrical and computer engineering at Michigan Tech, and also serves the University as a vice president for research faculty fellow.

ELATES is a national leadership development program designed to promote women in academic STEM fields, and faculty allies of all genders, into institutional leadership roles. Oliveira is also a recipient of the first ASEE ELATES fellow scholarship covering program costs and travel expenses. 

The ELATES Class of 2022-23 Fellows comprise a prestigious cohort of 30 faculty members from over 25 institutions of higher education across the U.S. and Canada. Fellows include experts in engineering, mathematics and science, all of whom have significant administrative experience on top of their scholarly accomplishments. Oliveira was nominated by Dean Janet Callahan (COE) and former interim Chair Glen Archer (ECE) for this intensive yearlong program, which includes personal and leadership development work as well as series of on-site work in the Philadelphia area.

Aurenice Oliveira

“I am excited to participate in a program focused on training an amazing group of women to become leaders in academic STEM fields,” said Oliveira. “I would like to be able to bridge people and ideas as well as to tap into our strengths to create and encourage growth in my department and at Michigan Tech.”

Oliveira’s research interests focus on hybrid communications and networking, including connected and autonomous vehicles communications.  She is currently the IEEE chair for Northeastern Wisconsin Region 4 and recently served as the chair of the NSF ADVANCE Advocates and Allies Advisory Board (A3B) and as equity (DEIS) advisor for Michigan Tech faculty and chairs search teams. She is faculty advisor for two Michigan Tech student organizations on campus, as well, the IEEE student chapter and Eta Kappa Nu (HKN) Honor Society.

Oliveira will be also serving as a Michigan Tech Vice President for Research Faculty Fellow for the 2022-23 academic year in the areas of research development and research integrity.

Facilitated by leaders in the fields of STEM research and leadership development, the ELATES curriculum is focused on increasing Fellows’ personal and professional leadership effectiveness, from the ability to lead and manage change initiatives within institutions, to the use of strategic finance and resource management to enhance organizational missions. Pairing online instruction and discussion with intensive, in-person seminar sessions, the program encourages Fellows to apply what they’ve learned at their home institutions. Ultimately, it aims to create a network of exceptional faculty who bring broad organizational perspectives and deep personal capacity to the institutions and societies they serve.

Learn more online at ELATES at Drexel.

By Michigan Tech’s Department of Electrical and Computer Engineering.

Middlebrook Honored with Department of Defense Award

Christopher Middlebrook, a professor of Electrical and Computer Engineering at Michigan Tech, earned a DOD award recognizing his efforts to educate the next generation of the electronics manufacturing workforce.

Electrical and Computer Engineering Professor Christopher Middlebrook was honored with an award from the Department of Defense for his efforts to educate the electronics manufacturing workforce’s next generation. His award was presented by Adele Radcliff, Director of the Department of Defense Industrial Base Analysis and Sustainment Program. He received the award on Wednesday, August 17, during the Future Electronics Workforce Summit held at Michigan Tech.

Last March, Prof. Middlebrook was selected for the Michigan Tech Dean’s Teaching Showcase, selected for growing his work with printed circuit board (PCB) design into something extraordinary. He recognized a training need for electronic design engineers and put all the pieces in place to address a national security problem and offer employment opportunities for Michigan Tech students.

Middlebrook’s involvement with the Institute for Printed Circuits (IPC), a trade association founded to standardize assembly and production of electronic equipment, led to an IPC student chapter being formed the Department of Electrical and Computer Engineering at Michigan Tech. His hard work was also instrumental in establishing the new Plexus Innovation Lab, an electronics makerspace, in Michigan Tech’s Electrical Energy Resources Center.

Middlebrook is a member of the IEEE, OSA, and SPIE. He was also an electrical engineer with the Electro-optics Division, NAVSEA Crane, where he served as a research test and development engineer. He earned a BS in Electrical Engineering at Michigan Tech, an MS in Optical Engineering at Rose Hulman Institute of Technology, and a PhD in Optics at the University of Central Florida. He joined Michigan Tech as an assistant professor in 2007.

