Category: Education

Michigan Tech Partners with Lockwood STEM Center: Expanding Educational Access in the Great Lakes Bay Region

The Lockwood STEM Center in Hemlock, Michigan opened in 2020, a fantastic place for students to learn and practice robotics.

This month, Michigan Tech launched a partnership with the Lockwood STEM Center, part of Hemlock Public Schools in Hemlock, to provide educational outreach and opportunities to its students.

As part of the partnership, Michigan Tech established a scholarship program for Hemlock students who participate in robotics activities while in high school and then enroll at Michigan Tech as first-year students. The award provides $1,000 and is renewable annually. Two students will begin receiving the scholarship in Fall 2022 (still to be announced).

Students work on a robot in the Blue Marble Security Enterprise. It’s one of 25 different student-led Enterprise teams operating at Michigan Tech

At Michigan Tech a variety of options exist for students who want to pursue robotics. The University also has a new BS in Robotics, in the Department of Electrical and Computer Engineering. Several Enterprise teams are focused on Robotics, including the Robotics Systems Enterprise, advised by Michigan Tech Professor (and alumnus) Jeremy Bos.

“Our partnership with the Lockwood STEM Center is in recognition of the incredible academic opportunities it provides to Hemlock Public School District students. We are thrilled to show our support for the Hemlock community and Great Lakes Bay region,” said Cassy Tefft de Muñoz, Executive Director of Enrollment Initiatives at Michigan Tech.  

“Who has robots? We have robots,” says Michigan Tech’s Robotic Systems Enterprise team, open to all majors on campus.

The Lockwood STEM Center was the vision of Tom and Dana Lockwood, teachers at Hemlock High School (HHS) who sought to advance STEM educational opportunities in the community. The state-of-the-art facility is truly a community effort with support from local individuals, industry and Hemlock Public Schools.

Former HHS student Gary Gariglio earned two bachelor degrees at Michigan Tech—one in electrical engineering (’86), and the other in business (’87). He is now president of Interpower Induction in Almont, Michigan. He delivered a keynote address to students and attendees during a special event on May 4 celebrating the new partnership. Gariglio highlighted the value of his Michigan Tech education and emphasized the importance of perseverance in the face of adversity—giving special acknowledgement to Matt Pumford and Greg Turner of Pumford Construction for their commitment and support in the oversight and construction of the Lockwood STEM Center. Pumford earned his bachelors degree in civil engineering at Michigan Tech in 1988.

The collaboration with Hemlock Public Schools is a continuation of Michigan Tech’s strong presence in the Great Lakes Bay Region. This includes a longstanding partnership with Hemlock Semiconductor supporting educational outreach and student attendance at Michigan Tech’s Summer Youth Programs (SYP).

Michigan Technological University is a public research university founded in 1885 in Houghton, Michigan, and is home to more than 7,000 students from 55 countries around the world. Consistently ranked among the best universities in the country for return on investment, the University offers more than 125 undergraduate and graduate degree programs in science and technology, engineering, computing, forestry, business and economics, health professions, humanities, mathematics, social sciences, and the arts. The rural campus is situated just miles from Lake Superior in Michigan’s Upper Peninsula, offering year-round opportunities for outdoor adventure.

Read More

Jeremy Bos: What’s Next After First?

STEM Center Named: See photos and learn more about the new Lockwood STEM Center.

Registration for Michigan Tech’s Summer Youth Programs is open and more information is available at mtu.edu/syp.

Michigan Tech Teams Win at CMU’s 10th Annual New Venture Challenge

Congratulations to these Michigan Tech New Venture Challenge 2022 Award Winners! L to R: Husky Innovate Program Manager Lisa Casper, students Jordan Craven, Bayle Golden, Ali Dabas, Rourke Sylvain, Jakob Christiansen, and Husky Innovate Co-Director Jim Baker

Central Michigan University (CMU) and Michigan Tech collaborate each year to offer Michigan Tech students a chance to compete in CMU’s New Venture Challenge (NVC). This showcase event provides an opportunity for students at both universities to present their businesses and network with prospective investors, mentors and partners. Student participants at NVC compete for a total of $60,000 in prizes and in-kind services.

On Friday (April 22), four Michigan Tech student teams pitched their ideas and businesses in person at Central Michigan University in Mount Pleasant. Michigan Tech Husky Innovate co-director Jim Baker and program manager Lisa Casper attended the event to support teams, as well as strengthen innovation and entrepreneurship connections.

Michigan Tech engineering management student Bayle Golden presents her pitch for her new wearable child safety device, SafeRow, at the CMU New Venture Challenge.
Michigan Tech construction management student Jakob Christiansen delivers his two-minute pitch for his new supply chain e-commerce platform, ProBoard.

Students had an opportunity to compete in either the two-minute pitch competition or the seven-minute business model competition. There was also a gallery competition, where teams had tables with individual displays and took questions from attendees.

The competition took place out of town during the last hectic week of spring semester at Michigan Tech. But in the end, all their hard work paid off: Michigan Tech teams brought home $21K in prizes for their ideas.

“Congratulations to our Husky Innovate student teams—your ideas have the potential to change the world.”

Lisa Casper, Husky Innovate Program Manager

Michigan Tech’s New Venture Challenge award winners:

Two-Minute Pitch Competition

  • Jakob Christiansen (construction management) won first place and received $4,000. Christiansen pitched “ProBoard,” an e-commerce platform to solve issues in the construction material supply chain.

Seven-Minute Pitch Competition

  • Bayle Golden (engineering management) won first place in the Social Mission category and received $10,000. Golden pitched “SafeRow,” an innovative wearable device designed to keep children safe when every second counts.
  • Rourke Sylvain and Ali Dabas (both biomedical engineering) won second place in the High Tech High Growth category, receiving $5,000. Their pitch was “imi (integrated molecular innovations),” an electrochemical biosensor for T4 detection.
  • Jordan Craven (management information systems, minoring in computer science) won third place in the High Tech High Growth category and received $2,000. Craven pitched “Tall and Small Designs,” a technology company that provides software as a service to retailers who sell clothes online.