Middlebrook’s research interests include visible and infrared imaging systems, integrated photonic devices, optical remote-sensing system design, and optical beam projection through atmospheric turbulence. His facilities on campus include include a 700-square-foot optical research and testing lab, as well as a 500-square-foot teaching optical lab. He also serves as the faculty advisor for the Optics and Photonics Society at Michigan Tech.

Read more about the Future Electronics Workforce Summit news coverage:

Future Electronics Workforce Summit held at MTU’s Rozsa Center, by Colin Jackson, WLUC-TV

MTU hosts summit on future electronics workforce, by Garett Neese, Daily Mining Gazette

Dr. William Predebon Retires Today After 47 Years at Michigan Tech

Dr. Bill Predebon is retiring today after a stellar career as professor and chair. He will remain always a mentor, advisor, colleague, and friend.

Today at Michigan Technological University, it feels like the end of an era.

But for Dr. William W. Predebon, J.S. Endowed Department Chair and Professor, it is the beginning of something absolutely new. Dr. Predebon will retire today after 25 years as the chair of the Department of Mechanical Engineering-Engineering Mechanics, and nearly 47 years at Michigan Tech.

“As I look back on all those years as department chair, I want to acknowledge that the progress we made was on the shoulders of those that came before us and the great faculty, staff, students and alumni who have been a part of this journey with me,” he says.

“If there was a hall-of-fame for mechanical engineering department chairs, Bill would get in on the first ballot,” says Greg Odegard, the John O. Hallquist Endowed Chair in Computational Mechanics. “Bill is a tremendous mentor. He worked hard to help young faculty develop into world-class researchers and teachers. He has a very calm, non-dramatic approach to leadership. He is simply honest and straight-forward.”

Under Predebon’s respectful and brilliant watch, the ME-EM department made great strides in conducting interdisciplinary research, growing the doctoral program, expanding research funding, and updating the curriculum and laboratories. He also brought diversity to both the faculty and student body.

Predebon joined the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech in 1976. He served as the department’s director of graduate studies, and then, in 1997 he became chair of the department.

Dr. Bill Predebon

“I’ve been fortunate to work with Bill on many projects over the past 25 years,” says Gordon Parker, the John and Cathi Drake Endowed Chair in Mechanical Engineering. “Bill brought a level of positivity that exceeded the circumstances in every case. This, along with his unwavering focus and kindness, resulted in success.”

“Bill has had a profound and lasting impact on the careers of many students, faculty, and staff,” adds Parker. “He’s a ‘true believer’ in Michigan Tech and the people that define it.”

“Bill made great effort on the development and retention of minority and women faculty members,” says ME-EM Professor Bo Chen. “When I joined Michigan Tech, he assigned two mentors for me, including a woman mentor. Bill has always been supportive of my teaching and research. He always tried his best to accommodate my requests for teaching assistants and research space. I greatly appreciate his help on my career journey at Michigan Tech.”

“Bill is the reason I came to Michigan Tech, and the reason I am still here today,” says Brad King, Richard and Elizabeth Henes Endowed Professor of Space Systems. “When I interviewed 22 years ago, Bill convinced me of his vision to broaden MEEM into new areas, which could include aerospace, and I jumped at the chance to be a part of that change.”

“True to his word, Bill always made room for new ideas and encouraged and rewarded innovation,” adds King. “As a result, there are now hundreds of Michigan Tech alumni in leadership positions within the commercial and government space industry, one Michigan Tech satellite orbiting the Earth, and two more in development. Just last week I saw a commuter bus driving around Houghton with a big satellite graphic on the side. Because of Bill, space and satellites are now an integral part of Michigan Tech’s identity.”

“By hiring talented faculty and staff, together with our great students, our generous and supportive alumni, and with the support of the university administration, we have been able to innovate, push boundaries, be creative, take risks, and be entrepreneurs,” Predebon says.

Over the past 10 years he led the ME-EM Department to rapidly evolve its educational methods, infusing into undergraduate and graduate curriculum the knowledge and critical skills to use big data, machine learning and artificial intelligence in the solution of engineering design problems.