“The results speak to the tireless efforts of our students—and the impact of the programs provided by Husky Innovate and its partners.”

Jim Baker, Husky Innovate Co-Director
Michigan Tech biomedical engineering students Ali Dabas and Rourke Sylvain discuss their electrochemical biosensor start-up, “imi”

In preparing for the New Venture Challenge, Michigan Tech students participated in a number of Husky Innovate workshops and review sessions. They also benefited from resources and expertise available within MTEC SmartZone, the local state-funded technology business incubator, and the Upper Peninsula Regional Small Business Development Center, which is hosted by Michigan Tech’s Office of Innovation and Commercialization in collaboration with the College of Business.

“Thanks go out to our distributed team of mentors and our sponsors at Michigan Tech, including the Pavlis Honors College, Office of Innovation and Commercialization, College of Business, College of Engineering, Biomedical Engineering, and Civil Engineering,” said Casper. “We also thank Central Michigan University, and especially Julie Messing, director of the Isabella Bank Institute for Entrepreneurship, for the collaboration and congenial hospitality.”

Michigan Tech management information systems student Jordan Craven pitched “Tall and Small Designs,” a new kind of software for retailers who sell clothes online

Student Awards Announced for Michigan Tech’s 2022 Design Expo

More than 1,000 students in Enterprise and Senior Design showcased their hard work last Thursday at Michigan Tech’s 22nd Annual Design Expo event. As we’ve come to expect, the judging for Design Expo is often VERY CLOSE. This year we had several ties. 

Teams competed for cash awards totaling nearly $4,000. Judges for the event included corporate representatives, community members and Michigan Tech staff and faculty.

The Enterprise Program and College of Engineering are proud to announce the award winners. Check them out here, or visit the Design Expo website, at mtu.edu/expo, where you can view videos and project info submitted by all the teams who took part. Congratulations and a huge thanks to everyone for a very successful Design Expo!

ENTERPRISE AWARDS (Based on video submissions)

First Place (2-way tie)
CinOptic Communication/Media
Team Leaders: Matthew Brisson, Communication, Culture, and Media; Julianna Humecke, Scientific and Technical Communication
Advisor Erin Smith, Humanities
Sponsors: Isle Royale National Park, NSF CAREER Grant
Video

Velovations
Team Leaders: Jorge Povich and Eamon McClintock, Mechanical Engineering
Advisor Steve Lehmann, Biomedical Engineering
Sponsors: Cleveland Cliffs, Senger Innovations, Enterprise Program
Video

Second Place (2-way tie)
Aerospace Enterprise
Team Leaders: Nolan Pickett and Kyle Bruursema, Mechanical Engineering
Advisor: L. Brad King, Mechanical Engineering-Engineering Mechanics
Sponsors: Auris: Air Force Research Laboratory, Stratus: NASA
Video

Supermileage Systems Enterprise
Team Leaders: Luis Hernandez, Mechanical Engineering and Olivia Zinser, Electrical Engineering
Advisor: Rick Berkey, Manufacturing and Mechanical Engineering Technology
Sponsors: General Motors, Aramco Americas, A&D Technology, Dana Inc., SAE International, Halla Mechatronics, Meritor, Oshkosh Corporation, Ford Motor Company, John Deere, Caterpillar, Henkel, BRP Inc., RapidHarness, Wetherington Law Firm, Danaher, Watermark, Top Flight Automotive, Shipley Energy, TEAMTECH, Gamma Technologies, Velocity USA, Enterprise Manufacturing Initiative funded by General Motors
Video

Third Place: 
Clean Snowmobile Challenge
Team Leaders: Katy Pioch and Daniel Prada, Mechanical Engineering
Advisor: Jason Blough and Scott Miers, Mechanical Engineering-Engineering Mechanics
Sponsors: GM (General Motors), Aramco, A&D, Dana, Milwaukee Tool, Caterpillar, Meritor, Oshkosh, Ford, John Deere, BRP (Ski-Doo), Kohler, Mahle, Yamaha, Castle, Gamma Technologies, Quincy Compressor, Shipley Energy, Top Flight Automotive, Superior Graphics
Video

Honorable Mention: 
Formula SAE
Team Leaders: John Herr and Luke Quilliams, Mechanical Engineering
Advisor: James DeClerck, Mechanical Engineering-Engineering Mechanics
Sponsors: General Motors, Aramco Americas, A&D Technology, Dana Inc., SAE International, Yamaha, Halla Mechatronics, Meritor, Oshkosh Corporation, Ford Motor Company, John Deere, Caterpillar, Henkel, BRP Inc., RapidHarness, Wetherington Law Firm, Danaher, Watermark, Top Flight Automotive, Shipley Energy, Superior Graphics, TEAMTECH, Gamma Technologies, Enterprise Manufacturing Initiative funded by General Motors
Video

SENIOR DESIGN AWARDS (Based on video submissions)

First Place
IoMT Device Security
Team Members: Jacson Ott, Stu Kernstock, Trevor Hornsby, and Matthew Chau, Cybersecurity
Advisor:Guy Hembroff, Applied Computing
Sponsor: Dept. of Applied Computing
Video

Second Place
MR Compatible Transseptal Needle with Integrated System for Confirming Left Atrial Access
Team Members: Lydia Ragel Wilson, Natalie Reid, Jared Martini, Braxton Blackwell, and Aydin Frost, Biomedical Engineering
Advisor: Hoda Hatoum and Jeremy Goldman, Biomedical Engineering
Sponsor: Imricor
Video

Third Place
Britten Water Filtration System
Team Members: Nika Orman and Nick Hoffebeck, Electrical Engineering, Matt Zambon, Kyle Clow, Luke Schloemp, and Gabby Sgambati, Mechanical Engineering, and Evan McKenzie, Computer Engineering
Advisor: Tony Pinar, Electrical and Computer Engineering
Sponsor: BoxPop powered by Britten, Inc.
Video

Honorable Mention 1
Locomotive Pinion Cutter Feed System
Team Members: Seth Jensen-Younk, Sam Barwick, Matt Krause, Nick Sand, and Stephen Mleko, Mechanical Engineering
Advisor: Cameron Hadden, Mechanical Engineering-Engineering Mechanics
Sponsor: Dr. Pasi Lautala, Civil, Environmental, and Geospatial Engineering
Video

Honorable Mention 2
Rapid Corrosion Screening of Engineered Structural Fastener Coating Systems for Treated Lumber
Team Members: Sophie Mehl, Isabelle Hemmila, and Kendal Kroes, Materials Science and Engineering and Luke Owens, Mechanical Engineering
Advisor: Paul Sanders, Materials Science and Engineering
Sponsor: Altenloh, Brinck & Company US, Inc
Video

Honorable Mention 3
Cycle Time Improvements in Medical Device Manufacturing – Laser Welding
Team Members: Abigail Martin, Hannah Loughlin, Zachary Alesch, and Megan Cotter, Biomedical Engineering
Advisors: Jeremy Goldman and Chunxiu (Traci) Yu, Biomedical Engineering
Sponsor: Boston Scientific (BSC)
Video

Honorable Mention 4
Stromberg Carlson Electric Tongue Jack Redesign Phase 2 Application Development
Team Members: Dustin Duclos, Sean Parker, and Shane O’Brien, Computer Engineering
Advisors: Trever Hassell and Mark Sloat, Electrical and Computer Engineering
Sponsor: Stromberg Carlson
Video

DESIGN EXPO IMAGE CONTEST (Based on image submitted by the team)

First Place: 
Aerospace Enterprise — “Physical Model of Auris Spacecraft.”

Physical Model of Auris Spacecraft. Photo credit: Aerospace Enterprise

Second Place: 
Blizzard Baja Enterprise — “Blizzard Baja Competition Vehicle.” Photo credit: Andrew Erickson

Blizzard Baja Competition Vehicle. Photo credit: Andrew Erickson

Third Place
Dollar Bay School SOAR — “A member of the SOAR team troubleshoots one of the service grade ROVs.”

A member of the SOAR team troubleshoots one of the service grade ROVs. Photo credit: Dollar Bay Soar High School Enterprise

DESIGN EXPO INNOVATION AWARDS (Based on application)

First Place
Lydia Ragel Wilson, MR Compatible Transseptal Needle with Integrated System for Confirming Left Atrial Access, Department of Biomedical Engineering
Sponsor: Imricor

Second Place
Veronika Orman, Britten Water Filtration System, Department of Electrical and Computer Engineering
Sponsor: Britten, Inc.

Third Place
Jerod Warren, HACK Cybersecurity Kit, Department of Applied Computing 

DESIGN EXPO AUDIENCE CHOICE AWARD (Based on receiving most text-in voting during Design Expo)

Enterprise
Consumer Product Manufacturing
Video

Senior Design
Britten Water Filtration System
Video

ENTERPRISE STUDENT AWARDS

Rookie Award: Brian Geiger, CFO, Multiplanetary Innovation Enterprise (MINE)

Innovative Solutions: Pete LaMantia, ITOxygen

Outstanding Enterprise Leadership: Brooke Bates, Consumer Product Manufacturing

ENTERPRISE FACULTY/STAFF AWARDS

Behind the Scenes Award: Tania Demonte Gonzalez, PhD Student Researcher, Department of Mechanical Engineering-Engineering Mechanics. 

Outstanding Enterprise Advisor: Tony Rogers, Associate Professor and Faculty Advisor, Consumer Product Manufacturing, Department of Chemical Engineering

Dean’s Teaching Showcase: David Labyak

David Labyak
David Labyak

Dean Janet Callahan has selected David M. Labyak, assistant professor in the Department of Manufacturing and Mechanical Engineering Technology (MMET), for this spring’s Deans’ Teaching Showcase.

Labyak will be recognized at an end-of-term luncheon with other spring showcase members, and is a candidate for this summer’s CTL Instructional Award Series.

Labyak brings his 23 years of professional industry experience to life in the classroom. He relates engineering project examples from General Motors in manufacturing and process engineering; Copper Range Company and Raytheon Missile Systems in project engineering; and Great Lakes Sound and Vibration in simulation analysis. All offer students an endless supply of practical applications to help understand engineering theory.

Labyak first developed new assignments and restructured machine design courses MET 3242 and MET 3451. Then, he developed new graduate courses: MET 5800 and MET 5801 for the mechatronics M.S. and online course MFGE 5200 for the manufacturing engineering graduate certificate.

In these courses, Labyak relates course theory to industrial applications of sheet metal design and fabrication, mining facility maintenance, and missile assembly processes. In addition, he uses examples from his family-owned farm in Ontonagon, where he maintains tractors and farm equipment. Vibrations, reliability and fatigue in mechanical components such as bearings, gears, drive systems, clutches and brakes provide examples students can easily grasp.

Labyak’s ability to explain where and how students will utilize the course content in their careers also makes him a great recruiter and advisor. “David often volunteers to meet with prospective students and their families,” says John Irwin, chair of MMET. “His industry knowledge in terms of engineering needs provides insight to guide MET students throughout their career paths.”

MET alum Mickala Kohtz ’21 explains how Labyak was effective in teaching MET 4660 CAE and FEA Methods. “He took the time to understand the way that I learned best and would walk me through difficult concepts. Dave was always willing to help his students, whether it was after class, the weekends, and even to lend a listening ear about job offers or Senior Design help.”

Likewise, former student Joshua Olusola says Labyak is very friendly and open to students anytime you find him available, even on Saturdays. “He gave sufficient in-class practice questions to ensure that the concept was understood before he assigned homework.” MET 5801 was Olusola’s first encounter with the Simulink software, but he transitioned smoothly using instructional labs prior to lab assignments. “I would say almost every student who had a course with Dave always jumped at an opportunity to take another with him due to his exceptional teaching technique and friendly personality. These traits indeed made students more open to learning.”

Dean Callahan recognizes Labyak’s ability to connect with students. “The personal relationships that Dave is able to develop with his students demonstrates the best parts of the high-tech, high-touch education that is Michigan Tech’s trademark. He is an inspiration to us all.”