John Drake ‘64, ‘69, Michigan Tech mechanical engineering and business alumnus
Dr. Predebon’s early days at Michigan Tech

Predebon grew up in New Jersey, then earned his bachelor’s degree from the University of Notre Dame in 1965 and his master’s and doctorate from Iowa State University in 1968 and 1970, respectively. After he graduated, Predebon held summer appointments at Argonne National Laboratory, Southwest Research Institute, and Honeywell Inc./Alliant Techsystems Inc.

Predebon’s research in ceramics, computational modeling and simulation of impact phenomena, and explosive fragmentation has involved experimental, analytical, and computational elements and has been supported by the National Science Foundation, the Department of Defense, and other government agencies and industrial partners. He has over forty publications and two US patents.

A Fellow of the American Society of Mechanical Engineers (ASME), Predebon has received numerous honors, including the Outstanding Service Award for his work with the student chapter of the Society of Automotive Engineers. At Michigan Tech he earned the first annual Martin Luther King Award by Michigan Tech’s Black Student Organizations; and the Michigan Tech Distinguished Teaching Award. He received the Distinguished Faculty Award from the Michigan Association of Governing Boards of Colleges, and the Michigan Tech Honorary Alumni Award. He also gained membership in Michigan Tech’s Academy of Teaching Excellence.

In 2015 Predebon was recipient of the Michigan Tech Diversity Award, which recognizes the accomplishments of a faculty or staff member who contributes to diversity and inclusion through exemplary leadership and actions. Predebon stood out for his long-term persistence in working on issues of diversity.

“Bill has been known for his willingness to try out-of-the-box strategies for recruiting underrepresented minorities and female faculty and students,” said Carl Anderson, ME-EM professor emeritus and former associate dean of research in the College of Engineering. “He recognized the importance of a diverse workforce well before it became part of the common expectation of a department chair. He led the way.”

Gerald Haycock ‘68, mechanical engineering alumnus

Predebon also led efforts to create the Michigan Tech Learning Resource Center for Self-Paced Programmed Instruction, the ME-EM Engineering Learning Center, as well as a distance learning doctorate degree in mechanical engineering, and a Design Engineer Certificate program with General Motors in 2000. More than six hundred GM employees earned the certificate.

In 2010 Predebon started a Peace Corps Master’s International program in mechanical engineering at Michigan Tech, the first and only one of its kind in the nation.

Predebon is a captain in the US Army Reserves and is a member of four honor societies: Tau Beta Pi (engineering), Phi Kappa Phi (academic excellence), Omicron Delta Kappa (leadership), and Theta Tau (engineering).

In 2019 he was inducted into the Pan American Academy of Engineering, which brings together engineers from across the continent of North America, South America and Mexico—a total of 18 countries.

At Michigan Tech he advised both the Nordic and Alpine ski teams and Delta Sigma Phi fraternity, and chaired building committees for both the Dow Environmental Sciences and Engineering Building and the Great Lakes Research Center.

Geoff Weller ‘75, mechanical engineering alumnus

So what are Dr. Predebon’s next steps after retirement? He plans to keep working—this time in development and outreach activities for Michigan Tech, as a Professor and Chair Emeritus.

“Bill is a pioneer at Michigan Tech in advancement. He showed the university how it could be done successfully,” notes Parker.

And Dr. Predebon just might journey with his family to Italy at some point, in order to meet relatives there for the very first time.

Dr. Bill Predebon

Jin W. Choi Appointed Chair of Electrical and Computer Engineering at Michigan Technological University

Dr. Jin W. Choi is the new Chair of the Department of Electrical and Computer Engineering at Michigan Tech.

Jin W. Choi has been appointed Chair of the Department of Electrical and Computer Engineering at Michigan Technological University, effective July 1, 2022.

Dr. Choi comes to Michigan Tech from Louisiana State University, where he served as the Mark and Carolyn Guidry Professor in the Department of Electrical and Computer Engineering. At LSU, Choi led the graduate program in the Department of Electrical and Computer Engineering, and was director of the BioMEMS and Bioelectronics Laboratory.

Choi earned his BS and MS in Electrical Engineering at Seoul National University in Seoul, Korea, and his PhD at the University of Cincinnati. His work as a faculty member at Louisiana State University received numerous recognitions for excellence in teaching and mentoring, scholarship, and innovation in engineering research. His research interests include MEMS and BioMEMS, biomedical and bioelectronic devices, microfluidic devices and systems, lab-on-a-chip systems, and various sensors and sensor systems. He holds 8 US patents, including one recently issued to Choi and collaborators for a wireless implantable neural stimulator, designed to help patients with neurodegenerative diseases control pain and improve quality of life.

Janet Callahan, Dean of the College of Engineering, says Choi brings with him a wealth of experience and perspective.

“Dr. Choi’s entrepreneurial approach to research and teaching strongly equips him to carry out the department’s mission of teaching the next generation of electrical, computer and robotics engineers,” says Callahan. “At Michigan Tech he will creatively facilitate the development of technological innovations across a wide field of areas.”

Jin W. Choi

Choi says he was highly drawn to Michigan Tech’s electrical and computer engineering program. He cites several factors that contributed to his decision to move north from Baton Rouge all the way to Michigan’s Upper Peninsula.

“When I came for an interview, I saw great potential for the ECE department to move forward and advance even further,” he says. “The solid and envisioning leadership of the College and the University was strongly encouraging, as well. Most importantly, the motivated students, talented faculty, and supportive staff made me want to join Michigan Tech in this leadership position.”

With Choi at the helm, the ECE department will continue its strong pursuit of excellence in education, research, and service. A primary goal of Choi’s is to promote collaboration within the university, and beyond.

“The horizon of electrical and computer engineering stretches from power engineering to modern and future electronics, space technology, communication and connectivity, computing devices, healthcare, robotics, automobiles, and much more,” Choi explains. “Electrical and computer engineering undoubtedly provide backbone technologies to our modern society as we undergo the 4th industrial revolution. Michigan Tech is patently where a better tomorrow begins.”

Jin W. Choi

At Michigan Tech, the ECE department prepares members of the future workforce and promotes innovative research, notes Choi. “As ECE department chair, I hope to continuously improve the quality of learning—by exploring opportunities for students, assisting students and faculty for their success, and elevating our engagement of alumni and stakeholders to the department.”

Michigan Technological University is a public research university founded in 1885 in Houghton, Michigan, and is home to more than 7,000 students from 55 countries around the world. Consistently ranked among the best universities in the country for return on investment, the University offers more than 125 undergraduate and graduate degree programs in science and technology, engineering, computing, forestry, business and economics, health professions, humanities, mathematics, social sciences, and the arts. The rural campus is situated just miles from Lake Superior in Michigan’s Upper Peninsula, offering year-round opportunities for outdoor adventure.

Michigan Tech Wins ASME/IEEE Heat Sink Design Challenge

Michigan Tech’s Heat Sink team. Undergraduate students are Gracie Brownlow and Kelsey Brinks. Graduate students are Behzad Ahmadi, Masoud Ahmadi, and Behnam Ahmadi.

A student team from Michigan Tech has been awarded first place in the ASME/K16 and IEEE/EPS Student Design Challenge: Expanding the Possibilities of Heat Sink Design Using Additive Manufacturing.

The competition called upon student teams K-16 to expand the possibilities of heat sink design using additive manufacturing. The four finalist teams are Michigan Tech, Purdue University, University of Arkansas, and Berlin Institute of Technology.

Advanced heat sink designs offering augmented cooling capabilities are required for effective thermal management of high-power electronic chips. Future heat sink designs should not only offer an effective heat transfer but also be compact and cost-effective. 

Composed of Michigan Tech graduate and undergraduate students in the Department of Mechanical Engineering-Engineering Mechanics, the team was first selected as a semi-finalist in March. Now, as a finalist, one member of the team will defend their heat sink design in front of industry leaders in the form of an oral presentation, Behzad Ahmadi. That will take place during the IEEE ITherm 2022 Conference coming up in San Diego from May 31 – June 3, 2022.

Michigan Tech’s Energy-X team heat sink designs: expanding the possibilities of heat sink design using additive manufacturing.