Michigan Tech SWE Section travels to Wisconsin for ‘Spring Forward’ Professional Day

Michigan Tech SWE section members and alumnae gather for a photo at Spring Forward 2022.

Nine student members of Michigan Tech’s section of the Society of Women Engineers (SWE) and their advisor, Gretchen Hein (MMET), recently attended Spring Forward, a professional development day in Kohler, Wisconsin, hosted by the SWE-Wisconsin.

Laura Kohler, Senior Vice President of Human Resources, Stewardship and Sustainability at Kohler Company gave the keynote address. She spoke about her career path, the importance of diversity, and leadership. 

Michigan Tech SWE Section members toured the Kohler Design Center after attending SWE-Wisconsin Spring Forward 2022

Mechanical Engineering alumna Jackie (Burtka) Yosick ‘14 also works at Kohler. She was on hand to discuss her work with engines and generators.

“We were also pleasantly surprised to meet Helene Cornils, director of the Advanced Development Kitchen and Bath Group at Kohler and the parent of a current Michigan Tech biomedical engineering student,” said Hein.

Two former Michigan Tech SWE Section presidents, Katie Buchalski ’19 and Andrea (Walvatne) Falasco ’12 were also present at the event. Buchlaski is an environmental engineering alumna now working at Ruekert-Mielke, where she designs municipal road and utility projects with a focus on modeling the stormwater runoff from individual sites to city-wide studies. Falasco, a mechanical engineering alumna, is lead mechanical engineer at Kimberly Clark, where she designs new equipment to make products that include Kleenex, Huggies, and Kotex. 

Numerous Michigan Tech students won SWE awards at the event, as well. One of those was biomedical engineering major Kathleen Heusser, who won a first place scholarship from the GE Women’s Network.

“Receiving the first-place 2022 GE Women’s Network Scholarship was an incredible honor,” said Heusser. “In addition to the tuition assistance it provides, the scholarship affirms my confidence in the value of my resume, my education, and my professional references, as well as my scholarship essay on what being an engineer means to me,” she explains. “The last paragraph in my essay shares how my work as an engineer will be motivated by my love of others in order to work hard–creating solutions to the problem of an individual, a company, or a society.

Michigan Tech biomedical engineering student, Kathleen Heusser, receives the GE Women’s Network Scholarship

Another highlight of the day: Michigan Tech’s SWE section received the SWE-Wisconsin President’s Choice Award.

After the conference, each Michigan Tech student in attendance reflected on their participation and what they learned:

Aerith Cruz, Management Information Systems: “It was a great opportunity for Michigan Tech SWE members to bond and connect with one another. Being able to travel as a section and experience professional development together is a fulfilling experience. We are able to share learning opportunities and build long-lasting connections with one another. It is also incredibly fun getting to know each other while exploring the area.”

Kathryn Krieger, Environmental Engineering: “It was inspiring to hear the paths of various women, and the impacts they have made. I really enjoyed hearing about modern, female-centered design that benefits women in impactful ways–rather than the stereotypical ‘pink and shrink’ method.”

Natalie Hodge, Electrical and Computer Engineering (dual major): “Laura Kohler shared this quote in her presentation, attributed to Cassie Ho: ‘Don’t compare yourself to others. It’s like comparing the sun and the moon. The sun and the moon shine at their own time.’” 

Katherine Baker, Chemical Engineering: “I especially enjoyed attending the session, ‘Navigating Early Stage Careers: The First 10 Years’. It had a great panel that gave a ton of advice on how to advance as an engineer in the workplace.”

Maci Dostaler, Biomedical Engineering: “Women are necessary when it comes to inclusive design, which was covered during one of the sessions, ‘Breaking the Glass Ceiling’”.

Alli Hummel, Civil Engineering: “Laura Kohler talked about the importance of making time for your personal life and how that is necessary to succeed at work. She is a great example of a woman who succeeds in prioritizing both work and family life.”

Lucy Straubel, Biomedical Engineering: “I really enjoyed the whole experience. It was great to hear all the advice everyone else could give me. And making friends and memories was a bonus, too.”

Amanda West, Mechanical Engineering: “One of the things I liked most about the conference was keynote speaker Laura Kohler’s speech, where she mentioned the importance of having and maintaining relationships with your mentors, an important part in developing your career and professional skills.”

Kathleen Heusser, Biomedical Engineering: “In one session called Navigating Early Stage Careers: The First 10 Years, Tess Cain of DSM, among others, gave insightful tips about saying ‘no’ to a project or demand from management that’s just not feasible. She pointed out that how others accept your ‘no’ depends a lot on how you say it. You should use a response that includes ‘I can’t/Here’s why/Here’s what I would need to make this work’ in order to go in a doable direction with the project. And another inspiring quote, overheard during the Nonlinear Careers and the Versatility of Engineering Degrees panel, was that ‘100 percent of candidates are not 100 percent qualified.’ Raquel Reif of Kohler, in particular, stressed that already having expertise in a job field is not a necessary prerequisite to apply for the job you want.”

Fernando Ponta: The Wind Beneath My Wings/Sails/Turbines

“Since the emergence of the first windmill in ancient times, through the windmills of the middle ages, to the high-tech wind turbines of today, there has been an intimate relationship between the evolution of wind rotors and sailing rigs,” says Fernando Ponta.

Fernando Ponta shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 3/28 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Fernando Ponta

What are you doing for supper this Monday night 3/28 at 6 ET? Grab a bite with Dean Janet Callahan and Fernando Ponta, the Richard and Elizabeth Henes Professor of Wind Energy. Joining in will be one of Dr. Ponta’s mechanical engineering PhD students, Apurva Baruah, who brings industrial experience to his research with Dr. Ponta. Baruah is also a member of the crew on Dr. Ponta’s J-80 sailboat, the Avanti Bianc.

“There’s no better way to understand the wind than trying to harness its power on sails,” says Baruah.

The Avanti Bianc: “I’ve been Apurva’s boat skipper since 2015, and his PhD advisor since 2017,” says Dr. Fernado Ponta. “We’re both part of Michigan Tech’s ‘Wind-Warriors’ team.”

During Husky Bites, Ponta and Baruah will explain the evolution of wind power technology from its beginnings until the current development of next-generation, advanced, mega-scale wind turbines. One aspect of their research involves modeling the wakes of many wind turbines operating in a huge wind farm. They’ll discuss the importance of understanding and modeling these wakes in order to optimize both offshore and inland wind farm performance.

Apurva Baruah

“We’ll also share a brief review of our collaborative work with Sandia National Labs,” adds Baruah. “That includes the novel, aeroelastic-vortex-lattice codes we use to study cutting-edge wind energy technologies.”

At Michigan Tech, Ponta’s research team seeks to understand the detailed physics of a wind-turbine–from the rotor structure and aerodynamics, to turbine control and drivetrain electromechanics. 

“Since the emergence of the first windmill in ancient times, through the windmills of the middle ages, to the high-tech wind turbines of today, there has been an intimate relationship between the evolution of wind rotors and sailing rigs,” he says. “Ancient windmill designs used the principle of aerodynamic drag to produce the forces acting on the blades in the same manner that square rigs used drag to propel ships.”

Rembrandt’s The Mill, year 1645-48. Oil on Canvas. National Gallery of Art, Washington, DC

“In a period of several centuries, sailing rigs progressively evolved into the use of sail arrangements that propel ships via the generation of lift force, which not only give ships the great advantage of going faster in the same conditions, but also of sailing partially into the wind,” adds Ponta. “All this technological experience translated into the evolution of wind rotors that also use lift as their physical mechanism for torque and power generation. In the case of a wind rotor, it has resulted in a dramatically higher efficiency of the conversion process from the kinetic energy of the wind, into mechanical power on the shaft.”

This parallel development was fundamental to the evolution of current wind energy technology, says Ponta. “The basic concept of the lift-driven wind rotor, conceived in the late middle-ages, is essentially the same as the high-tech wind turbines of today. The inherent energy efficiency of the lift generation process versus the generation of drag—with all its associated frictional losses—is the physical underpinning of this fundamental progress.”

Wind turbine blades average almost 200 feet long, and turbine towers average 295 feet tall—about the height of the Statue of Liberty.
Comparison between velocity patterns measured by SNL’s LiDAR at SWiFT facility in Lubbock, Texas, and MTU’s DRD-BEM-GVLM simulation results at spherical surfaces at distances of (a) 2, and (b) 5 five rotor diameters downwind. Dr. Ponta and Apurva promise to interpret and explains these models for us during Husky Bites.

In modern times, a similar parallel can be traced between the optimization of the kinds of aerodynamic surfaces used in aeronautics, and the refinements of the latest generations of high-tech wind turbines, notes Ponta.

Over a period of years Ponta has developed a novel aeroelastic model for optimizing the rotor blades used in “smart” turbines and the collective control strategies of mega wind farms. The resulting modeling tool is now being applied by Sandia National Labs (SNL) for the study of the advanced lightweight rotors of their National Rotor Testbed (NRT) project. The result is a complete picture of how a wind turbine behaves under various conditions. Ponta’s modeling can be used to design blades and simulate the interaction of multiple wind turbine wakes in a wind farm, as well—particularly, the thousands of meters long wakes of the utility-scale megawatt turbines of today, and the super-turbines of tomorrow. 

Vortex lattice (rear view), in a two-turbine scenario of a typical night-time wind profile, part of the National Rotor Testbed project conducted in partnership with Sandia National Lab’s SWiFT facility in Lubbock, Texas.
Dr. Ponta and his daughter enjoy skiing at Mont Ripley, Michigan Tech’s own ski area.

Dr. Ponta, how did you first get into engineering? What sparked your interest?

I’ve always been fascinated with science and technology, even when I was a kid. In my high school years, I attended what in my country of origin is called an industrial college, with a specialty in electronics. I started as a naval and mechanical engineering student, and then I decided to switch to a full career in mechanical engineering. With the years, I focused more and more into computational and theoretical fluid mechanics, in particular as they apply to the study of wind turbines and other renewable energy systems.

Hometown?

I was born in the city of Buenos Aires, Argentina, even though my family lives now in the Patagonia region. Curiously, they live at the same latitude that we are here in Houghton, but in the southern hemisphere. That is, the same temperatures but with a six-month shift! 

The Avanti Bianc, on Traverse Bay

What do you like to do in your spare time?

In summer, sailing and swimming. I own a sailboat which I skipper regularly in the regattas of the Onigaming Yacht Club, of which I’m a member of the directory board. In winter, I ski a lot at Mont Ripley. Alpine skiing is my favorite sport, and I’ve been skiing since I was in my teens in the Andes range in Patagonia. I lift weights all year round.

The skyline of of Mumbai

Apurva, how did you first get into engineering? What sparked your interest?

Apurva is passionate about aviation, too. “Since 2017 I’ve been visiting the EAA AirVenture, a summer air show and gathering of aviation enthusiasts in Oshkosh, Wisconsin at Oshkosh.”

I’ve been fascinated with aircraft from a very young age. I had an amazing physics teacher throughout grade school and figured engineering was the path forward in order to work with airplanes.

During my undergrad years, I just naturally ‘flowed’ towards fluids and aerodynamics. After a few years working in industry, I decided to pursue a graduate degree at Tech. Our research in wind turbines and their wakes in a wind farm is a perfect blend of my interests.

Hometown?

I was born and raised in Mumbai, India. My mom’s terrified yet excited to visit the Keweenaw! She frequently catches our blizzard-y days by watching the HuskyCam feeds!

Apurva’s Wind Group lab setup. Note the paper plane!

Any hobbies?

Thanks to Dr. Ponta, I’ve found an immense passion for sailing. It’s an important aspect of our summer ‘research’. I also frequent Michigan Tech’s Student Development Center, aka “the SDC” for racquet sports, including tennis, badminton, and table tennis, and the shooting range. I’m the range safety officer for Michigan Tech’s Competition Rifle team.