Undergraduate students are Gracie Brownlow and Kelsey Brinks. Graduate students are Behzad Ahmadi, Masoud Ahmadi, and Behnam Ahmadi. Assistant Professor Sajjad Bigham is the team advisor. He is the director of the Energy-X Lab (Energy eXploration Laboratory) at Michigan Tech.

For the competition, all teams were asked to design, build, and validate an aluminum heat sink made with additive manufacturing techniques made available by GE Additive. Next, teams prepared a white paper that justified their designs.

The Michigan Tech team was among selected to print their heat sink with GE Additive machines. It was then sent for testing, which then helped determine the finalists, due to their top designs.

OHM and Michigan Tech Alumni team up to Lead Family Engineering Nights in Detroit Schools

Fifteen OHM staff helped present the Family Engineering Night sessions, including several Michigan Tech alumni.

From May 10-12, Michigan Technological University teamed up with OHM Advisors to provide STEM outreach at five schools in Detroit. 

The program they presented, Family Engineering, engages K-8 students and their families in engineering investigations. Family Engineering was created by Michigan Tech and partners in 2011 with a grant from the National Science Foundation. A key outcome of the program was the publication of the Family Engineering Activity & Event Planning Guide, published in 2011.

Sessions took place at the schools, followed by free pizza at Mackenzie Middle School, Clippert Multicultural Magnet Honors Academy, and Adams Middle School. The event began with short opener activities that adults and children explore together. These included: Glue is the Clue, Domino Diving Board, Who Engineered It?, Let’s Communicate, Boxing Beans, Picture This, Solid Ground, Hoop Glider, Inspired by Nature, Shifting Shapes, All The Right Tools, and Thrillseekers.

Next, families took part in three Engineering Challenges:

  1. Stop & Think – Why was this object designed? What need did it address? Can you make it better?
  1. Team Up – Discover why engineers work in teams. What helps a team work well together? How can we address challenges?
  1. Give Me Hand – How can an engineer help a person who has lost their hand, or some other part of their body?
Family Engineering Night took place recently in Detroit, with volunteer help from OHM Advisors.

Fifteen OHM staff helped present the sessions, including several Michigan Tech alumni.

Ron Cavallaro, Vice President of OHM Michigan, echoed the value of introducing kids to engineering at an early age. He earned his bachelor’s degree in civil engineering at Michigan Tech and is now a member of the Michigan Tech Department of Civil, Environmental and Geospatial Engineering’s Professional Advisory Board. “Many of the families that attended the events brought younger siblings,” said Cavallaro. It was awesome to see the middle school students, their parents and siblings helping each other on the challenges.”

“OHM Advisors has been seeking out ways to get younger children interested in STEM fields. We are fortunate to have had MTU reach out to us to help with this program.”

Ron Cavallaro, Vice President of OHM Michigan

Chandler Park Academy High School and UPrep Science & Math High School hosted another Michigan Tech alum, retired Lt. Colonel Otha Thornton, chair of Michigan Tech’s Diversity, Equity, Inclusion and Sense of Belonging (DEIS) Alumni Advisory Board, formed in Fall 2021. 

Lt. Colonel Otha Thornton

Thornton presented at four student assemblies as part of the outreach effort. He shared how students could find their own pathway to STEM and described STEM careers. Thornton also described highlights of his own career⁠—working directly with President Barack Obama, First Lady Michelle Obama, and Vice President Biden in the White House, along with Congress, to promote passage of the Every Student Succeeds Act. The Act supports STEM education in K-12 schools. 

Thornton’s STEM work is preceded by a 21-year career with the U.S. military. He earned the Bronze Star Medal for exceptional performance in combat operations during Operation Iraqi Freedom. His other military assignments included working with the White House Communications Agency and U.S. forces in Iraq. As the 53rd president of the National Parent Teacher Association (PTA), Thornton was the first and only African American male to serve as President in the National PTA’s 125-year history. 

Any school can access the Family Engineering Activity & Event Planning Guide to provide positive engineering experiences for K-8 students and their families. For more info, contact: Joan Chadde, jchadde@mtu.edu or 906-487-3341.