Read more

Open Water

Dean’s Teaching Showcase: Christopher Middlebrook

Christopher Middlebrook
Christopher Middlebrook

College of Engineering Dean Janet Callahan has selected Christopher Middlebrook, professor in the Department of Electrical and Computer Engineering (ECE), as our ninth Dean’s Teaching Showcase member of spring 2022.

Middlebrook will be recognized at an end-of-term event with other showcase members, and is also a candidate for the CTL Instructional Award Series.

Middlebrook was selected for growing his work with printed circuit board (PCB) design into something extraordinary. He recognized a training need for electronic design engineers and put all the pieces in place to address a national security problem and offer employment opportunities for Michigan Tech students.

Like most great things, it started small. Middlebrook had an idea that if students like building electronic circuits, they might enjoy designing the printed circuit boards as well. His involvement with the Institute for Printed Circuits (IPC), a trade association founded to standardize assembly and production of electronic equipment, led to an IPC student chapter being formed in ECE. He gathered free materials and used equipment from local and national suppliers and launched an undergraduate course in PCB design. It was a huge hit. Local PCB manufacturer Calumet Electronics Corporation worked closely with him to offer the students an in-depth view of the design process from schematic capture to tested and accepted final product. Calumet Electronics Director of Engineering Services Rob Cooke describes Middlebrook as a “key strategic partner.” Cooke says: “Chris continually pushes to get feedback from our company about what students need to learn to be successful. He believes, as do we, that being able to see, touch and work with materials and processes is a key to being able to design and build.”

The industry connection did not stop there. Plexus Corporation, a dominant force in the electronics manufacturing industry, has a strong interest in the strength of the electronic system design education. Christina Jufliak, Michigan Tech alumna and a manager at Plexus, learned of Middlebrook’s efforts through the department’s External Advisory Committee. She saw a benefit to both her employer and the University. In her words: “As a Michigan Tech student, I saw firsthand the school’s efforts to provide relevant and hands-on experiences for students to prepare them for their careers.”

Middlebrook worked with Jufliak, the Michigan Tech Office of Advancement and the Plexus Corporation Charitable Foundation to secure $150,000 to create the Plexus Innovation Center on the sixth floor of the Electrical Energy Resources Center (EERC). Jufliak summarizes: “I am very excited that the Plexus Innovation Lab will continue supporting these efforts, preparing students to take on internships and full-time positions within their respective fields.”

This professional-grade makerspace has become a lighthouse for the design, fabrication and testing of electronic systems for researchers, Senior Design and Enterprise projects across the campus. Dean Callahan comments: “Middlebrook’s educational leadership has made a difference to what students are able to design and build, right here in the EERC.”

Caryn Heldt: The Making of a Vaccine

Caryn Heldt shares her knowledge on Husky Bites, a free, interactive Zoom webinar this Monday, March 14 at 6 pm ET. Learn something new in just 30 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites

“Our goal is to bring biotherapies to market faster,” says Dr. Caryn Heldt.

What are you doing for supper this Monday night 3/14 at 6 ET? Grab a bite with Dean Janet Callahan and Chemical Engineering Professor Caryn Heldt, to learn how different vaccines are made. Heldt, the James and Lorna Mack Endowed Chair of Cellular and Molecular Bioengineering, will talk about the different types of vaccines, how they are created and designed, and the FDA approval process. 

Caryn Heldt

Joining in will be one of Dr. Heldt’s former students, Dylan Turpeinen, who worked as an undergraduate and graduate researcher in the Heldt Bioseparations Lab at Michigan Tech. Dr. Turpeinen earned his BS in 2016, and his PhD in 2020, both in Chemical Engineering at Michigan Tech. He’s now a downstream process development scientist at the Florida-based biopharmaceutical company Resilience (formerly Ology Bioservices). In his role, Dr. Turpeinen operates and optimizes purification unit operations to produce vaccines.

Heldt is an alumna, as well. She graduated from Michigan Tech in 2001 with a Bachelor’s degree in Chemical Engineering and Chemistry. She earned a Masters in Chemical Engineering in 2005 and her PhD in Chemical Engineering in 2008, both from North Carolina State University. After post-doctoral studies in chemical engineering at Rensselaer Polytechnic Institute in 2010, she joined the chemical engineering faculty at Michigan Tech. Then, in 2015, Heldt won a prestigious NSF CAREER Award, which boosted her efforts and focus on vaccine research and development. She’s a member of the American Chemical Society, the American Institute of Chemical Engineers, the Society of Biological Engineers, and the Biophysical Society.

Pictured: the ultrastructural details of an influenza virus particle, or “virion”. Dr. Heldt is PI on a joint research project with Johns Hopkins University, funded by the FDA, “Integrated and Continuous Manufacturing of an Influenza Vaccine.”

Heldt teaches both undergraduate and graduate classes at Michigan Tech. Her lab, the Heldt Bioseparations Lab, is busier than ever, with seven graduate and five undergraduate students and two postdocs⁠—her vaccine research dream team. “Our lab focuses on the science of viral surface interactions and applies it to vaccine manufacturing and purification,” she explains. “We are interested in how viruses interact with different surfaces and chemistries. This could be important in how viruses infect cells, but we focus on how we can change surfaces to improve purification and manufacturing of viral therapies.”

Dylan Turpeinen

Turpeinen started out in the lab with Dr. Heldt as undergraduate researcher, fabricating and testing graphene-based electrochemical biosensors for rapid protein detection. He shared his enthusiasm for biosensors with middle and high school students the summer after he graduated with his BS, teaching at Michigan Tech’s Summer Youth Program (SYP) and then started work on his master’s degree, conducting graduate research on biosensors to detect malaria.

We are interested in how viruses interact with different surfaces and chemistries.

Turpeinen’s research then shifted to developing and testing a gold nanoparticle aggregation assay for virus detection, which could be used to ensure surface cleanliness on cruise ships, at hospitals or doctor’s offices between patients. His doctoral dissertation was entitled, “Development of Detection and Purification Strategies for Viral Products,” successfully defended (virtually due to the Pandemic) in July 2020.

Observing these chemical reactions in a test tube sometimes reminded him of a sunset: “The gold nanoparticles are the sun that start above the lake displaying a red-ish pink color and as the sun begins to set behind the lake, the color changes to a deep purple. When the sun is set, only the crisp blue color of Lake Superior is left behind.”

“Integrating graduate and undergraduate training in the lab inspires and guides the next generation of engineers. It also enhances our research.”

Caryn Heldt
A day in the life in the Heldt Bioseparations Lab

Dr. Heldt, how did you first get into engineering? What sparked your interest?

Ever since grade school, I planned on being an engineer. At first, I wanted to work at mission control at NASA. Later, I wanted to make a difference in people’s lives. My mom and sister are nurses, and while I didn’t want to be a medical doctor, making medicines really intrigued me. Now as an engineer I can still make a difference without working directly with patients. 

“A few years ago my son had the Grand Champion chicken in the Houghton county Fair!”
Looking good!
Dr. Heldt is a quilter!

Hometown, family?

I grew up in Pinconning, Michigan. My dad dropped out of school in 8th grade to help on the family farm and my mom has an associate’s degree in nursing. They instilled in me the importance of education and pushed me to get a bachelor’s degree. They were a little surprised when I took it so far as to get a doctorate degree. 

What do you like to do in your spare time?

I live in Atlantic Mine with my husband Gary and our three children. At home we have about 25 chickens (give or take a few) that give us fresh eggs. I enjoy quilting in my spare time. I’ve even started quilting viruses and microscopes, so my love for science is bleeding over into my hobbies. As a family, we downhill ski, snowshoe, and camp. I’ve also served on the Michigan Tech Preschool board, and was a FIRST Lego League coach, too.

“Gold nanoparticle size increase reminds me of a sunset over Lake Superior.”

Dylan Turpeinen, spoken as a chemical engineering PhD student at Michigan Tech

Dr. Turpeinen, how did you first get into engineering? What sparked your interest?

As a kid, I was always using Lego blocks to build anything I could imagine—houses, planes, and spaceships. When I got older, I found myself thinking about how and why something worked. I knew I needed to learn techniques to figure out how. When I visited Michigan Tech in high school, the professors I talked to made me very excited about Chemical Engineering.They explained how it was the “jack of all trades” of engineering. I knew pursuing an engineering degree would teach me the techniques I needed in order to figure out most things at a base level. To this day I deep-dive into any project I am interested in to understand how it works.

Ellie and Momo: they get along great!

Hometown, family?

I was born in Orlando but grew up in Houghton where I stayed for almost 15 years. I currently live in sunny Gainesville, Florida with my wife LiLu Funkenbusch and our two fur babies, Ellie (dog) and Momo (cat).

Any hobbies?

I like woodworking, PC gaming, and visiting local breweries to enjoy any and all IPAs (aka India Pale Ales). I also enjoy making various improvements to our new house.

Watch

Play How Vaccine Manufacturing is a Bit Like Making Salad Dressing video
Preview image for How Vaccine Manufacturing is a Bit Like Making Salad Dressing video

How Vaccine Manufacturing is a Bit Like Making Salad Dressing

Read More

Bouncing, Sticking, Exploding Viruses: Understanding the Surface Chemistry of SARS-CoV-2

The Pandemic Toolbox: COVID-19’s Wrench Remade Research Labs

Students Study Nanotech, Viruses Across Oceans and Disciplines in Singapore

Chemical Engineering Major Wins Portage Health Foundation Scholarship

Q&A with Bhakta Rath Award Winners Pratik Umesh Joshi and Caryn Heldt

TECH SCEnE Offers the Best of Both Worlds in Michigan’s Upper Peninsula

Keweenaw Bay Indian Community tribal members share their knowledge, wisdom, and culture with TECH SCEnE REU students. Apply for TECHSCEnE Summer 2022 by March 15 at https://www.techscene.mtu.edu. Tentative program dates are June 3, 2022- July 29, 2022. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply.

What are you doing this Summer 2022? Want to combine cutting-edge engineering research with direct community involvement and impact? With a generous stipend, travel allowance, plus all expenses paid for 8 weeks?

Samantha Haynes, future biomedical engineer, spent 8 weeks as a TECH SCEnE REU researcher last summer.

Biomedical engineering student Samantha Haynes decided to immerse herself in something entirely new via TECH SCEnE, a National Science Foundation Undergraduate Research Experience (REU) at Michigan Technological University. Haynes came all the way from Arlington, Virginia, where she studies biomedical engineering at Virginia Tech.

The 8-week, all-expense paid program offered at Michigan Tech is called TECH SCEnE (short for Technology, Science and Community Engagement in Engineering). Haynes stayed on campus, went on outdoor trips throughout the Keweenaw Peninsula, guided by the Keweenaw Bay Indian Community, and conducted hands-on research in campus labs alongside a faculty mentor.

TECH SCEnE research projects include water quality testing for heavy metal contamination, smart adhesives for underwater applications, remote monitoring and mobile robots, simulating daylight for hatcheries, and in vitro modeling of the impact of heavy metals.

Samantha is seventh from the left. TECH SCEnE stands for Technology, Science and Community Engagement in Engineering

In addition to hands-on laboratory experience, Haynes and her fellow students took plenty of field visits to the beautiful lakeshores of Lake Superior and Keweenaw Bay. Application deadline for Summer 2022 is March 15. Tentative program dates are June 3, 2022- July 29, 2022.

This year is forecast to be outstanding for viewing the Northern Lights in the Upper Peninsula of Michigan. Located just 20 minutes or so from the Michigan Tech campus, McLain State Park on Lake Superior is a great potential viewing spot!

Haynes pioneered research on heavy metal contamination in the soil and wild rice beds around the Keweenaw last summer as an undergraduate researcher taking part in TECH SCEnE. She also worked alongside members of the Keweenaw Bay Indian Community (KBIC), her fellow REU students, and other volunteers to plant over 75 trees, build hoops houses, harvest foods, and upkeep a large community garden, the tribe’s People’s Garden.

Wild rice, known as manoomin, the good berry, is both a spiritual and nutritional staple of the Keweenaw Indian Community.

Samantha, what did you like most about TECH SCEnE?

I applied to TECHScENE REU because I thought the internship was very unique. I was excited to have the opportunity to work in Michigan and learn about the local Indian community. I personally value diversity and learning about different communities very much, so I appreciated that this type of internship existed. I’m also passionate about creating positive social change, helping to protect the environment, and using science to bridge gaps in education and educate the public on pressing issues.

What was the best part?

Samantha and fellow volunteers tending to plants in one of the many Hoop Houses of the Keweenaw Bay Indian Community People’s Garden

Out of all the experiences activities we did throughout TECH ScENE, building relationships with my fellow peers, mentors, and the Native American community was my favorite part.

What was the most challenging aspect?

The unlearning process of everything I thought I knew about Native Americans. We participated in weekly workshops to unlearn false, preconceived ideas and to learn factual information about Native American tribes and tribal members, especially those we were working with as part of TECH SCEnE. 

“Boozhoo! Welcome to our wellness trail,” says this sign, located on Keweenaw Bay Indian Community tribal land. Take a moment to learn a few words of the Ojibwe language. “Miikaans means “trail”. “Aki” means Earth. And “boozhoo!” means “greetings!” or “hello!”

What next? What are your future plans?

Currently I am a junior in biomedical engineering, so the next step is to secure another internship for summer 2022, in order to gain more experience. Once I graduate, I plan to start working and possibly consider graduate school after a year or two.

Samantha’s final presentation, with her TECH SCEnE research mentor, Professor Rupali Datta

Are you an adventurous college student? Want to learn how to use science and technology to benefit both the community and the environment? Apply to TECH SCEnE by March 15. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply. Learn more and apply for free at techscene.mtu.edu.

Students, Faculty and Staff: Sign Up for LEED Green Associate Training at Michigan Tech

Better buildings equal better lives. This is Discover Elementary in Arlington, Virginia. LEED Zero Energy. Photo by Alan Karchmer

LEED (Leadership in Energy and Environmental Design) is the most widely used green building rating system in the world. Available for virtually all building types, LEED provides a framework to design, construct and operate healthy, highly efficient, cost-saving, green buildings.

Michigan Tech’s Joe Azzarello is one of the founders of the US Green Building Council and has led LEED training workshops throughout the United States, Mexico, South America, China, Thailand, Hong Kong, Singapore and Vietnam. Photo courtesy of Kohler Co.

Are you a student, faculty member or staff at Michigan Tech? If so, you are invited to prepare for, and when ready, take the LEED Green Associate exam. The prep will take place during two sessions, at a low cost, right here at Michigan Tech, with expert training from an original founding member of the US Green Building Council—Michigan Tech alumnus Joe Azzarello.

The LEED exam prep training at MTU will take place over two days. Azzarello will teach on campus in two 5-hour sessions, from 12-5 pm on both Sunday, March 20 and Sunday, March 27. The room is ChemSci 211. Those who cannot attend in person can attend via Zoom. LEED exam training costs $80.00, which includes notes and printed materials. Attendees are expected to purchase their text book, which varies in cost from $73.00 to $115.00, depending on e-book or vendor.

“Attendees will be well trained in what to study for the exam to become accredited as a LEED Green Associate,” notes Azzarello. “Then they must register, take, and pass the LEED GA exam from the USGBC at a later date in order to receive accreditation. The complete costs for LEED Green Associate accreditation varies. The USGBC website provides information on the Steps to Become a LEED Green Associate.

There is no need for a college degree. “Literally anyone can take the course if they can read, memorize some information, and add and subtract,” says Azzarello.

The USGBC LEED Green Associate exam measures general knowledge of green building practices and how to support others working on LEED projects. “The exam is ideal for those new to green building. It’s an accreditation that can enhance your current endeavors, and also open doors to new career opportunities,” Azzarello explains. “LEED accreditation is a globally recognized symbol of sustainability achievement and leadership.”

Depending on interest, Azzarello may offer more LEED training to Michigan Tech students, faculty and staff. Next up would be the LEED Accredited Professional Exam for individuals who actively work on green building and LEED projects.

Azzarello is a LEED AP® and a registered and active USGBC® Faculty™. He is licensed to instruct multiple USGBC workshops and has led workshops throughout the United States, Mexico, South America, China, Thailand, Hong Kong, Singapore and Vietnam. He truly enjoys instructing and sharing his 20-plus years of USGBC and LEED experience while bringing new professionals into the green building movement.

Azzarello earned his BS in Mechanical Engineering from Michigan Tech 1978 and an MS in Environmental Engineering in 1996 from Wayne State University. He is an adjunct instructor in the Department of Chemical Engineering, and also serves as advisor to Michigan Tech’s Alternative Energy Enterprise team. 

“I am at the stage of my life now where it is time to give back to Michigan Tech and the community and am in the position to do so,” says Azzarello. “Without a degree from MTU I am not sure how my life would have turned out. I feel very fortunate to be able to give back.”

Prior to joining Michigan Tech, Azarello retired from Kohler Co. as a senior staff engineer focused on sustainability, directing the company’s green building efforts and serving as a global consultant to customers developing green building projects. With decades spent in the environmental field, Azzarello’s resume touts myriad experiences with recycling, energy efficiency, sustainability, co-generation, marketing, sustainable product design and green building design, and construction programs for several Fortune 500 companies, along with multiple smaller organizations as a sustainability consultant. He also served as Yellowstone National Park’s green building consultant. 

Azzarello has been a part of the green building movement since its beginning. He served on the USGBC’s first Board of Directors as Vice Chairman, actively involved as a Board member during its formative years. He helped pave the way for LEED by participating in the Beta testing of the newly developed green building guidelines that became known as LEED v1.0. Read Joe Azzarello’s full bio.

Read more:

Feathered Friend Helps Launch Green Career: Kohler’s Resident Green Building Guru Started on a Very Different Career Path